STAT 302

Statistical Software and Its Applications Other Data Objects

Yen-Chi Chen

Department of Statistics, University of Washington
Spring 2017

Matrices

- A matrix object is a rectangular $n \times m$ array of elements of same type: numerical, character, etc.
- n is the number of rows, m is the number of columns.
- Typically rows represent subjects, and columns represent different variables measured for each subject.
- The rectangular data structure ensures same number of measurements per subject.
- Having more than one variable per subject allows us to examine correlations between various measurements.
- We could also view such data as a collection of equal length variable vectors, stacked next to each other.

How to Create a Matrix

```
\(>A<-\operatorname{matrix}(1: 12\), nrow=3, ncol=4,byrow=F)
\(>A\)
```

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1	4	7	10
$[2]$,	2	5	8	11
$[3]$,	3	6	9	12

$>\mathrm{B}<-$ matrix (letters[1:12], nrow=3, byrow=T)
$>B$

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	"a"	"b"	"c"	"d"
$[2]$,	"e"	"f"	"g"	"h"
$[3]$,	"i"	"j"	"k"	"l"

Only nrow or ncol need to be specified.

Stacking Columns or Rows Using cbind () and rbind ()

```
\(>A<-\) cbind (1:3,4:6,7:9,10:12)
\(>A\)
```

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1	4	7	10
$[2]$,	2	5	8	11
$[3]$,	3	6	9	12

$>B \quad<-$ rbind(letters[1:4], letters[5:8],

+ letters[9:12])
$>B$

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	$" a "$	"b"	"c"	"d"
$[2]$,	$" e "$	$" f "$	$" g "$	$" h "$
$[3]$,	"i"	"j"	"k"	"l"

Naming Rows and Columns

```
> names(B)
NULL
```

> rownames(B) <- c("row1","row2","row3")
$>\mathrm{B}$
row1 "a" "b" "c" "d"
row2 "e" "f" "g" "h"
row3 "i" "j" "k" "l"
> colnames(B) <- c("col1", "col2", "col3", "col4")
$>B$

	col1	col2	col3	col4
row1 "a"	"b"	"c"	"d"	
row2 "e"	"f"	"g"	"h"	
row3 "i"	"j"	"k"	"l"	

Extracting Matrix Values by Index

$$
\begin{array}{lrrrr}
>\mathrm{A} & & \\
& {[, 1]} & {[, 2]} & {[, 3]} & {[, 4]} \\
{[1,]} & 1 & 4 & 7 & 10 \\
{[2,]} & 2 & 5 & 8 & 11 \\
{[3,]} & 3 & 6 & 9 & 12 \\
>A[1: 2,3: 4] \\
& {[, 1]} & {[, 2]} \\
{[1,]} & 7 & 10 & & \\
{[2,]} & 8 & 11 & &
\end{array}
$$

Extracting Matrix Values by Name

$$
>\mathrm{B}
$$

$$
\begin{aligned}
& \text { col1 col2 col3 col4 } \\
& \text { row1 "a" "b" "c" "d" } \\
& \text { row2 "e" "f" "g" "h" } \\
& \text { row3 "i" "j" "k" "l" } \\
& \text { > B[c("row1", "row3"), c("col2", "col3")] } \\
& \text { col2 col3 } \\
& \text { row1 "b" "c" } \\
& \text { row3 "j" "k" } \\
& \text { > B[c("row1","row3"), 2:3] } \\
& \text { col2 col3 } \\
& \text { row3 "j" "k" "c" }
\end{aligned}
$$

Matrix Arithmetic

```
> Ar <- matrix(12:1,ncol=4)
A A+Ar
\begin{tabular}{lrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} \\
{\([1]\),} & 13 & 13 & 13 & 13 \\
{\([2]\),} & 13 & 13 & 13 & 13 \\
{\([3]\),} & 13 & 13 & 13 & 13
\end{tabular}
```

Matrices are added by adding corresponding elements.
Same for - , * , / . Matrices must have same dimension (columns and rows), otherwise the computer will cycle the smaller matrix.

Matrix/Vector Arithmetic

$$
>A
$$

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1	4	7	10
$[2]$,	2	5	8	11
$[3]$,	3	6	9	12

$>A+1: 3$

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	2	5	8	11
$[2]$,	4	7	10	13
$[3]$,	6	9	12	15
$>$ A+1:4				

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	2	8	10	12
$[2]$,	4	6	12	14
$[3]$,	6	8	10	16

Vectors are expanded by column to a conforming matrix Same for - , * , / .

Matrix Multiply (Linear Algebra)

An $m \times n$ matrix C can be multiplied by an $n \times k$ matrix D using the command $C \% * \% D$
$>\mathrm{C}$

	$[, 1]$	$[, 2]$
$[1]$,	1	3
$[2]$,	2	4
$>$ D		

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	6	4	2
$[2]$,	5	3	1
$>C \% * \% D$			
	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	21	13	5
$[2]$,	32	20	8

To partially verify: $1 \cdot 6+3 \cdot 5=21,1 \cdot 4+3 \cdot 3=13$

Matrix Vector Multiply (Linear Algebra)

An $m \times n$ matrix C can be multiplied by an $n \times 1$ vector d using the same command $C \% * \% d$
$>\mathrm{C}$

	$[, 1]$	$[, 2]$
$[1]$,	1	3
$[2]$,	2	4
$>d<-c(2,3)$		
$>C \% * \% d$		
$c, 1]$		

[1,] 11
[2,] 16

$$
\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)\binom{2}{3}=\binom{1 \cdot 2+3 \cdot 3}{2 \cdot 2+4 \cdot 3}=\binom{11}{16}
$$

In-class Exercises - 1

Set $A<-$ matrix(1:9, nrow=3). Try the followings:
A
A $[2,2]$
A $[1$,]
A $[, 3]$
Also try the followings
$A[1]=$,
A
$A[, 2]=c(-1,-2)$
A
Think about what happened.

Inverting a Square Matrix

For some square matrices G we can find a matrix G^{-1} such that by matrix multiply we get $G G^{-1}=G^{-1} G=I . G^{-1}=\operatorname{solve}(G)$. Here I is the identity matrix, 1 's on diagonal, 0 's off diagonal.
> G <- matrix(1:4,ncol=2)
$>G$

	$[, 1]$	$[, 2]$
$[1]$,	1	3
$[2]$,	2	4

> solve(G)

	$[, 1]$	$[, 2]$
$[1]$,	-2	1.5
$[2]$,	1	-0.5
$>$ solve (G) $\% * \% G$		
	$[, 1]$	$[, 2]$
$[1]$,	1	0
$[2]$,	0	1

Solving an $n \times n$ System of Equations

For a given $n \times n$ matrix $A=\left(a_{i j}\right)$ and given vector $b=\left(b_{1}, \ldots, b_{n}\right)$ solve the following equations for the unknown vector $x=\left(x_{1}, \ldots, x_{n}\right)$

$$
\begin{aligned}
a_{11} x_{1}+\ldots+a_{1 n} x_{n} & =b_{1} \\
\ldots & =\ldots \\
a_{n 1} x_{1}+\ldots+a_{n n} x_{n} & =b_{n}
\end{aligned}
$$

in matrix multiply form this is just $A x=b$ for vectors
$x=\left(x_{1}, \ldots, x_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right) . x=A^{-1} A x=A^{-1} b$.
x can be obtained by the solve command via solve $(\mathrm{A}, \mathrm{b})=x$.
For some A (singular) the equations cannot be solved, and A^{-1} does not exist.

Lists

Lists are objects which are collections of other objects, such as data or function objects, lists, and lists of lists,...

```
> L <- list(M=1:4,A=letters[1:6],
+ F = function(x){x^2})
> L
$M
[1] 1 2 3 4
$A
[1] "a" "b" "c" "d" "e" "f"
$F
function (x)
{
    x^2
}
```


Indexing of Lists via []

Within [] use an index vector or vector of component names

```
> L[1:2]
$M
[1] 1 2 3 4
```

\$A
[1] "a" "b" "c" "d" "e" "f"
> L[c("M","A")]
\$M
[1] 1234
\$A
[1] "a" "b" "c" "d" "e" "£"
\# sublist of first 2 elements of the source list

Indexing of Lists via [[]] and \$

Within [[]] use a single index or component name
> L[["A"]] \# same as L\$A
[1] "a" "b" "c" "d" "e" "f"
> L[[2]]
[1] "a" "b" "c" "d" "e" "f"
\# You get the indicated list object,
\# not a sublist
> L[[2]][3] \# same as L\$A[3]
[1] "c"
> L[[3]](6) \# same as L\$F(6)
[1] 36
The \$ referencing works only when list component is named.

List within a List

```
> LL <- list(num = 1:3,list(letters[3:1],
+ LETTERS[1:2]))
> LL
$num # first component has name num
[1] 1 2 3
[[2]] # 2nd list component does not have a name
[[2]][[1]] # 1st subcomponent of 2nd component
[1] "c" "b" "a"
[[2]][[2]] # 2nd subcomponent of 2nd component
[1] "A" "B"
> LL[[2]][[1]] # 1st subcomp. of 2nd comp.
[1] "c" "b" "a"
> LL[[2]][[1]][2] # 2nd element of previous
[1] "b"
```


Data Frames

Data of different types can be captured in data frame objects.
> X <- data.frame (num=1:6,let=letters[6:1],

+ Date=as.Date("1965/5/15") +0:5)
> X

	num	let	Date
1	1	f	$1965-05-15$
2	2	e	$1965-05-16$
3	3	d	$1965-05-17$
4	4	c	$1965-05-18$
5	5	b	$1965-05-19$
6	6	a	$1965-05-20$

> str(X)
'data.frame': 6 obs. of 3 variables:
\$ num : int 123456
\$ let : Factor w/ 6 levels "a","b","c","d",..: 65
\$ Date: Date, format: "1965-05-15" "1965-05-16" ..

The Nature of Data Frames

A data frame is really a special list, with the restriction that all its components are vectors of various types, all of the same length.

Referencing is the same as with lists
> X[[1]] \# same as X\$num
[1] 123456
Note that X\$let is automatically a factor.

To keep strings as character, use stringsAsFactors=F in data.frame().

stringsAsFactors=F in data.frame()

> X <-data.frame(num=1:6,let=letters[6:1],

+ Date=as.Date("1965/5/15") +0:5,
+ stringsAsFactors=F)
> X[1:3,2:3] \# extract from data frames ~ matrices let Date
1 f 1965-05-15
2 e 1965-05-16
3 d 1965-05-17
> str(X[1:3,2:3])
'data.frame': 3 obs. of 2 variables:
\$ let : chr "f" "e" "d"
\$ Date: Date, format: "1965-05-15" "1965-05-16"

Why do we want to use data.frame?

Many datasets have different types of attributes. Here is an example from the CO2 dataset in R .
> head (CO2)
Plant Type Treatment conc uptake

1 Qn1 Quebec nonchilled 9516.0
2 Qn1 Quebec nonchilled $175 \quad 30.4$
3 Qn1 Quebec nonchilled 25034.8
4 Qn1 Quebec nonchilled 35037.2
5 Qn1 Quebec nonchilled 50035.3
6 Qn1 Quebec nonchilled 67539.2
> is.data.frame(CO2)
[1] TRUE
Try str(CO2).

In-class Exercises - 2

What would happen if we cbind vectors with different structures?
Try the following:
cbind(c(1:6), letters[1:6])
str(cbind(c(1:6), letters[1:6]))
Also try the following:
X <-data.frame(num=1:6, let=letters[6:1],
stringsAsFactors=F)
as.matrix(X)
is.character(X)
is.character(as.matrix(X))
is.character (X\$let)
Think about what happened.

