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Motivating Example: chickwts Dataset – 1

For simplicity, we consider linseed and sunflower feed. Here
is the boxplot for weight of chicken from these two groups.
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−→ If now I give you a chicken with some value of weight, which
feed will you predict?
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Motivating Example: chickwts Dataset – 2

0: linseed 1: sunflower

15
0

25
0

35
0

w
ei

gh
t

−→ What feed will you predict for weight = 200, 300 and
350?

3 / 37



Motivating Example: chickwts Dataset – 3
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weight
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−→ What feed will you predict for weight = 200, 300 and
350?
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kNN Method – 1

I A simple method is called k-nearest neighbor (kNN) method.
I For a given point Sepal.length=x, we find the k

observations whose Sepal.length is closest to x.
I Different k yields different result.
I In R, we will use the function knn() in the library class.

> x_grid <- seq(from = 100, to=400, by=1)
> label_grid <- knn(train=as.matrix(data_x),
+ test=as.matrix(x_grid),
+ cl = label_y,k=11)
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kNN Method – 2

> plot(NULL, xlim=c(100,400), ylim=c(-2,1), xlab="weight",
+ yaxt="n", ylab="", main="k = 1", cex.main=2)
> abline(h=0)
> points(x=data_x[label_y==0], y=rep(0, sum(label_y==0)),
+ col="dodgerblue", cex=2, pch="|")
> points(x=data_x[label_y==1], y=rep(0, sum(label_y==1)),
+ col="red", cex=2, pch="|")
> abline(h=-1)
> points(x=x_grid[label_grid==0], y=rep(-1, sum(label_grid==0)),
+ col="dodgerblue", cex=1, pch="|")
> points(x=x_grid[label_grid==1], y=rep(-1, sum(label_grid==1)),
+ col="red", cex=1, pch="|")
> text("Data", x=125, y=0.25, cex=2)
> text("Prediction", x=150, y=-1.25, cex=2)
> legend("topleft",c("linseed","sunflower"),
+ col=c("dodgerblue","red"), lwd=3)
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kNN Method – 3
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kNN Method – 4
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kNN Method – 5
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kNN Method – 6
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kNN Method – 7

I The quantity k matters a lot!
I How are we going to choose it?
I Generally, we choose k to minimize the prediction error.
I Basic idea: we know the actual labels of the data so we can

evaluate our prediction error.
I However, we are reusing the data for many times and choose

the optimal error.
I We would generally end up being too optimistic about the

optimal prediction error–this is called overfitting.
I There are some ways to deal with this problem such as

cross-validation; if you are interested in the classification
problem, I highly recommend you to learn this concept.
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Classification based on Probability – 1

I We can do classification based on a statistical (probability)
model.

I The task of classification is: having observed weight, which
feed should be predict.

I A statistical model for this task is P(feed|weight).
I In our case, feed= linseed or sunflower; so we are

interested in the quantities

P(feed = linseed|weight),
P(feed = sunflower|weight).

I A common strategy is to choose the feed that has a higher
probability.
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Classification based on Probability – 2

I Using the Bayes rule, comparing the above two probabilities is
the same as comparing the following two quantities:

p(weight|feed = linseed) · P(feed = linseed),

p(weight|feed = sunflower) · P(feed = sunflower).

I Based on the data, the above quantities can be replaced by

p̂(weight|feed = linseed) · N(feed = linseed),

p̂(weight|feed = sunflower) · N(feed = sunflower),

where p̂(weight|feed = X) is the estimated density using
those observations whose feed = X and
N(feed = linseed) is the number of observations whose
feed = X.

I If the two groups (feed) have equal size, we can directly
compare their density.
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Classification based on Probability – 3

> plot(density(data_x[label_y==0], bw=30, from=100, to=400),
+ lwd=4, col="dodgerblue", ylim=c(0,0.01),
+ main="Density Comparison", xlab="weight")
> lines(density(data_x[label_y==1], bw=30, from=100, to=400),
+ lwd=4, col="red")
> legend("topleft",c("linseed","sunflower"),
+ col=c("dodgerblue","red"), lwd=4, cex=1.5)
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Classification based on Probability – 4

group0 <-density(data_x[label_y==0], bw=30, from=100, to=400)
group1 <-density(data_x[label_y==1], bw=30, from=100, to=400)
plot(group0$x, group0$y-group1$y,

lwd=4, col="orchid", ylim=c(-0.008,0.008),
main="Density Comparison (linseed - sunflower)",
xlab="weight", type="l", ylab="Density Difference")

abline(h=0, lwd=3, col="gray")

100 150 200 250 300 350 400

−
0.

00
5

0.
00

0
0.

00
5

Density Comparison (linseed − sunflower)

weight

D
en

si
ty

 D
iff

er
en

ce

15 / 37



Classification based on Probability – 5

Consider the following example: the group A is from red
distribution and group B is from the blue distribution. And we have
equal probability to obtain a new observation from each group.
Question: what is the best classifier?
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Classification based on Probability – 6

The best classifier will be the purple line: we classify a point to be
in the red group if its value is less than 1.5; otherwise we classify it
to be in the blue group.
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Classification based on Probability – 7

I How do we understand this optimal classifier?
I Given a value x , the probability of being in red/blue is

P(Red Group|x), P(Blue Group|x).

I If we know these two probabilities, the optimal classifier is to
classify x into the group with higher probability.

I Thus, the optimal classifier outputs a label{
red if P(Red Group|x) > P(Blue Group|x)
blue if P(Red Group|x) < P(Blue Group|x)

.
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Classification based on Probability – 8

However, even the optimal classifier has some prediction error,
which is characterized by the black region.
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There are some chances that points from the red group may be
above 1.5. This unavoidable probability is called the Bayes risk.
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Bayes Risk – 1

I The Bayes risk is the error probability of the best classifier.
I It is the error purely due to the randomness.
I The existence of the Bayes risk implies that even if we have

done our best, there is still some misclassification errors.
I Just like many decision-making problems, we still make

mistakes even we have made our best choice.
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Bayes Risk – 2

> data_x <- c(rnorm(10000), rnorm(10000, mean=3))
> label_y <- c(rep(0,10000), rep(1,10000))
>
> classifier_y <- data_x>= 1.5
> # the best classifier
> err <- sum(classifier_y!=label_y)/20000
> err
[1] 0.06835

−→ this is the Bayes risk.
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Classifiers: Comments

I In machine learning, classification and prediction is one of the
main goals.

I An example: given an email, how Google can classify it as
important/unimportant/spam?

I Here are a list of some common approaches:
I Logistic Regression.
I Support Vector Machine.
I Random Forest.
I Naive Bayes.
I Boosting.
I Deep Learning/Neural Network.

I You would learn more in STAT 435 (Introduction to Statistical
Machine Learning).
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In-class Exercises - 1

We will use the knn to analyze the iris dataset.

1. We pick the Sepal.Length and Sepal.Width to see how the classifier
behaves; enter data0 <- iris[,1:2]; data0_label <- iris[,5].

2. When the number k = 5, the predicted label of the original dataset is

label_pred <- knn(train=data0, test=data0, cl = data0_label,k=5)
label_pred

3. Comparing the output of label_pred to the observed label data0_label, we
can compute the error rate (ratio of wrongly prediction). What is the error rate
(this error rate is called training error)?

4. Change the value k from 2 to 10. Redo the same analysis; what are the
corresponding error rates?

5. Change the variable being used to Petal.Length and Petal.Width. Redo
the same analysis. What are the error rates?
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Clustering: Introduction

I Clustering is to group data into clusters.
I Ideally, we want points within the same clusters are similar to

each other; points in different clusters are different from each
other.

I Namely, we want to increase within group similarity and
decrease between group similarity.

I Why do we want to do clustering?→ in some scientific
analysis, a cluster may correspond to observations generated
by the same/similar procedure.

I A main difference between classification and clustering is that
in classification, we have labels for our observations, but in
clustering, we do not have labels.

24 / 37



Clustering: Old Faithful Dataset – 1

> data1 <- cbind(faithful$eruptions[1:271],
+ faithful$eruptions[2:272])
> plot(data1, xlab="Current Eruption Time",
+ ylab="Next Eruption Time", col="gray",
+ pch=20)
> points(data1)
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Clustering: Old Faithful Dataset – 2
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I The dataset seems to have 4 structures (clusters) mixed
together.

I Question: is there any way we can partition data points into
the 4 clusters? 26 / 37



k-means Clustering – 1

Here we will introduce a common method: k-means clustering.
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k-means Clustering – 2

I k-means is to partition the data points into k groups.
I The idea is that we find the best k points (these points are

called ‘centers’) such that
I every data point is assigned to the closest center, and
I the sum of square of within cluster distance is minimized.

I The sum of square of of within cluster distance is called the
k-means objective.

I There is an algorithm for computing the k-means clustering.
I However, this algorithm will stop at a local minimum of the

k-means objective.
I So in practice, we need to run the algorithm multiple times

and check the within cluster distance to make sure the result is
a global minimum.
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k-means Clustering – 3

> data1_km <- kmeans(data1, centers=4)
> col4 <- c("dodgerblue","orchid","limegreen","orange")
> plot(data1, xlab="Current Eruption Time",
+ ylab="Next Eruption Time",
+ col=col4[data1_km$cluster], pch=20, cex=1.2,
+ main="k means clustering with k = 4")
> points(data1_km$centers, col="red",pch="+", cex=3)
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k-means Clustering – 4

> k_obj = rep(NA, 100)
> for(w in 1:100){
+ data1_km <- kmeans(data1, centers=4)
+ k_obj[w] <- data1_km$tot.withinss
+ }
> plot(k_obj, pch=20, ylab="k-means objective",
+ main="k-means objective, redo 100 times")
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k-means Clustering – 5

Different k gives you different results.
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k-means Clustering – 6
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k-means Clustering – 7
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k-means Clustering – 8
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k-means Clustering – 9

I How to choose the number of cluster k is also a hard question.
I Generally we need to look at the data first and the decide it.
I k-means has many applications in compression–we can

compress the entire dataset using the k centers to reduce the
size of the dataset.

I It is also known as vector quantization.
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Clustering: Comments

I Due to time constraint, we only cover k-means clustering.
I There are many many other clustering techniques.
I Hierarchical clustering, spectral clustering, mean shift

clustering, ...
I Clustering is still a very popular research topic in statistics and

machine learning.
I In scientific or engineering fields, clustering is also a common

task.
I In industry, people use clustering to explore the structure of a

complex dataset.
I I highly recommend you to learn more about clustering.
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In-class Exercises - 2

Again we will analyze the faithful dataset but now we focus on current
waiting time versus next waiting time. First create an object:

data2 <- cbind(faithful$waiting[1:271],faithful$waiting[2:272])

1. Use k-means clustering with k = 3 to find the clusters. Repeat the procedure
many times and keep track of the tot.withinss. What is the minimum
tot.withinss value you obtain? What is the corresponding clustering?

2. Use k-means clustering with k = 4 to find the clusters. Repeat the procedure
many times and keep track of the tot.withinss. What is the minimum
tot.withinss value you obtain? What is the corresponding clustering?
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