STAT 302 Statistical Software and Its Applications Other Data Objects

Yen-Chi Chen

Department of Statistics, University of Washington

Spring 2017

Matrices

- ► A matrix object is a rectangular n × m array of elements of same type: numerical, character, etc.
- n is the number of rows, m is the number of columns.
- Typically rows represent subjects, and columns represent different variables measured for each subject.
- The rectangular data structure ensures same number of measurements per subject.
- Having more than one variable per subject allows us to examine correlations between various measurements.
- We could also view such data as a collection of equal length variable vectors, stacked next to each other.

```
> A <- matrix(1:12,nrow=3,ncol=4,byrow=F)</pre>
> A
    [,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
> B <- matrix(letters[1:12],nrow=3,byrow=T)</pre>
> B
    [,1] [,2] [,3] [,4]
[1,] "a" "b" "c" "d"
[2,] "e" "f" "q" "h"
[3,] "i" "i" "k" "l"
```

Only nrow or ncol need to be specified.

Stacking Columns or Rows Using cbind() and rbind()

```
> A <- cbind(1:3,4:6,7:9,10:12)
```

```
> A
```

	[,1]	[,2]	[,3]	[,4]
[1,]	1	4	7	10
[2,]	2	5	8	11
[3,]	3	6	9	12

```
> B <- rbind(letters[1:4],letters[5:8],
+ letters[9:12])
> B
```

	[,1]	[,2]	[,3]	[,4]
[1,]	"a"	"b"	"c"	"d"
[2,]	"e"	"f"	"g"	"h"
[3,]	"i"	"j"	"k"	"1"

Naming Rows and Columns

```
> names(B)
NULL
> rownames(B) <- c("row1", "row2", "row3")</pre>
> B
     [,1] [,2] [,3] [,4]
row1 "a" "b" "c" "d"
row2 "e" "f" "q" "h"
row3 "i" "j" "k" "l"
> colnames(B) <- c("col1", "col2", "col3", "col4")</pre>
> B
     coll col2 col3 col4
```

row1 "a" "b" "c" "d" row2 "e" "f" "g" "h" row3 "i" "j" "k" "l"

Extracting Matrix Values by Index

Extracting Matrix Values by Name

> B coll col2 col3 col4 row1 "a" "b" "c" "d" row2 "e" "f" "q" "h" row3 "i" "j" "k" "l" > B[c("row1", "row3"), c("col2", "col3")] col2 col3 row1 "b" "c" row3 "j" "k" > B[c("row1", "row3"), 2:3] col2 col3 row1 "b" "c" row3 "i" "k"

```
> Ar <- matrix(12:1,ncol=4)
> A+Ar
    [,1] [,2] [,3] [,4]
[1,] 13 13 13 13
[2,] 13 13 13 13
[3,] 13 13 13 13
```

Matrices are added by adding corresponding elements.

Same for - , * , / .

Matrices must have same dimension (columns and rows), otherwise the computer will cycle the smaller matrix.

Matrix/Vector Arithmetic

```
> A
   [,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
> A+1:3
   [,1] [,2] [,3] [,4]
[1,] 2 5 8 11
[2,] 4 7 10 13
[3,] 6 9 12 15
> A+1:4
   [,1] [,2] [,3] [,4]
[1,] 2 8 10 12
[2,] 4 6 12 14
[3,] 6 8 10 16
```

Vectors are expanded by column to a conforming matrix Same for – , $\,\star\,$, $\,/\,$.

Matrix Multiply (Linear Algebra)

An $m \times n$ matrix C can be multiplied by an $n \times k$ matrix D using the command C %*% D

> C [,1] [,2] [1,] 1 3 [2,] 2 4 > D [,1] [,2] [,3] [1,] 6 4 2 [2,] 5 3 1 > C응*응D [,1] [,2] [,3] [1,] 21 13 5 [2,] 32 20 8 To partially verify: $1 \cdot 6 + 3 \cdot 5 = 21$, $1 \cdot 4 + 3 \cdot 3 = 13$

Matrix Vector Multiply (Linear Algebra)

An $m \times n$ matrix C can be multiplied by an $n \times 1$ vector d using the same command C $\% \star \%$ d

> C
[,1] [,2]
[1,] 1 3
[2,] 2 4
> d <- c(2,3)
> C%*%d
[,1]
[1,] 11
[2,] 16

$$\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}\begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \cdot 2 + 3 \cdot 3 \\ 2 \cdot 2 + 4 \cdot 3 \end{pmatrix} = \begin{pmatrix} 11 \\ 16 \end{pmatrix}$$

In-class Exercises - 1

```
Set A <- matrix(1:9, nrow=3). Try the followings:
A
A[2,2]
A[1,]
A[,3]</pre>
```

Also try the followings

```
A[1,] = 0
A
A[,2] = c(-1,-2)
A
```

Think about what happened.

Inverting a Square Matrix

For some square matrices G we can find a matrix G^{-1} such that by matrix multiply we get $GG^{-1} = G^{-1}G = I$. $G^{-1} = \text{solve}(G)$. Here I is the identity matrix, 1's on diagonal, 0's off diagonal.

```
> G <- matrix(1:4, ncol=2)
> G
[,1] [,2]
[1,] 1 3
[2,] 2 4
> solve(G)
    [,1] [,2]
[1,] -2 1.5
[2, ] 1 -0.5
> solve(G) %*%G
    [,1] [,2]
[1,] 1
           0
[2,] 0
           1
```

Solving an $n \times n$ System of Equations

For a given $n \times n$ matrix $A = (a_{ij})$ and given vector $b = (b_1, \ldots, b_n)$ solve the following equations for the unknown vector $x = (x_1, \ldots, x_n)$

$$a_{11}x_1 + \ldots + a_{1n}x_n = b_1$$

$$\ldots = \ldots$$

$$a_{n1}x_1 + \ldots + a_{nn}x_n = b_n$$

in matrix multiply form this is just Ax = b for vectors $x = (x_1, \ldots, x_n)$ and $b = (b_1, \ldots, b_n)$. $x = A^{-1}Ax = A^{-1}b$. x can be obtained by the solve command via solve (A, b) = x. For some A (singular) the equations cannot be solved, and A^{-1} does not exist.

Lists

Lists are objects which are collections of other objects, such as data or function objects, lists, and lists of lists,...

```
> L <- list(M=1:4,A=letters[1:6],
+ F = function(x){x^2})
> L
$M
[1] 1 2 3 4
$A
[1] "a" "b" "c" "d" "e" "f"
$F
```

```
function (x)
{
     x^2
}
```

Indexing of Lists via []

Within [] use an index vector or vector of component names > L[1:2] ŚМ [1] 1 2 3 4 \$A [1] "a" "b" "c" "d" "e" "f" > L[c("M", "A")] \$М [1] 1 2 3 4 \$A [1] "a" "b" "c" "d" "e" "f" # sublist of first 2 elements of the source list

Indexing of Lists via [[]] and \$

```
Within [[ ]] use a single index or component name
> L[["A"]] # same as L$A
[1] "a" "b" "c" "d" "e" "f"
> L[[2]]
[1] "a" "b" "c" "d" "e" "f"
# You get the indicated list object,
# not a sublist
> L[[2]][3] # same as L$A[3]
[1] "c"
> L[[3]](6) # same as L$F(6)
[1] 36
```

The $\$ referencing works only when list component is named.

List within a List

```
> LL <- list(num = 1:3,list(letters[3:1],
+ LETTERS[1:2]))
> LL
$num # first component has name num
[1] 1 2 3
```

[[2]] # 2nd list component does not have a name
[[2]][[1]] # 1st subcomponent of 2nd component
[1] "c" "b" "a"

[[2]][[2]] # 2nd subcomponent of 2nd component
[1] "A" "B"

> LL[[2]][[1]] # 1st subcomp. of 2nd comp.
[1] "c" "b" "a"
> LL[[2]][[1]][2] # 2nd element of previous
[1] "b"

Data Frames

Data of different types can be captured in data frame objects.

```
> X <- data.frame(num=1:6,let=letters[6:1],</pre>
```

```
+ Date=as.Date("1965/5/15")+0:5)
```

> X

num	let	Date
1	f	1965-05-15
2	е	1965-05-16
3	d	1965-05-17
4	С	1965-05-18
5	b	1965-05-19
6	а	1965-05-20
str((X)	
ata.	frar	ne': 6 obs. of 3 variables:
num	n : 1	int 1 2 3 4 5 6
let	: : E	Factor w/ 6 levels "a","b","c","d",: 6 5
Dat	ze: I	Date, format: "1965-05-15" "1965-05-16"
	num 1 2 3 4 5 6 str ata. num let Dat	num let 1 f 2 e 3 d 4 c 5 b 6 a str(X) ata.fran num : i let : H Date: I

A data frame is really a special list, with the restriction that all its components are vectors of various types, all of the same length.

Referencing is the same as with lists

> X[[1]] # same as X\$num [1] 1 2 3 4 5 6

Note that X\$let is automatically a factor.

To keep strings as character, use stringsAsFactors=F in data.frame().

stringsAsFactors=F in data.frame()

```
> X <-data.frame(num=1:6,let=letters[6:1],</pre>
+ Date=as.Date("1965/5/15")+0:5,
+ stringsAsFactors=F)
> X[1:3,2:3] # extract from data frames ~ matrices
  let Date
1 f 1965-05-15
2 e 1965-05-16
3 d 1965-05-17
> str(X[1:3,2:3])
'data.frame': 3 obs. of 2 variables:
 $ let : chr "f" "e" "d"
 $ Date: Date, format: "1965-05-15" "1965-05-16" ..
```

Many datasets have different types of attributes. Here is an example from the CO2 dataset in R.

```
> head(CO2)
```

	Plant	Туре	Treatment	conc	uptake
1	Qn1	Quebec	nonchilled	95	16.0
2	Qn1	Quebec	nonchilled	175	30.4
3	Qn1	Quebec	nonchilled	250	34.8
4	Qn1	Quebec	nonchilled	350	37.2
5	Qn1	Quebec	nonchilled	500	35.3
6	Qn1	Quebec	nonchilled	675	39.2
>	is.data.frame(CO2)				

[1] TRUE

Try str(CO2).

What would happen if we cbind vectors with different structures? Try the following:

```
cbind(c(1:6), letters[1:6])
str(cbind(c(1:6), letters[1:6]))
```

Also try the following:

```
X <-data.frame(num=1:6, let=letters[6:1],
stringsAsFactors=F)
as.matrix(X)
is.character(X)
is.character(as.matrix(X))
is.character(X$let)
```

Think about what happened.