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Motivating Example: chickwts Dataset — 1

For simplicity, we consider 1inseed and sunflower feed. Here
is the boxplot for weight of chicken from these two groups.
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— If now | give you a chicken with some value of weight, which

feed will you predict?
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Motivating Example: chickwts Dataset — 2
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Motivating Example: chickwts Dataset — 3
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kNN Method -1

A simple method is called k-nearest neighbor (kNN) method.

For a given point Sepal.length=x, we find the k
observations whose Sepal.length is closest to x.

Different k yields different result.

In R, we will use the function knn () in the library class.

> x_grid <- seqg(from = 100, to=400, by=1)

> label_grid <- knn(train=as.matrix (data_x),
+ test=as.matrix(x_grid),
+ cl = label_y,k=11)
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kNN Method — 2
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plot (NULL, xlim=c(100,400), ylim=c(-2,1), xlab="weight",

yaxt="n", ylab="", main="k = 1", cex.main=2)
abline (h=0)
points (x=data_x[label_y==0], y=rep(0, sum(label_y==0)),
col="dodgerblue", cex=2, pch="|")
points (x=data_x[label_y==1], y=rep(0, sum(label_y==1)),

col="red", cex=2, pch="|")
abline (h=-1)

points (x=x_grid[label_grid==0], y=rep (-1, sum(label_grid==0)),

col="dodgerblue", cex=1, pch="|")

points (x=x_grid[label_grid==1], y=rep (-1, sum(label_grid==1)),

col="red", cex=1l, pch="|")
text ("Data", x=125, y=0.25, cex=2)
text ("Prediction", x=150, y=-1.25, cex=2)
legend ("topleft",c("linseed", "sunflower"),
col=c ("dodgerblue", "red"), lwd=3)
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kNN Method — 3
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kNN Method - 4
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kNN Method — 5
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kNN Method — 6
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kNN Method — 7

The quantity k matters a lot!
How are we going to choose it?
Generally, we choose k to minimize the prediction error.

Basic idea: we know the actual labels of the data so we can
evaluate our prediction error.

However, we are reusing the data for many times and choose
the optimal error.

We would generally end up being too optimistic about the
optimal prediction error—this is called overfitting.

There are some ways to deal with this problem such as
cross-validation; if you are interested in the classification
problem, | highly recommend you to learn this concept.
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Classification based on Probability — 1

We can do classification based on a statistical (probability)
model.

The task of classification is: having observed weight, which
feed should be predict.

A statistical model for this task is P(feed|weight).

In our case, feed= linseed or sunflower; so we are
interested in the quantities

P(feed = linseed|weight),
P(feed = sunflower|weight).

A common strategy is to choose the feed that has a higher
probability.
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Classification based on Probability — 2

Using the Bayes rule, comparing the above two probabilities is
the same as comparing the following two quantities:

p(weight|feed = linseed)  P(feed = linseed),
p(weight|feed = sunflower)- P(feed = sunflower).

Based on the data, the above quantities can be replaced by

p(weight|feed = linseed)  N(feed = linseed),
p(weight|feed = sunflower)- N(feed = sunflower),

where p(weight|feed = X) is the estimated density using
those observations whose feed = X and

N(feed = linseed) is the number of observations whose
feed = X.

If the two groups (feed) have equal size, we can directly
compare their density.
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Classification based on Probability — 3

> plot (density (data_x[label_y==0], bw=30, from=100, to=400),
+ lwd=4, col="dodgerblue", ylim=c(0,0.01),

+ main="Density Comparison", xlab="weight")

> lines (density (data_x[label_y==1], bw=30, from=100, to=400),
+ lwd=4, col="red")

> legend("topleft",c("linseed", "sunflower"),

+ col=c ("dodgerblue", "red"), lwd=4, cex=1.5)
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Classification based on Probability — 4

group0 <-density(data_x[label_y==0], bw=30, from=100, to=400)
groupl <-density(data_x[label_y==1], bw=30, from=100, to=400)
plot (group0$x, groupO0$y-grouplS$Sy,

lwd=4, col="orchid", ylim=c(-0.008,0.008),

main="Density Comparison (linseed - sunflower)",

xlab="weight", type="1", ylab="Density Difference")
abline (h=0, lwd=3, col="gray")

Density Comparison (linseed - sunflower)

Density Difference
0.000 0.005
| 1

-0.005
I

T T T T T T T
100 150 200 250 300 350 400 15 / 37



Classification based on Probability — 5

Consider the following example: the group A is from red
distribution and group B is from the blue distribution. And we have
equal probability to obtain a new observation from each group.
Question: what is the best classifier?
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Classification based on Probability — 6

The best classifier will be the purple line: we classify a point to be
in the red group if its value is less than 1.5; otherwise we classify it
to be in the blue group.
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Classification based on Probability — 7

How do we understand this optimal classifier?
Given a value x, the probability of being in red/blue is

P(Red Group|x), P(Blue Group|x).

If we know these two probabilities, the optimal classifier is to
classify x into the group with higher probability.

Thus, the optimal classifier outputs a label

red if P(Red Group|x) > P(Blue Group|x)
blue if P(Red Group|x) < P(Blue Group|x)
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Classification based on Probability — 8

However, even the optimal classifier has some prediction error,
which is characterized by the black region.

Black Area: Bayes Risk
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There are some chances that points from the red group may be
above 1.5. This unavoidable probability is called the Bayes risk.
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Bayes Risk — 1

The Bayes risk is the error probability of the best classifier.
It is the error purely due to the randomness.

The existence of the Bayes risk implies that even if we have
done our best, there is still some misclassification errors.

Just like many decision-making problems, we still make
mistakes even we have made our best choice.

20/ 37



Bayes Risk — 2

data_x <- c¢(rnorm(10000), rnorm(10000, mean=3))
label_y <= c(rep(0,10000), rep(l,10000))

>

>

>

> classifier_y <- data_x>= 1.5

> # the best classifier

> err <- sum(classifier_y!=label_y) /20000
> err

[1] 0.06835

— this is the Bayes risk.
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Classifiers: Comments

In machine learning, classification and prediction is one of the
main goals.

An example: given an email, how Google can classify it as
important/unimportant/spam?
Here are a list of some common approaches:

Logistic Regression.

Support Vector Machine.
Random Forest.

Naive Bayes.

Boosting.

Deep Learning/Neural Network.

You would learn more in STAT 435 (Introduction to Statistical
Machine Learning).
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In-class Exercises - 1

We will use the knn to analyze the iris dataset.
We pick the Sepal.Length and Sepal.Width to see how the classifier
behaves; enter data0 <- iris[,1:2]; dataO_label <- iris[,5].
When the number k = 5, the predicted label of the original dataset is
label_pred <- knn(train=datal, test=datal, cl = dataO_label, k=5)
label_pred
Comparing the output of 1abel_pred to the observed label data0_label, we
can compute the error rate (ratio of wrongly prediction). What is the error rate
(this error rate is called training error)?
Change the value k from 2 to 10. Redo the same analysis; what are the
corresponding error rates?
Change the variable being used to Petal.Length and Petal.Width. Redo
the same analysis. What are the error rates?
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Clustering: Introduction

Clustering is to group data into clusters.

Ideally, we want points within the same clusters are similar to
each other; points in different clusters are different from each
other.

Namely, we want to increase within group similarity and
decrease between group similarity.

Why do we want to do clustering?— in some scientific
analysis, a cluster may correspond to observations generated
by the same/similar procedure.

A main difference between classification and clustering is that
in classification, we have labels for our observations, but in
clustering, we do not have labels.

24 /37



Clustering: Old Faithful Dataset — 1

datal <- cbind(faithful$eruptions[1:271],
faithful$eruptions[2:272])
plot (datal, xlab="Current Eruption Time",
ylab="Next Eruption Time", col="gray",
pch=20)
points (datal)
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Clustering: Old Faithful Dataset — 2

Next Eruption Time
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The dataset seems to have 4 structures (clusters) mixed

together.

Question: is there any way we can partition data points into

the 4 clusters? 26 /37



k-means Clustering — 1

Here we will introduce a common method: k-means clustering.

k means clustering with k = 4
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k-means Clustering — 2

k-means is to partition the data points into k groups.
The idea is that we find the best k points (these points are
called ‘centers’) such that

every data point is assigned to the closest center, and

the sum of square of within cluster distance is minimized.
The sum of square of of within cluster distance is called the
k-means objective.

There is an algorithm for computing the k-means clustering.

However, this algorithm will stop at a local minimum of the
k-means objective.

So in practice, we need to run the algorithm multiple times
and check the within cluster distance to make sure the result is
a global minimum.

28 /37



k-means Clustering — 3

> datal_km <- kmeans (datal, centers=4)

col4 <- c("dodgerblue", "orchid", "limegreen", "orange")

xlab="Current Eruption Time",
ylab="Next Eruption Time",
col=col4[datal_km$cluster], pch=20, cex=1.2,
main="k means clustering with k = 4")

points (datal_km$centers, col="red",pch="+", cex=3)

>
>
+

+
+
>

plot (datal,
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k-means Clustering — 4

k_obj = rep(Na, 100)
for(w in 1:100) {
datal_km <- kmeans (datal, centers=4)
k_obj[w] <- datal_kmS$tot.withinss
}
plot (k_obj, pch=20, ylab="k-means objective",
main="k-means objective, redo 100 times")
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k-means Clustering — 5

Different k gives you different results.

k means clustering with k =5
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k-means Clustering — 6

k means clustering with k =7
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k-means Clustering — 7

k means clustering with k = 11
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k-means Clustering — 8

=20

k means clustering with k
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k-means Clustering — 9

How to choose the number of cluster k is also a hard question.
Generally we need to look at the data first and the decide it.

k-means has many applications in compression—we can
compress the entire dataset using the k centers to reduce the
size of the dataset.

It is also known as vector quantization.
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Clustering: Comments

Due to time constraint, we only cover k-means clustering.
There are many many other clustering techniques.

Hierarchical clustering, spectral clustering, mean shift
clustering, ...

Clustering is still a very popular research topic in statistics and
machine learning.

In scientific or engineering fields, clustering is also a common
task.

In industry, people use clustering to explore the structure of a
complex dataset.

| highly recommend you to learn more about clustering.
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In-class Exercises - 2

Again we will analyze the faithful dataset but now we focus on current
waiting time versus next waiting time. First create an object:

data2 <- cbind(faithfulS$waiting[1:271], faithfulsSwaiting[2:272])

Use k-means clustering with k = 3 to find the clusters. Repeat the procedure
many times and keep track of the tot.withinss. What is the minimum
tot.withinss value you obtain? What is the corresponding clustering?

Use k-means clustering with kK = 4 to find the clusters. Repeat the procedure
many times and keep track of the tot.withinss. What is the minimum
tot.withinss value you obtain? What is the corresponding clustering?
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