
STAT 302
Statistical Software and Its Applications

Introduction to R

Yen-Chi Chen

Department of Statistics, University of Washington

Spring 2017

1 / 22

Statistical Software

I There are many, many statistical packages, see
http://en.wikipedia.org/wiki/List_of_statistical_packages

I We start out with R and follow it by introducing SAS
I SAS is favored by corporations, because it is backed by a

corporation.
I There is no corporation behind R, it is supported by a

worldwide consortium of developers and users.
I R and SAS =⇒ marketability to prospective employers.
I The yearly SAS license is expensive, R is free.

2 / 22

http://en.wikipedia.org/wiki/List_of_statistical_packages

Introduction to R

I I assume you installed R and RStudio on your computers.
I What is R?
I R is a free software environment for statistical computing and

graphics.
I It compiles and runs on a wide variety of UNIX platforms,

Windows and MacOS.
I It is a gigantic calculator and a programming tool.
I Flexible data manipulation tool.
I It produces gaphics in many formats, even animation.
I Many statistical analysis tools in its basic installation.
I Today, R has more than 9000 available packages.
I It can be extended via C, C++, Fortran (for speed).

3 / 22

Interface to R

I On Windows it comes with an RGui interface. It opens up
when you double click the large blue R on your desktop.

I On a Mac you have an application called R. When you run it,
it opens a console window, similar to the above Rgui, but
different.

I On Linux you type the command R in a terminal window. This
turns the terminal into a command console.

I You can work with any plain text editor to store your
commands.

I Cut and paste your commands from the editor into the
command console.

I We will use RStudio as common interface for all common
computers.

I It has a built in editor and many other utilities.

4 / 22

The RGui Interface to R
Windows only, different menu options, depending on active panel (here R Console)

5 / 22

The Mac R Console

6 / 22

The Linux R Console and Graphics Window

7 / 22

The RStudio Interface to R
same for Windows/Mac/Linux

8 / 22

Creating Project Workspaces

I Create separate workspaces for different projects.
I Avoids clutter/confusion among all saved workspace objects.
I Within RStudio File =⇒ New Project
I =⇒ New Directory =⇒ Empty Project
I Enter a directory name, say Lab1.
I =⇒ Browse to a location where to place that working directory
I Push Create Project button.
I This switches you to a new instance of RStudio in Lab1.
I At the command prompt > type in x <- 1:5. Then type x.
I Don’t type x < - 1:5. But try anyway and decipher result.
I After exiting that RStudio session (using q()) you can reopen

that R session by double clicking the blue R icon in Lab1.
I Note that the x object is still part of your workspace if you

choose ‘Save workspace image’.

9 / 22

R as Calculator
Using RStudio

I If the Edit window is not open, then =⇒ File =⇒ New File
=⇒ choose R Script or use shortcut Ctrl+Shift+N
(Windows) or Shift + Command + N (Mac).

I Note the use of unexecuted comments preceded by #.
I In the Edit or R Script pane of RStudio’s upper left enter

sqrt(3^2+4^2) # or sqrt(3**2+4**2)
qnorm(.975) # normal 97.5 percentile, .975 quantile
pnorm(qnorm(.975)) # left tail prob. of qnorm(.975)

highlight these lines, click Run in the Edit pane, upper right.
I This executes the highlighted commands in the Console below.
I You can enter the same commands also directly after the >

prompt in the Console pane.

10 / 22

The Difference of Source and Run
Using RStudio

I Use Run and Source buttons on these lines in Edit pane

exp(1) # Euler’s constant
print(exp(1))

I Run will echo and execute the cursor line or the highlighted
lines and show the results in the Console pane.

I Source will run the whole script in the Console pane, but to
show results it needs the print() wrapper around
commands that would show results at the command prompt >.

I The advantage of using the Edit pane and of running/sourcing
commands is that you can try out a sequence of commands
and then edit/change them for repeat tries.

11 / 22

Using Functions to Build up Scripts
Using RStudio

I Source the following script in the Edit pane

myfun <- function(x){
exp(x) # exponential function
}

I Note that the Workspace pane on the upper right now shows
the myfun object, identified as function object, in addition to
the integer object x.

I In the Console execute the command myfun(1).
I Functions can have more than one argument.

myfun2 <- function(x,y,z){x+y^2+z^3}

Try to run myfun2(1,2,3).

12 / 22

Vector Functions
Using RStudio

I Previously used myfun on single number arguments. Now try
> myfun(x)
[1] 2.718282 7.389056 20.085537 54.598150 148.413159

I Evaluation of exp(x) is vectorized over all components of x.
I Vectorize computations whenever possible, avoid loops.

13 / 22

R Reference Materials

I Look under Manuals in http://cran.r-project.org/ and you find
An Introduction to R

I and further down, under contributed documentation, many
guides in many languages.

I See also
http://en.wikipedia.org/wiki/R_%28programming_language%29

I The recommended introductory text is R for Dummies
by de Vries and Meys.

14 / 22

http://cran.r-project.org/
http://en.wikipedia.org/wiki/R_%28programming_language%29

Learning R

I R is learned by reading and doing. Experiment!
I The math expressions should be obvious.
I Many functions/commands will become second nature,

because you use them a lot
I Of course, you will make mistakes, and learn from them.
I Experience = recognizing a mistake when you make it again.
I Many ways to ask R for help, e.g., help.start(),

opens web help interface
I ?mean or help(mean) opens Help pane in RStudio.
I Similarly ?"+" and ?"if", note quotes.
I ??plotting and ??"regression model" searches for

topics containing these phrases.
I apropos("sor") or apropos("sort"), good for finding

relevant commands, note difference in result.

15 / 22

Math Expressions Should Be Obvious

I The first three of these expressions

-2^.5 -2**.5 -(2^.5) (-2)^.5

will give same result. The last produces NaN, not a number.
I In EXCEL the first produces an error (also in C).

It is interpreted just as the 4-th expression above.
I Fortan77 same as R, i.e., correct mathematical convention.
I When in doubt, use () to enforce proper order of evaluation.
I factorial(5) produces 5! = 1 · 2 · 3 · 4 · 5 = 120
I choose(8,4) produces

(8
4

)
= 70.

I sqrt(2) gives
√
2 = 1.414214.

I Instead of statistical tables see R under ?Distributions.

16 / 22

Some Lab Exercises

Use R to compute the following

I 1+ 2(3+ 4)

I log(43 + 32+1)

I
√
(4+ 3)(2+ 1)

I
(

1+2
3+4

)2

Use LATEX to typeset the above 4 expressions.

17 / 22

R Even Handles the Infinite and π

I R’s expression for ∞ is Inf.
I When it makes sense, R does proper arithmetic involving Inf
I e.g., 1/Inf and 1/0 return 0 and Inf, respectively.
I When it does not make sense it returns NaN, Not a Number
I e.g., 0*Inf and Inf-Inf and 0/0 return NaN.
I π is represented by pi, thus avoid using pi as object name.
I However, pi <- 3 is legal. Then each use of pi means 3,

until you rm(pi) (you remove the object pi from workspace)
I Read about the infamous Indiana Pi Bill of 1897.
I No corresponding expression for Euler’s number e,

use exp(1) instead.
I Note that R use NA to represent missing value of an entry.

18 / 22

http://en.wikipedia.org/wiki/Indiana_Pi_Bill

Work Space House Keeping Tools

I ls() or objects() lists objects in your work space
I ls(pattern="un") lists objects with names containing un.
I getwd() gives path of active working directory.
I rm(x,y,z) removes objects x,y,z from work space. There

is no undo, but you can decline save when you exit R.
I rm(list=ls()) cleans out all objects from your work space.
I rm(list=ls(pattern="un")) cleans out all objects

containing un in their names.
I save(x,y,z,file="objects.rda") saves objects
x,y,z to the file "objects.rda" in your working directory.

I load("objects.rda") loads the objects in file
"objects.rda".

I save.image("ws.rda") saves the whole work space to
"ws.rda".

I load("ws.rda") loads that whole work space in again.
I The above .rda files are not readable in a normal text editor.

19 / 22

Exporting/Importing R Objects via dput and dget

Any object in an R workspace can be exported to the working
directory via the dput command

> x <- c(1:3,2:1)
> dput(x,"xobject")
when editing "xobject" you see
c(1L, 2L, 3L, 2L, 1L)
That is R’s way of storing integers,
as opposed to numerics
> xx <- c(1,3,2)
> dput(xx,"xxobject")
view "xxobject" in an editor and see
c(1, 3, 2)
treated as a numeric
> rm(x,xx)
> x <- dget("xobject") # imports x back again
> xx <- dget("xxobject") # imports xx back again

20 / 22

Exporting/Importing Exercise

Enter the following instructions in R:
1. x <- 3:7

2. y <- log(x)

3. dput(y, "yobject")

4. y <- 5

5. y
6. y <- dget("yobject")

7. y
What will happen if we enter x <- dget("yobject")?

21 / 22

More Lab Exercises

Use R to compute the following

I log10(20)

I sin(180)

I sin(π)

I 5cos(π2)

I 22·23···25
5·4···1

I log5(15 · 14 · · · 11)

Use LATEX to typeset the above expressions.

22 / 22

