
STAT 302
Statistical Software and Its Applications

Other Data Objects

Yen-Chi Chen

Department of Statistics, University of Washington

Spring 2017

1 / 23

Matrices

I A matrix object is a rectangular n ×m array
of elements of same type: numerical, character, etc.

I n is the number of rows, m is the number of columns.
I Typically rows represent subjects, and columns represent

different variables measured for each subject.
I The rectangular data structure ensures same number of

measurements per subject.
I Having more than one variable per subject allows us to

examine correlations between various measurements.
I We could also view such data as a collection of equal length

variable vectors, stacked next to each other.

2 / 23

How to Create a Matrix

> A <- matrix(1:12,nrow=3,ncol=4,byrow=F)
> A

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

> B <- matrix(letters[1:12],nrow=3,byrow=T)
> B

[,1] [,2] [,3] [,4]
[1,] "a" "b" "c" "d"
[2,] "e" "f" "g" "h"
[3,] "i" "j" "k" "l"

Only nrow or ncol need to be specified.

3 / 23

Stacking Columns or Rows Using cbind() and rbind()

> A <- cbind(1:3,4:6,7:9,10:12)
> A

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

> B <- rbind(letters[1:4],letters[5:8],
+ letters[9:12])
> B

[,1] [,2] [,3] [,4]
[1,] "a" "b" "c" "d"
[2,] "e" "f" "g" "h"
[3,] "i" "j" "k" "l"

4 / 23

Naming Rows and Columns

> names(B)
NULL
> rownames(B) <- c("row1","row2","row3")
> B

[,1] [,2] [,3] [,4]
row1 "a" "b" "c" "d"
row2 "e" "f" "g" "h"
row3 "i" "j" "k" "l"
> colnames(B) <- c("col1","col2","col3","col4")
> B

col1 col2 col3 col4
row1 "a" "b" "c" "d"
row2 "e" "f" "g" "h"
row3 "i" "j" "k" "l"

5 / 23

Extracting Matrix Values by Index

> A
[,1] [,2] [,3] [,4]

[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
> A[1:2,3:4]

[,1] [,2]
[1,] 7 10
[2,] 8 11

6 / 23

Extracting Matrix Values by Name

> B
col1 col2 col3 col4

row1 "a" "b" "c" "d"
row2 "e" "f" "g" "h"
row3 "i" "j" "k" "l"

> B[c("row1","row3"),c("col2","col3")]
col2 col3

row1 "b" "c"
row3 "j" "k"

> B[c("row1","row3"),2:3]
col2 col3

row1 "b" "c"
row3 "j" "k"

7 / 23

Matrix Arithmetic

> Ar <- matrix(12:1,ncol=4)
> A+Ar

[,1] [,2] [,3] [,4]
[1,] 13 13 13 13
[2,] 13 13 13 13
[3,] 13 13 13 13

Matrices are added by adding corresponding elements.
Same for - , * , / .
Matrices must have same dimension (columns and rows), otherwise
the computer will cycle the smaller matrix.

8 / 23

Matrix/Vector Arithmetic

> A
[,1] [,2] [,3] [,4]

[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
> A+1:3

[,1] [,2] [,3] [,4]
[1,] 2 5 8 11
[2,] 4 7 10 13
[3,] 6 9 12 15
> A+1:4

[,1] [,2] [,3] [,4]
[1,] 2 8 10 12
[2,] 4 6 12 14
[3,] 6 8 10 16

Vectors are expanded by column to a conforming matrix
Same for - , * , / . 9 / 23

Matrix Multiply (Linear Algebra)

An m × n matrix C can be multiplied by an n × k matrix D
using the command C %*% D

> C
[,1] [,2]

[1,] 1 3
[2,] 2 4
> D

[,1] [,2] [,3]
[1,] 6 4 2
[2,] 5 3 1
> C%*%D

[,1] [,2] [,3]
[1,] 21 13 5
[2,] 32 20 8

To partially verify: 1 · 6+ 3 · 5 = 21, 1 · 4+ 3 · 3 = 13

10 / 23

Matrix Vector Multiply (Linear Algebra)

An m × n matrix C can be multiplied by an n × 1 vector d
using the same command C %*% d

> C
[,1] [,2]

[1,] 1 3
[2,] 2 4
> d <- c(2,3)
> C%*%d

[,1]
[1,] 11
[2,] 16(

1 3
2 4

)(
2
3

)
=

(
1 · 2+ 3 · 3
2 · 2+ 4 · 3

)
=

(
11
16

)

11 / 23

In-class Exercises - 1

Set A <- matrix(1:9, nrow=3). Try the followings:

A
A[2,2]
A[1,]
A[,3]

Also try the followings

A[1,] = 0
A
A[,2] = c(-1,-2)
A

Think about what happened.

12 / 23

Inverting a Square Matrix

For some square matrices G we can find a matrix G−1 such that by
matrix multiply we get GG−1 = G−1G = I . G−1 = solve(G).
Here I is the identity matrix, 1’s on diagonal, 0’s off diagonal.

> G <- matrix(1:4,ncol=2)
> G

[,1] [,2]
[1,] 1 3
[2,] 2 4
> solve(G)

[,1] [,2]
[1,] -2 1.5
[2,] 1 -0.5
> solve(G)%*%G

[,1] [,2]
[1,] 1 0
[2,] 0 1

13 / 23

Solving an n × n System of Equations

For a given n × n matrix A = (aij) and given vector
b = (b1, . . . , bn) solve the following equations for the unknown
vector x = (x1, . . . , xn)

a11x1 + . . .+ a1nxn = b1

. . . = . . .

an1x1 + . . .+ annxn = bn

in matrix multiply form this is just Ax = b for vectors
x = (x1, . . . , xn) and b = (b1, . . . , bn). x = A−1Ax = A−1b.
x can be obtained by the solve command via solve(A,b) = x .
For some A (singular) the equations cannot be solved, and A−1

does not exist.

14 / 23

Lists

Lists are objects which are collections of other objects,
such as data or function objects, lists, and lists of lists,...

> L <- list(M=1:4,A=letters[1:6],
+ F = function(x){x^2})
> L
$M
[1] 1 2 3 4

$A
[1] "a" "b" "c" "d" "e" "f"

$F
function (x)
{

x^2
}

15 / 23

Indexing of Lists via []

Within [] use an index vector or vector of component names

> L[1:2]
$M
[1] 1 2 3 4

$A
[1] "a" "b" "c" "d" "e" "f"

> L[c("M","A")]
$M
[1] 1 2 3 4

$A
[1] "a" "b" "c" "d" "e" "f"

sublist of first 2 elements of the source list

16 / 23

Indexing of Lists via [[]] and $

Within [[]] use a single index or component name

> L[["A"]] # same as L$A
[1] "a" "b" "c" "d" "e" "f"
> L[[2]]
[1] "a" "b" "c" "d" "e" "f"
You get the indicated list object,
not a sublist

> L[[2]][3] # same as L$A[3]
[1] "c"

> L[[3]](6) # same as L$F(6)
[1] 36

The $ referencing works only when list component is named.

17 / 23

List within a List

> LL <- list(num = 1:3,list(letters[3:1],
+ LETTERS[1:2]))
> LL
$num # first component has name num
[1] 1 2 3

[[2]] # 2nd list component does not have a name
[[2]][[1]] # 1st subcomponent of 2nd component
[1] "c" "b" "a"

[[2]][[2]] # 2nd subcomponent of 2nd component
[1] "A" "B"

> LL[[2]][[1]] # 1st subcomp. of 2nd comp.
[1] "c" "b" "a"
> LL[[2]][[1]][2] # 2nd element of previous
[1] "b" 18 / 23

Data Frames

Data of different types can be captured in data frame objects.

> X <- data.frame(num=1:6,let=letters[6:1],
+ Date=as.Date("1965/5/15")+0:5)
> X
num let Date

1 1 f 1965-05-15
2 2 e 1965-05-16
3 3 d 1965-05-17
4 4 c 1965-05-18
5 5 b 1965-05-19
6 6 a 1965-05-20
> str(X)
’data.frame’: 6 obs. of 3 variables:
$ num : int 1 2 3 4 5 6
$ let : Factor w/ 6 levels "a","b","c","d",..: 6 5 4 3 2 1
$ Date: Date, format: "1965-05-15" "1965-05-16" ...

19 / 23

The Nature of Data Frames

A data frame is really a special list, with the restriction that all its
components are vectors of various types, all of the same length.

Referencing is the same as with lists

> X[[1]] # same as X$num
[1] 1 2 3 4 5 6

Note that X$let is automatically a factor.

To keep strings as character, use
stringsAsFactors=F in data.frame().

20 / 23

stringsAsFactors=F in data.frame()

> X <-data.frame(num=1:6,let=letters[6:1],
+ Date=as.Date("1965/5/15")+0:5,
+ stringsAsFactors=F)
> X[1:3,2:3] # extract from data frames ~ matrices
let Date

1 f 1965-05-15
2 e 1965-05-16
3 d 1965-05-17
> str(X[1:3,2:3])
’data.frame’: 3 obs. of 2 variables:
$ let : chr "f" "e" "d"
$ Date: Date, format: "1965-05-15" "1965-05-16" ...

21 / 23

Why do we want to use data.frame?

Many datasets have different types of attributes. Here is an
example from the CO2 dataset in R.

> head(CO2)
Plant Type Treatment conc uptake

1 Qn1 Quebec nonchilled 95 16.0
2 Qn1 Quebec nonchilled 175 30.4
3 Qn1 Quebec nonchilled 250 34.8
4 Qn1 Quebec nonchilled 350 37.2
5 Qn1 Quebec nonchilled 500 35.3
6 Qn1 Quebec nonchilled 675 39.2
> is.data.frame(CO2)
[1] TRUE

Try str(CO2).

22 / 23

In-class Exercises - 2

What would happen if we cbind vectors with different structures?
Try the following:

cbind(c(1:6), letters[1:6])
str(cbind(c(1:6), letters[1:6]))

Also try the following:

X <-data.frame(num=1:6, let=letters[6:1],
stringsAsFactors=F)
as.matrix(X)
is.character(X)
is.character(as.matrix(X))
is.character(X$let)

Think about what happened.

23 / 23

