
STAT 302
Statistical Software and Its Applications

Data Objects (Vectors)

Yen-Chi Chen

Department of Statistics, University of Washington

Spring 2017

1 / 31

Vectors

I A vector is a sequence of entities of the same type, i.e.,
numerical, integer, character, logic.

I Single values are just vectors of length 1.

> x <- rev(1:20) # rev() reverses order of 1:20
> str(x) # gives structural information about x
int [1:20] 20 19 18 17 16 15 14 13 12 11 ...

> z <- seq(1,4,.5)
> z
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0

2 / 31

How to Create Vectors

I We saw 1:20 and seq(1,4,.5).
I By concatenation of values or other vectors, using c(...).

> x1 <- rev(1:5)
> x2 <- 1:4
> y <- c(x1,x2,5)
> str(y)
num [1:10] 5 4 3 2 1 1 2 3 4 5

I Note the type becomes num because 5 is viewed as numeric.

> str(c(x1,x2,as.integer(5)))
int [1:10] 5 4 3 2 1 1 2 3 4 5

3 / 31

Character Vectors

I The elements of character vectors can be single characters or
strings of characters, enclosed in single or double quotes.

> a <- c(’hearts’,"A B C","C","Z")
> a
[1] "hearts" "A B C" "C" "Z"

I Special character vectors (note the subscripting)

> letters[2:5]
[1] "b" "c" "d" "e"
> LETTERS[c(1,3,25)]
[1] "A" "C" "Y"

4 / 31

Logic Vectors

I There are two logic values T and F, without quotes,
same as TRUE and FALSE.

> Lvec <- c(T,T,F,F,TRUE)
> Lvec
[1] TRUE TRUE FALSE FALSE TRUE

I Logic vectors are most often created by logic expressions

> Lvec <- 1:5 < 2.5
> Lvec
[1] TRUE TRUE FALSE FALSE FALSE
> Lvec+1
[1] 2 2 1 1 1

I Logic vectors can be interpreted numerically, T⇔ 1 and F⇔ 0

5 / 31

Testing Object Types

I For each object type there is a test function
is.numeric(), is.logical(), is.character(),
is.integer(), is.function()

> is.logical(Lvec+0)
[1] FALSE
> is.logical(Lvec)
[1] TRUE
> is.function(myfun)
[1] TRUE

6 / 31

Coercing Object Types

I When appropriate you can also coerce an object type.
This is not about the value but its storage type in memory.

> as.integer(Lvec)
[1] 1 1 0 0 0
> Lvec+1
[1] 2 2 1 1 1
> is.integer(Lvec+1)
[1] FALSE
> z <- as.integer(Lvec+1)
> z
[1] 2 2 1 1 1
> is.integer(z)
[1] TRUE

7 / 31

Repeating Vectors

I The rep() function is useful in creating vector patterns.

> rep(c(0,0,7),times=3)
[1] 0 0 7 0 0 7 0 0 7

> rep(c(0,0,7),each=3)
[1] 0 0 0 0 0 0 7 7 7

> rep(c(0,0,7),length.out=7)
[1] 0 0 7 0 0 7 0

8 / 31

Extracting Values from Vectors

I We already saw two examples letters[2:5] and
LETTERS[c(1,3,25)].

I letters[c(5)] and letters[5] both work, but
letters[1,5] does not.

I Using negative indices in extraction means omitting those
indexed vector values.

> (1:10)[-c(5,7)]
[1] 1 2 3 4 6 8 9 10
> 1:10[-c(5,7)]
[1] 1 2 3 4 5 6 7 8 9 10
10[-c(5,7)] has precedence and is 10

9 / 31

Extracting Vector Values Via Logic Vectors

I If x is any vector and Lx is a logic vector of same length, then
x[Lx] extracts all those vector elements from x, whose
position shows T or TRUE in the vector Lx.

I If Lx has shorter length than x it is recycled (with possible
warning. when length(x) 6= multiple of length(Lx)).

> x <- 1:10
> Lx <- x>6
> x[Lx] # same as x[x>6]
[1] 7 8 9 10
> (1:21)[3<c(2,4)]
[1] 2 4 6 8 10 12 14 16 18 20
> 3<c(2,4)
[1] FALSE TRUE
> x[x!=6]
[1] 1 2 3 4 5 7 8 9 10

Note the logic operator != meaning "not equal".
10 / 31

Changing Selected Vector Values

> x <- 1:10
> x[5] <- 6
> x
[1] 1 2 3 4 6 6 7 8 9 10

> x[x>5] <- 6
> x
[1] 1 2 3 4 6 6 6 6 6 6

> x[-4] <- 6
> x
[1] 6 6 6 4 6 6 6 6 6 6

11 / 31

Logic Operators

I x == y tests equality between x and y.
I x != y tests inequality between x and y.
I x > y, x < y, x >= y, and x <= y

test respective types of inequality.
I x & y returns TRUE when both x and y are TRUE,

otherwise FALSE is returned.
For numeric x, y only 0 counts as FALSE.

I x | y returns TRUE when x or y are TRUE,
otherwise FALSE is returned.

I ! x return the negation of x, when interpreted as logic
value.

I All the above operations work in vectorized form, making x
and y of same length by recycling the shorter vector.

> (1:5)[1:5 > 3] # replacing 3 by c(3,3,3,3,3)
[1] 4 5

12 / 31

Extracting Truth Positions Using which

I The which() function gives the index positions of a logic
vector which hold a TRUE value.

> which(6:1 > c(3,4))
[1] 1 2 3

same as
> which(6:1 > c(3,4,3,4,3,4))
[1] 1 2 3

> 6:1
[1] 6 5 4 3 2 1
> c(3,4,3,4,3,4)
[1] 3 4 3 4 3 4

13 / 31

Some Useful Vector Functions

I length(x) gives the length of the vector x.
I sum(x) gives the sum of all elements in x.
I prod(x) gives the product of all elements in x.
I min(x) and max(x) give the minimum and maximum of all

elements in x.
I cumsum(x) gives the cumulative sums of all elements in x.
I cummin(x) and cummax(x) give the cumulative minima

and maxima of all elements in x.
I diff(x) gives the differences of adjacent values in x.

The resulting vector has length length(x)-1.
I sort(x) sorts x, numeric or character
I ind <- order(x) =⇒ x[ind] is sorted.
I Try out these functions and see documentation on them,

concerning missing value NA behavior.

14 / 31

Numerical Formatting

I round(x,k) rounds x to k decimals.
I signif(x,k) shows the k significant digits of x.
I If in rounding the first dropped digit is 5,

rounding is to the nearest even digit.

> signif(4.45,2)
[1] 4.4
> signif(4.35,2)
[1] 4.4

I trunc(x) rounds x to nearest integer in the direction of 0.
I floor(x) gives the greatest integer ≤ x.
I ceiling(x) gives the smallest integer ≥ x.
I All these functions are vectorized.

15 / 31

Math Operations on Vectors

I Most arithmetic operations and many functions are vectorized.
I Operations involving 2 vectors x and y require that the longer

vector is a multiple of the shorter one, warning otherwise.

x+y, x-y, x*y, x/y, x^y

add, subtract, multiply, divide, exponentiate componentwise.

> 2^(1:3) # same as c(2,2,2)^(1:3)
[1] 2 4 8
> (1:3)^2 # same as (1:3)^c(2,2,2)
[1] 1 4 9

I The trigonometric and hyperbolic functions,
try ?cos and ?cosh.

I Also sqrt, log, exp, abs, see ?log for more.

16 / 31

In-class Exercises - 1

Use R to do the following and think about the result.
I Set x <- c(7,3,2,5,9,1), think about two ways to sort

them in decreasing order.

I Set y <- 1:6. Try prod(y) and factorial(y).
I Set z <- 3.5. Try floor(z), ceiling(z), and
trunc(z).
What would happen if we change z into z <- -1.5?

I Set a <- c(1,5,9,2,3,13). Try a>4, !a>4,
which(a>4), a[which(a>4)], and a[a>4].

17 / 31

Problem of Zeros

> sin(pi)
[1] 1.224606e-16

> log(5/2)-log(5)+log(2)
[1] 1.110223e-16

> log(5/2)-log(5)+log(2)+log(exp(1))
[1] 1 # no problem here,

> log(5/2)-log(5)+log(2)+log(exp(1))-1 == 0
[1] TRUE

> log(5/2)-log(5)+log(2)+(log(exp(1))-1)
[1] 1.110223e-16

18 / 31

More on Problem of Zeros

> seq(0,.4,.1)==.3
[1] FALSE FALSE FALSE FALSE FALSE

> .1==.3/3
[1] FALSE

> unique(c(.3,.4-.1,.5-.2,.6-.3,.7-.4))
[1] 0.3 0.3 0.3

> .6-.3 - .7+.4
[1] 5.551115e-17

19 / 31

Machine Representation of Numbers

I Limitations of representing numbers in a computer.
I It manifests mostly for numbers that are zero, technically.
I Sometimes the results are surprising and can bite you.
I Important to mind when testing x == 0.

It would result in FALSE when x is 1.224606e-16.
I Sometimes you get away with such a test, previous example.
I It can show in unexpected place like in == tests or in unique.
I Better test abs(x) <= 1e-12 = 10−12

20 / 31

Naming Vectors

Sometimes it is useful to name vectors.

> month.name
[1] "January" "February" "March"
[4] "April" "May" "June"
[7] "July" "August" "September"

[10] "October" "November" "December"
a vector of month names, built into R
> month.days <- c(31,28,31,30,31,30,31,
+ 31,30,31,30,31)
> names(month.days) <- month.name
> month.days

January February March April
31 28 31 30
May June July August
31 30 31 31

September October November December
30 31 30 31 21 / 31

Manipulating Text

I R has many tools for manipulating text data.
I Good coverage is given on pages 76-86 of R for Dummies.
I We will skip this here.
I Note that analyzing text data is a big field; here are some

keywords:
I text mining.
I natural language processing.
I bag-of-word model.

22 / 31

Factors

I The factor data type is the most confusing to new users.
I It seems to be neither numeric nor character

or it seems to be both at the same time.
I It is used to classify certain data aspects

I M or F (male/female)
I North, East, South, West
I strongly agree, agree, neutral, disagree, strongly disagree
I green, red, blue, yellow, ...

23 / 31

Factors by Example

> directions <- c("North","East","South","South")
> dir.factor <- factor(directions)
> dir.factor
[1] North East South South
Levels: East North South
> as.character(dir.factor)
[1] "North" "East" "South" "South"
> as.numeric(dir.factor)
[1] 2 1 3 3 # numbers reflect alphabetical order
> levels(dir.factor)
[1] "East" "North" "South"
> str(dir.factor)
Factor w/ 3 levels "East","North",..: 2 1 3 3

The number coding may be the reason for the existence of factors.

24 / 31

In-class Exercises - 2

Use R to do the following and think about the result.
I Set a1 <- 1:3; a2 <- c(1,2,3). Try
is.integer(a1) and is.integer(a2). Try also
is.numeric(a1) and
is.integer(as.numeric(a1)).

I Set a3 <- c(1,2,3, "nice","cool"). Try a3,
is.integer(a3), is.integer(a3[1]),
is.character(a3).

25 / 31

Optional Materials:
Handling Date and Time

26 / 31

Dates

I Often data come with dates, providing points on a time axis.
I Differences between dates may serve as life lengths.
I Dates can be incremented.

> dx <- as.Date("2012-1-6")
> dx
[1] "2012-01-06"
> dx <- as.Date("2012/1/6")
> dx
[1] "2012-01-06"
> months(dx)
[1] "January"
> weekdays(dx)
[1] "Friday"
> dx+1:3
[1] "2012-01-07" "2012-01-08" "2012-01-09"

27 / 31

Dates with Other Formats?

I Dates come in many formats in external data sets.
I This can be accommodated via the format argument in
as.Date().

> as.Date("27 Jun 2012",format="%d %b %Y")
[1] "2012-06-27"
> as.Date("27 June 2012",format="%d %B %Y")
[1] "2012-06-27"
> as.Date("27, Jun, 2012",format="%d,%B,%Y")
[1] NA
> as.Date("27, Jun, 2012",format="%d, %B, %Y")
[1] "2012-06-27"

Read the documentation on as.Date if uncertain.

28 / 31

Date and Time

> apollo <- "July 20, 1969, 20:17:39"
> apollo.fmt <- "%B %d, %Y, %H:%M:%S"
> xct <- as.POSIXct(apollo,format=apollo.fmt)
> xct
[1] "1969-07-20 20:17:39 PDT"
> as.numeric(xct)
[1] -14157741

as.POSIXct expresses date/time in seconds since start of 1970.

Sometimes date/time formats in data sets are not consistent.

Hunt for produced NA’s or clean the data via text manipulation.

29 / 31

Arithmetic with Date and Time

> xct
[1] "1969-07-20 20:17:39 PDT"
> xct + 24*3600
[1] "1969-07-21 20:17:39 PDT"
increment in seconds for as.POSIXct objects.
> as.Date("1969-07-20")+12
[1] "1969-08-01"
increment in days for as.Date objects.
> xct.e <- xct + 77781
> xct.e
[1] "1969-07-21 17:54:00 PDT"
> xct.e-xct
Time difference of 21.60583 hours
> xct.e > xct
[1] TRUE

30 / 31

System Times

> Sys.time()
[1] "2012-11-05 10:27:25 PST"
current system time, local to your computer

> system.time(rnorm(1e7))
user system elapsed

3.712 0.068 3.968
no output beyond timing
rnorm(1e7) generates 10000000
standard normal deviates

> system.time(xr <- rnorm(1e7))
user system elapsed

3.708 0.072 4.029
also produces xr in workspace
> xr[1:3]
[1] 0.03957654 0.61420864 -1.24596152 31 / 31

