Stat 302
 Statistical Software and Its Applications Graphics

Yen-Chi Chen

Department of Statistics, University of Washington
Spring 2017

General Remarks on R Graphics

- A well constructed graph is worth a thousand words.
- Many people use R mainly for obtaining effective graphs.
- You can annotate graphs in many ways.
- You can even use mathematical expressions in annotations.
- There are many generic plot commands.
- Many further commands add graphics elements to plots.
- We will focus on 4 graphs: scatter plot, histogram, QQ plot, and box plot.
- We will not have time to cover all the details so I highly recommend you to do some practices on your own.
- See also: R Graphics by Paul Murrell, Chapman \& Hall/CRC.

Scatter Plot: plot (faithful)

RStudio saves plots in various formats: \Rightarrow Plots \Rightarrow Export

Comments on plot(faithful)

- faithful is a data frame with 2 columns: eruptions and waiting
- From the data frame nature of 2 columns the plot command knows to plot one column against the other.
- Normal usage is plot (x, y) with x and y numerical vectors of equal length.
- Note the resulting difference in the following commands

```
plot(faithful)
plot(faithful[,1],faithful[,2])
```


plot(faithful[,1],faithful[,2])

plot(faithful[,1],faithful[,2])

xlab/ylab: labels

```
plot(faithful[,1],faithful[,2],
    xlab="eruption length (min)",
    ylab="waiting time to next eruption (min)")
```


main: title

```
plot(faithful[,1],faithful[,2],
    main= "Old Faithful Dataset")
```

Old Faithful Dataset

pch: type of points

$$
\begin{gathered}
\text { plot (faithful[,1], faithful }[, 2], \\
\text { pch=20) }
\end{gathered}
$$

pch: type of points

$$
\begin{gathered}
\text { plot (faithful[,1], faithful }[, 2] \\
\text { pch=15) }
\end{gathered}
$$

col: color

$$
\begin{gathered}
\text { plot (faithful[,1], faithful }[, 2], \\
\text { pch=20, col="red") }
\end{gathered}
$$

col: color

$$
\begin{gathered}
\text { plot (faithful[,1], faithful[,2], } \\
\text { pch=20, col="orchid") }
\end{gathered}
$$

cex: size of points

$$
\begin{aligned}
& \text { plot (faithful[,1],faithful[,2], } \\
& \text { pch=20, col="orchid", cex=2) }
\end{aligned}
$$

Controlling Plot Options

- Many graphics functions allow fine tuning control as follows.
- Plot dimensions are controlled by xlim=c $(x 1, x 2)$ and $\mathrm{ylim}=\mathrm{c}(\mathrm{y} 1, \mathrm{y} 2)$, using your $\mathrm{x} 1, \mathrm{x} 2, \mathrm{y} 1, \mathrm{y} 2$.
- Axis labels are controlled by xlab="your x-label" and ylab="your y-label".
- Set the main plot title by main="Your Main Title".
- Set the plot sub title by sub="Your Sub Title".
- See par for many graphics control options, like
- cex, cex.axis, cex.main, cex.sub character expansion factors.
- col, col.axis, col.lab, col.main, col.sub specifying colors.
- font, font.axis, font.lab, font.main, font.sub
font choices, $1=$ plain text (the default), $2=$ bold face, $3=$ italic and $4=$ bold italic.
- We do not have time to cover all of them but please try to practice changing each of them.

abline (a, b) : adding a line

$$
\begin{aligned}
& \text { plot (faithful[,1], faithful[,2], } \\
& \text { pch=20, col="orchid") } \\
& \text { abline(a=33, b=11, lwd=3, col="limegreen") }
\end{aligned}
$$

points() : adding points

$$
\begin{aligned}
& \text { plot(faithful[,1],faithful[,2], } \\
& \text { pch=20, col="orchid") } \\
& \text { points }(x=2: 5, y=c(90,80,70,60), \\
& \text { pch=20, cex=2, col="royalblue") }
\end{aligned}
$$

faithfull. 11

lines () : connecting points by lines

$$
\begin{gathered}
\text { plot(faithful[,1],faithful[,2], } \\
\text { pch=20, col="orchid") } \\
\text { lines }(x=2: 5, y=c(90,85,65,60), \\
l w d=3, ~ c o l=" b l u e ")
\end{gathered}
$$

faithfull. 11

Augmentation to Plots

- Some commands only work after a plot has been initiated.
- $\mathrm{abline}(\mathrm{a}, \mathrm{b})$ draws line with intercept a and slope b.
- segments (. . .) draws line segment(s) from P_{1} to P_{2}.
- arrows (. . .) draws arrow(s) from P_{1} to P_{2}.
- lines (...) draws curves through points by line segments.
- points (...) plots symbols (pch) at specified locations.
- polygon(...), rect (...) draw polygons and rectangles.
- text (...) puts specified text at selected positions.
- legend (. . .) adds legends to plots.
- mtext (. . .) adds text to plot margins.
- and lots more \Rightarrow help.start () \Rightarrow An Introduction to $R \Rightarrow$ 12 Graphical procedures \Rightarrow 12.2 Low-level plotting commands
- Please try to practice them on your own.

In-class Exercises - 1

1. Try the following:
```
col_tmp <- rep("limegreen",nrow(faithful))
col_tmp[which(faithful$eruptions<3)]<- "orchid"
plot(faithful, pch=16, col=col_tmp)
abline(v=3, lwd=3, col="brown")
```

2. Try to change limegreen into orange and repeat the same procedure. What happened?
3. Try to change which (faithful\$eruptions<3) into which(faithful\$eruptions<2). What happened?

Histogram: hist (faithful\$waiting)

Histogram of faithful\$waiting

breaks: break point for histogram

```
hist(faithful$waiting,
    breaks= seq(from=40,to=100, by=2))
```

Histogram of faithful\$waiting

\longrightarrow the by in the seq now gives the bin width of the histogram. $20 / 41$

breaks: break point for histogram

```
hist(faithful$waiting,
    breaks= seq(from=40,to=100, by=1))
```

Histogram of faithful\$waiting

col: color of the histogram

$$
\begin{aligned}
& \text { hist (faithful\$waiting, col="skyblue", } \\
& \text { breaks= seq(from=40,to=100, by=2)) }
\end{aligned}
$$

Histogram of faithful\$waiting

col: color of the histogram

$$
\begin{gathered}
\text { hist (faithful\$waiting, col=c("skyblue", "blue"), } \\
\text { breaks= seq(from=40,to=100, by=2)) }
\end{gathered}
$$

Histogram of faithful\$waiting

A cool figure: think about what happened

```
hist_break <-seq(from=40,to=100, by=2)
col_break <- rep("pink",length(hist_break))
col_break[which(hist_break<70)] <- "limegreen"
hist(faithful$waiting, col= col_break,
    breaks= hist_break, main="A Cool Figure")
A Cool Figure
```


Normal QQ-Plot - 1

$x \quad<-$ rnorm (300)
\# x is a standard normal random sample, $\mathrm{n}=300$ qqnorm(x,pch=16, cex=.5)
\# makes QQ-plot of sample
qqline(x)
\# adds a fitted line to the previous plot.
\# line is fitted through 1st and 3rd quartiles

Normal QQ-Plot - 2

$x \quad<-$ rnorm (300)
qqnorm ($\mathrm{x}, \mathrm{pch}=16$, cex=. 5)
qqline(x)

Normal Q-Q Plot

Normal QQ-Plot: waiting in the old faithful dataset

```
qqnorm(faithful$waiting, pch=15, cex=.5,
    main="QQ plot for waiting time")
qqline(faithful$waiting)
```

QQ plot for waiting time

Box Plots

boxplot(weight~feed, data=chickwts)
\# boxplot for variable weight, split \# by the type of feed (factor)

Comments on Box Plot

- The horizontal box lines $\equiv 3$ quartiles $Q(.25), Q(.5), Q(.75)$.
- The dashed vertical lines extend to the adjacent values.
- Compute the interquartile range $I Q R=Q(.75)-Q(.25)$.
- The upper adjacent value is the largest observation $\leq Q(.75)+1.5 \times I Q R$
- The lower adjacent value is the smallest observation $\geq Q(.25)-1.5 \times I Q R$
- Points beyond adjacent values shown individually (outliers?)
- For $\mathcal{N}\left(\mu, \sigma^{2}\right) \approx .35 \%$ are beyond each adjacent value.
- data=chickwts \Rightarrow simpler reference to variables.
- weight ~ feed implies boxplots for the factor of feed.

Box Plots: col

$$
\begin{array}{r}
\text { col_tmp <- c("lawngreen", "orchid", "orange", } \\
\text { "khaki", "steelblue", "violetred") }
\end{array}
$$

boxplot(weight~feed,data=chickwts,

$$
\left.\operatorname{col}=\operatorname{col} _t m p\right)
$$

Box Plots: many inputs

```
boxplot(iris$Sepal.Length,iris$Sepal.Width,
    iris$Petal.Length, names=c("Sepal.Length",
    "Sepal.Width", "Petal.Length"),
    main="Iris (partial)", ylab="cm")
```

Iris (partial)

\longrightarrow try to change each argument a bit to understand their functions.

Back to plot()

- The plot () function has some very power features.
- Here I will show you two features.

Lake Huron Water Level: illustrating plot argument type

par(mfrow=c $(1,3))$
plot(LakeHuron,type="l", main='type="l"')
\# points connected by lines
plot(LakeHuron,type="p",main='type="p"')
\# only points are plotted
plot(LakeHuron,type="b", main='type="b"')
\# both points and lines are plotted
\# see ?plot for more on the type argument

Lake Huron Plots: a time series dataset

Visualizing a multivariate data

plot(iris,col= rep (c ("red","blue", "orange"), each=50))

Saving Plots

- We indicated the interactive way within the RStudio interface.
- There are also various other ways by direct commands.
- pdf(file="myplot.pdf", width=8,height=6) opens pdf-file "myplot.pdf". width, height are in inches.
- Any subsequent graphics commands produce output to that file, until dev. $\circ \mathrm{Of}()$ is issued, or the R session terminates.
- Similar commands exist for other graphics formats
\Rightarrow ?Devices
for tiff, jpeg, bmp, png, postscript, quartz (Mac).

More Powerful Graphics

- Add-on packages provide more graphics capabilities. We mention just two.
- These are too complex to delve into here. Good as projects.
- The lattice package.
- \Rightarrow Book: Lattice: Multivariate Data Visualization with R, Springer 2008, by Deepayan Sarkar, creator of the package.
- The ggplot2 package, not covered here, but see R Graphics Cookbook by Winston Chang, O'Reilly, 2013.
- Interactive and Dynamic Graphics for Data Analysis with R and GGobi, Springer 2007, by Dianne Cook and Deborah Swayne.

In-class Exercises - 2

1. Try the following:
```
hist(faithful$waiting,
    breaks= seq(from=40,to=100, by=2),
    col=1:8)
```

2. Change col=1:8 into col= c("red","red","blue"). What happened to the histogram?
3. Try to color the histogram so that bins corresponding to waiting time less than 80 are red while the other bins are in blue color.
4. You can learn more in the following link: https://cran.r-project.org/doc/manuals/r-release/R-intro.html\#Graphics

Appendix: Math Annotations

- \Rightarrow ? plotmath gives documentation on it.
- > demo(plotmath) gives examples by commands and results.
- Murrell, P. and Ihaka, R. (2000)
"An approach to providing mathematical annotation in plots." Journal of Computational and Graphical Statistics, 9, 582-599.

Appendix: Normal Sample Histogram and Density

```
normalhist <- function(n=1000) \{
    \(\mathrm{x}<-\operatorname{rnorm}(\mathrm{n})\)
    \(x x<-\operatorname{seq}(-4,4, .1)\)
    hist ( \(x\), breaks=xx, probability=T,
        main="normal histogram")
    yy <- dnorm(xx)
    lines (xx,yy, col="blue")
    text \((-4, .3\), expression (varphi \((x)==\)
        over (1, sqrt ( 2 *pi) ) *phantom (0) *
        \(\left.e^{\wedge}\left\{-x^{\wedge} 2 / 2\right\}\right)\), adj\(=0\), col="blue")
\}
```

normal histogram

