Stat 302
Statistical Software and Its Applications
Functions and Programming

Yen-Chi Chen

Department of Statistics, University of Washington

Spring 2017

1/27

The for Loop Construct

for(i in x){
do something that may
or may not involve 1

Commands in loop are carried out n = length (x) times
and the variable i will take each value in the vector x.

Recall that looping is not efficient, each iteration is interpreted.

2/27

for Loop Example 1

> x <= 0

> for(i in 1:10){
+ x <—- c(x,1)

+ 3

> X

(1] 0 1 2 3 4 5 6 7 8 910
> x_seq <- ¢(3,1000,-30,-99,+100)
> for (i in x_seq) {
+ x <— c(x,1)
+
>

3/27

for Loop Example 2

y <=1

for(i in 1:10){
y <— y=*i

}

y
1] 3628800

factorial (10)
1] 3628800

— VvV V — V + 4+ V V

4/27

for Loop Example 3

A

vV + + V V

<- c(1,1,1)

for (j in 1:10) {

A = cbind (A, c(j,3"2,5%73))

1 2 3 4 5 66 7 8 9 10
1 4 9 16 25 36 49 64 81 100
5

A
1
1
1 10 15 20 25 30 35 40 45 50

5/27

Comments on while Loop

The structure of the while construct is a follows.

while (logic evaluation) {

.# a sequence of commands to carry out
as long as the logic evaluation
results in TRUE
If evaluation results in FALSE,
proceed after } of while loop.

H H FH= H

Make sure that your while loop has a chance to end.

If stuck in an infinite loop, terminate the R session.

That works in RGui or RStudio.
In the Linux interface you can try Ctrl C.

6/27

while Loop Example

> x <- 5

>y <—- x

> while (x<20) {

+ X <— x+4

+ y <= c(y,x)

+ 3

> X

(1] 21

>y

(1] 5 9 13 17 21

7/27

Animation using a Loop

Try the following in R:

> for (i in 1:100) {

+ hist (runif (1000), breaks=seq(from=0, to=1l, by=0.05),
+ probability =T, ylim=c(0,1.6), col="palegreen")
+ abline (h=1, lwd=3, col="purple")

+ Sys.sleep(0.5)

+ 1}

This will display an animation of sampling uniform distributions and
building histograms. We will talk more about this in the lecture of
the density estimation.

827

In-class Exercises - 1

Enter the following:

x0 <= c(1,1)
for(i in 1:10) {
%0 <— c(x0, x0[i+1]1+x0[i])
}
x0

Also enter the following:

y0 <= 5

y0_trace <- yO0

for(i in 1:20) {
y0 <-= =0.5%(y0-3) + yO
y0_trace <- c(y0O_trace, y0)

}

y0_trace

yO0

Think about what happen.

9/27

Functions

Functions can execute any number of commands within { and }

myfun <- function(x,vy, z) {
commands

}

The birthday problem asks what is the chance that in a random
group of n people you have at least 2 with same birthday.
Assume a N = 365 day year, all days equally likely per person.
It is easier to get the complementary probability of

- - |
P(all birthdays are distinct) = NN-1)...(N—n+1) N!

NP ~ No(N = n)!

Use Stirling’s approximation N! ~ /27 N(N/e)N.

10/27

The Desired Function

Bday <- function (N, n) {
p.exact <- prod((N-(0:(n-1)))/N)
p.Stirling <- exp((N-n+.5)*log(N/(N-n))-n)
out <- c(p.exact,p.Stirling)
names (out) <- c("exact p","Stirling p")
out
}
> Bday (365, 23)
exact p Stirling p
0.4927028 0.4927103

> Bday (10000000000,100000)

exact p Stirling p
0.6065327 0.6065325

11/27

Functions with Conditionals: if

> myfun <- function (x) {
+ if(is.matrix(x)) {
+ X" 2
+ }
+ 3
> a <- 1:10
> B <- matrix(a, nrow=2)
>
> myfun (a)
> # no output--because 'a’ is a vector
> myfun (B)
(11 [,2]1 [,3]1 [,4] [,5]
(1,1 1 9 25 49 81
[2,] 4 16 36 64 100

What would happen if we try myfun (as.matrix (a))?
12 /27

Comments on if Conditional

The structure of the if construct is a follows.

if (logic evaluation) {
....# a sequence of commands to carry out
....# when the logic evaluation is TRUE.
....# Otherwise ignore the commands within

R &}

13 /27

Multiple Choices

if (logic evaluation) {
....# if TRUE do this
lelse{
...# otherwise do this

if (logic evaluationl) {

....# 1f this is TRUE do this
}else if (logic evaluation2) {

...# if this is TRUE do this
}else(

...# otherwise do this

The above else if chain can be extended.

14 /27

Multiple Choices: Example 1-1

> myfun2 <- function (x) {
+ if(is.matrix (x)) {
+ xX"2

+ }else if (is.list (x)) {

+ length (x)

+ lelse({

+ print ("I am a good student!")
+

+

>

15/27

Multiple Choices: Example 1-2

> myfun2 (a)
[1] "I am a good student!"
> myfun2 (B)

(11 [,2] [,3] [,4] [,5]
(1,1 1 9 25 49 81
(2,1 4 16 36 64 100
> myfun2 (L)
[

16 /27

Multiple Choices: multiple if — 1

> myfun3 <- function (y) {
+ if(is.matrix(y)) {
+ y"2

+ }

+ if(is.matrix(y)) {
+ 2%y

+

+

>

>

myfun3 (B)
(11 [,2] [,31 [,4] [,5]
(1,1 2 6 10 14 18
(2,1 4 8 12 16 20

Only displays the later calculation.

17 /27

Multiple Choices: multiple if — 2

> myfund <- function (y) {
+ if(is.matrix(y)) {
+ print (y*2)

+ }

+ if(is.matrix(y)) {
+ print (2+y)
+

+

>

>

102l 0,31 [,4] [,5]
1 9 25 49 81
[2,] 4 16 36 64 100
10,21 [,31 [,4] [,5]
2 6 10 14 18
[2,] 4 8 12 16 20
> # show both cases! 18 /27

Multiple Choices: multiple if — 3

myfunb5 <- function (y) {
if(is.matrix(y)) {
y <— y+1
vy 2
}else if(is.matrix (y)) {
2xy

>

+

+

+

+

+

+

+)

> myfun6 <- function (y) {
+ if(is.matrix(y)) {
+ y <- y+1

+ vy 2

+ }

+ if(is.matrix(y)) {
+ 2%y

+

+

} 19/27

Multiple Choices: multiple if — 4

> myfunb (B)

(11 (,21 [,3]1 [,4] [,5]
(1,1 4 16 36 64 100
[2,] 9 25 49 81 121
> myfun6 (B)

(11 (,21 [,31 [,4]1 [,5]
(1,1 4 8 12 16 20
[2,] 6 10 14 18 22
> 2% (B+1)

(11 [,21 [,31 [,4] [,5]
[1 4 8 12 16 20
(2,1 6 10 14 18 22
> # so both statements are executed
> # in the two "if’ cases.

r]

20/27

Comments on Functions

Try to match bracket positions, for readability.

Add comments, for others and for yourself.

What happens within a function stays there.

The external workspace is not polluted by temporary objects.

That is one reason | prefer functions over sourcing code,
which can leave quite a debris field behind.

21/27

In-class Exercises - 2

Enter the following:

testfun <- function (x,y) {
if (x>5&y>5) {

print ("A")
}else 1if (x<0]y<0) {
print ("B")
}else{
print ("C")

}
and try testfun(1,10), testfun(-1,10), and

testfun(10,10).
What do | and & do? You may try 2"&" and 2" |".
They are or and and in logical operation.
22 /27

Optional Materials:
A Function of a Function

23 /27

A Function of a Function: using ... Argument

prob <- function(x,fx,...){fx(x,...)}
> prob (4,pbinom, 10, .5)

= prob (4,pbinom, size=10, prob=.5)

[1] 0.3769531

> pbinom(4,10,.5) # = pbinom(4,size=10,prob=.5)
[1] 0.3769531

> prob (4,ppois, lambda=10) # = prob (4,ppois,10)
[1] 0.02925269

> ppois(4,10) # = ppois (4, lambda=10)
[1] 0.02925269

24 /27

The ... Argument

The prob function called another function £x.

What if £x has other arguments beyond the root argument?
What if those other arguments change with £x7

We don’t want to rewrite prob each time.

We can use the dots (. . .) to handle this.

Typically ... goes at the end of argument list.

25 /27

What Happens Here?

> prob (4,ppois, 10, .5)
[1] 0.9707473

> prob (4, ppois, 10,1)
[1] 0.02925269

> prob (4,ppois, 10, .999)
[1] 0.9707473

> prob (4,ppois,10,1.001)
[1] 0.02925269

> args (ppois)
function (g, lambda, lower.tail = TRUE,
log.p = FALSE)

prob treats the 4-th argument as lower.tail, inconsistently.
26 /27

Some Comments on

View ... as a way to pass pass arguments through.
It is best to use named arguments, e.g., lambda=10.
Any values in place of ... are passed through.

The inside reference to ... may not make use of unused
named arguments.

Always test your usage of ... on examples.
Do you get what you want?

27 /27

