
Nonparametric Regression and Cross-Validation
Yen-Chi Chen

5/27/2017

Nonparametric Regression

In the regression analysis, we often observe a data consists of a response variable Y and a covariate X (this
is the simplest case–we may have multiple covariate). The goal is to understand how the response Y and the
covariate X is associated. Assume the sample size is n. We often use the notations

(X1, Y1), · · · , (Xn, Yn)

to denote the observe data and emphasizes the fact that one observation consists of a pair of a response Yi

and a covariate Xi. Formally, the regression analysis models the relationship between each pair (Xi, Yi) as

Yi = m(Xi) + εi,

where εi is often modeled as a mean 0 Gaussian noise. The function m(x) is called regression function. In the
linear regression, we further assume that the regression function m(x) is a linear function: m(x) = α+ βx,
where α is the intercept and β is the slope. However, the actual relationship between Xi and Yi may not be
such a simple linear relation. Consider, for example, the following case:
X = runif(200, min=0, max=4*pi)
Y = sin(X) + rnorm(200, sd=0.3)
plot(X,Y, pch=20)

0 2 4 6 8 10 12

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

X

Y

The scatter plot shows a clear pattern between X and Y. What would happen if we apply the ordinary linear
regression?
fit = lm(Y~X)
plot(X,Y, pch=20)
abline(fit, lwd=4, col="red")

1

0 2 4 6 8 10 12

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

X

Y

Well the linear regression (red line) does not capture the underlying structure. This is due to the fact that
linear regression is only capable of detecting the linear relationship between the two variables. In this dataset,
though we can observe a clear relation between X and Y but they have a non-linear relation, resulting in a
bad outcome from the linear regression.

What can we do in this case? Well here is an approach called kernel regression, which is a nonparametric
regression method that allows us to capture the underlying structure:
Kreg = ksmooth(x=X,y=Y,kernel = "normal",bandwidth = 0.9)
plot(X,Y,pch=20)
lines(Kreg, lwd=4, col="purple")

0 2 4 6 8 10 12

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

X

Y

2

The orchid curve is the fitted value from the kernel regression. The idea of a kernel regression is that for
a given point x, we then use a weighted average of the nearby points’ response (Y) as the estimated value
of the regression function. Points whose value of covariate (X) is closer to x will be given a higher weight.
Observations whose covariate value are away from x will be given a lower weight (or even no weight). For
example, at point x = 4, points whose covariate X is closer to 4 will be given a higher weight. We then
estimate the regression function using the weight average of all the response.

There are two important configurations of the kernel regression: the kernel function (often be written as
K(x)) and the smoothing bandwidth (often be written as h). These two quantities are similar to that of the
kernel density estimator! The kernel function determines the decreasing pattern of the weight for observations
whose covariate value is away from x. The smoothing bandwidth controls the decreasing rate. In a sense,
we are using the kernel function and smoothing bandwidth to smooth out the data points to obtain a local
estimate of the regression function.

When we set kernel="normal", we are using the Gaussian function as the kernel. An alternative is to choose
kernel="box"; in this case, we will give equal weight to points whose distance to x is less than h:
Kreg = ksmooth(x=X,y=Y,kernel = "box",bandwidth = 0.9)
plot(X,Y,pch=20)
lines(Kreg, lwd=4, col="orange")

0 2 4 6 8 10 12

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

X

Y

The argument bandwidth controls the amount of smoothing, just like the on in the kernel density estimator.
Here are examples of changing the value of bandwidth:
Kreg1 = ksmooth(x=X,y=Y,kernel = "normal",bandwidth = 0.1)
Kreg2 = ksmooth(x=X,y=Y,kernel = "normal",bandwidth = 0.9)
Kreg3 = ksmooth(x=X,y=Y,kernel = "normal",bandwidth = 3.0)
plot(X,Y,pch=20)
lines(Kreg1, lwd=4, col="orange")
lines(Kreg2, lwd=4, col="purple")
lines(Kreg3, lwd=4, col="limegreen")
legend("topright", c("h=0.1","h=0.9","h=3.0"), lwd=6, col=c("orange","purple","limegreen"))

3

0 2 4 6 8 10 12

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

X

Y
h=0.1
h=0.9
h=3.0

Thus, you may guess that this kernel regression also suffers from the bias-variance tradeoff: when h is small
(the orange curve), the variabiility is large but the bias is small; when h is large (green curve), the variability
is small but the bias is large!

Here is a code that you can run to see how the variability and bias are interacting with each other:
h0 = 0.2

try to change h0 to other values and see what happen
for(i in 1:100){

X1 = runif(200, min=0, max=4*pi)
Y1 = sin(X1) + rnorm(200, sd=0.3)
Kreg = ksmooth(x=X1,y=Y1,kernel = "normal",bandwidth = h0)
plot(X1,Y1,pch=20, main=paste("h =",h0))
lines(Kreg, lwd=4, col="purple")
Sys.sleep(0.5)

}

The best smoothing bandwidth should balance both the bias and variability. In the next section, we will
introduce an elegant approach called cross-validation that allows us to choose the smoothing bandwidth
subject to certain optimality criterion.

Exercise 1:

1. Simulate 500 pairs of (X,Y) such that

Yi = e−0.1·Xi cos(Xi) + εi, Xi ∼ Unif[0, 6π], ε ∼ N(0, 0.12).

Namely, we first generate Xi from an uniform distribution over [0, 6π] and then generate Yi by adding
up e−0.1Xi cos(Xi) and a random noise from a normal distribution with mean 0 and SD 0.1.

2. Show a scatter plot of X,Y . Fit a kernel regression with smoothing bandwidth h = 0.5 and Gaussian
kernel (kernel = 'normal'). Attach the fitted regression curve to the scatter plot.

3. Consider three smoothing bandwidth h = 0.1, 0.5, 2.0. Fit the kernel regression to each of them and
attach the three curves to the scatter plot. Which smoothing bandwidth seems to be the best one?

4

4. Now return to the first question, change the SD of the noise from 0.1 to 0.5 (this SD is sometimes
called the noise level) and redo question 3. Which smoothing bandwidth seems to be the best one?

Cross-Validation

The cross-validation (CV) is a method to estimate the predicion error of our regression estimator. The idea
is very simple: we split the data into two parts, one part is called the training set and the other is called
the validation set. We then use the data in the training set to construct our estimator and predict the value
of response on the validation set and then calculate the quality of our prediction. The reason of splitting
the data into two parts is to avoid the problem of using the data twice (this is related to the problem of
overfitting).

A simplest form of cross-validation is the leave-one-out cross-validation (LOOCV). The idea is: each time we
leave one observation out as the validation set and we use the remaining data points to fit the data and then
predict the value that we left out. Here is what we write in R:
n = length(X)

n: sample size
CV_err = rep(NA, n)
for(i in 1:n){

X_val = X[i]
Y_val = Y[i]

validation set
X_tr = X[-i]
Y_tr = Y[-i]

training set
Y_val_predict = ksmooth(x=X_tr,y=Y_tr,kernel = "normal",bandwidth=0.9,

x.points = X_val)
CV_err[i] = (Y_val - Y_val_predict$y)^2

we measure the error in terms of difference sqaure
}
mean(CV_err)

[1] 0.1014641

The output mean(CV_err) gives an estimate of the prediction error using the smoothing bandwidth h = 0.9.
Now to see how the smoothing bandwidth h changes the quality of prediction, we will apply this procedure
to many possible values of h.
n = length(X)

n: sample size
h_seq = seq(from=0.2,to=2.0, by=0.1)

smoothing bandwidths we are using
CV_err_h = rep(NA,length(h_seq))
for(j in 1:length(h_seq)){

h_using = h_seq[j]
CV_err = rep(NA, n)
for(i in 1:n){

X_val = X[i]
Y_val = Y[i]

validation set
X_tr = X[-i]
Y_tr = Y[-i]

training set
Y_val_predict = ksmooth(x=X_tr,y=Y_tr,kernel = "normal",bandwidth=h_using,

5

x.points = X_val)
CV_err[i] = (Y_val - Y_val_predict$y)^2

we measure the error in terms of difference square
}
CV_err_h[j] = mean(CV_err)

}
CV_err_h

[1] 0.10822694 0.10112420 0.09866272 0.09867038 0.09933617 0.10002225
[7] 0.10069739 0.10146408 0.10244873 0.10375680 0.10544723 0.10756305
[13] 0.11013240 0.11315749 0.11664110 0.12058279 0.12497659 0.12980483
[19] 0.13505029
plot(x=h_seq, y=CV_err_h, type="b", lwd=3, col="blue",

xlab="Smoothing bandwidth", ylab="LOOCV prediction error")

0.5 1.0 1.5 2.0

0.
10

0.
11

0.
12

0.
13

Smoothing bandwidth

LO
O

C
V

 p
re

di
ct

io
n

er
ro

r

Here we see a beautiful curve, indicating how the smoothing bandwidth affects the quality of prediction. We
can then choose the smoothing bandwidth that minimizes this LOOCV error:
which(CV_err_h == min(CV_err_h))

[1] 3
this gives us the index of the minimum error

h_seq[which(CV_err_h == min(CV_err_h))]

[1] 0.4
this is the smoothing bandwidth leading to the minimum LOOCV error

There are many variants of the cross-validatioin. For instance, generalized cross-validation, k-fold cross-
validation (k-CV). In particular, k-CV seems to be the most common one used in practice. The steps of k-CV
is as follows.

1. We random split the data into k roughly equal size subsamples, called them D1, · · · , Dk.

6

2. We use D1 as the validation set and others as training set, compute the predition error, called it Err1.
3. Then we use D2 as the validation set and others as training set, compute the predition error Err2.
4. We keep doing this until every subsample has been used as a validation set.
5. We use the average of these k prediction errors Err = 1

k

∑k
`=1 Err` as an estimate of the prediction

error.
6. After obtaining one such an estimate, we will repeat step 1-5 several times (re-split the data into k

subsamples, computing the prediction error) and use the average prediction errors as the final error
estimate.

Here is an example of 5-CV:
n = length(X)
N_cv = 100
k = 5
cv_lab = sample(n,n,replace=F) %% k

randomly split all the indices into k numbers
h_seq = seq(from=0.2,to=2.0, by=0.1)

CV_err_h = rep(0,length(h_seq))
for(i_tmp in 1:N_cv){

CV_err_h_tmp = rep(0, length(h_seq))
cv_lab = sample(n,n,replace=F) %% k
for(i in 1:length(h_seq)){

h0 = h_seq[i]
CV_err =0
for(i_cv in 1:k){

w_val = which(cv_lab==(i_cv-1))
X_tr = X[-w_val]
Y_tr = Y[-w_val]
X_val = X[w_val]
Y_val = Y[w_val]
kernel_reg = ksmooth(x = X_tr,y=Y_tr,kernel = "normal",bandwidth=h0,

x.points=X_val)
WARNING! The ksmooth() function will order the x.points from
the smallest to the largest!
CV_err = CV_err+mean((Y_val[order(X_val)]-kernel_reg$y)^2,na.rm=T)
na.rm = T: remove the case of 'NA'

}
CV_err_h_tmp[i] = CV_err/k

}
CV_err_h = CV_err_h+CV_err_h_tmp

}
CV_err_h = CV_err_h/N_cv
plot(h_seq,CV_err_h, type="b", lwd=4, col="blue", xlab="Smoothing Bandwidth",

ylab="5-CV Error")

7

0.5 1.0 1.5 2.0

0.
10

5
0.

11
5

0.
12

5
0.

13
5

Smoothing Bandwidth

5−
C

V
 E

rr
or

h_opt = h_seq[which(CV_err_h==min(CV_err_h))]
h_opt

[1] 0.5

Compare to the LOOCV, you would find that both approachs show a quiet similar pattern. By the way,
you may think about why the optimal value of CV error is about 0.1. This is because when we design the
simulation, our model is

Yi = sin(Xi) + εi, εi ∼ N(0, 0.32).

Thus, the variance of the noise is 0.32 = 0.09. This value 0.09 will be the best prediction error that any
estimator can achieve in the long run (this is the error corresponds to the estimator being the same as the
true generating function).

Exercise 2:

1. Simulate again 500 pairs of (X,Y) such that

Yi = e−0.1·Xi cos(Xi) + εi, Xi ∼ Unif[0, 6π], ε ∼ N(0, 0.12).

2. Use the leave-one out cross-validation to show the smoothing bandwidth versus CV-error plot for
the kernel regression. Which smoothing bandwidth provides you the minimal CV-error? (I would
recommend searching the range of h over [0.1, 2.0])

3. Show the scatter plot along with the kernel regression using the optimal smoothing bandwidth.
4. Change the SD in the noise from 0.1 to 0.5 and redo question 1 and 2. Does the optimal smoothing

bandwidth change?

Smoothing Spline

Here we introduce another nonparametric method: the smoothing spline approach. The idea of smoothing
spline is: we want to find a function f(x) that fits the data well but also is very smooth. Using a more

8

mathematical definition, we want to find a function f(x) such that
n∑

i=1
(Yi − f(Xi))2 + λ

∫ Xmax

Xmin

|f ′′(x)|2dx

is minimized. The quantity λ is quantity that is called smoothness penalty (or smoothing parameter in some
literature) that determines how much we will loss if we allow the function to adapt to the data. Without this
part of penalty, the best function f will be the ones passing through every observation. Note that the Xmin
and Xmax are the minimum and maximum value of all the observed covariates.

Here are some examples of fitting the smoothing spline to the data under different values of λ. In R, we use
the function smooth.spline() to fit a smoothing spline and the argument spar is how we can specify the
value of λ in the above criterion (note that here is a transformation from spar to the λ; see the manual of
this function):
SS1 = smooth.spline(x=X,y=Y,spar=0.2)
SS2 = smooth.spline(x=X,y=Y,spar=0.8)
SS3 = smooth.spline(x=X,y=Y,spar=1.5)
plot(X,Y,pch=20)
lines(SS1, lwd=4, col="orange")
lines(SS2, lwd=4, col="purple")
lines(SS3, lwd=4, col="limegreen")
legend("topright", c("spar=0.2","spar=0.8","spar=1.5"), lwd=6,

col=c("orange","purple","limegreen"))

0 2 4 6 8 10 12

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

X

Y

spar=0.2
spar=0.8
spar=1.5

Similar to the kernel regression, we can also use the idea of cross-validation to determine which value of spar
we should use. Here is how we implement it in practice:
n = length(X)

n: sample size
sp_seq = seq(from=0.05,to=1.0, by=0.05)

values of spar we are exploring
CV_err_sp = rep(NA,length(sp_seq))
for(j in 1:length(sp_seq)){

spar_using = sp_seq[j]

9

CV_err = rep(NA, n)
for(i in 1:n){

X_val = X[i]
Y_val = Y[i]

validation set
X_tr = X[-i]
Y_tr = Y[-i]

training set
SS_fit = smooth.spline(x=X_tr,y=Y_tr,spar=spar_using)
Y_val_predict = predict(SS_fit,x=X_val)

we use the 'predict()' function to predict a new value
CV_err[i] = (Y_val - Y_val_predict$y)^2

}
CV_err_sp[j] = mean(CV_err)

}
CV_err_sp

[1] 0.14023770 0.12621731 0.12034069 0.11640628 0.11269646 0.10939354
[7] 0.10679102 0.10476483 0.10285855 0.10079543 0.09876707 0.09714631
[13] 0.09602409 0.09517049 0.09455990 0.09469657 0.09726382 0.10764380
[19] 0.13763385 0.19700140
plot(x=sp_seq, y=CV_err_sp, type="b", lwd=3, col="blue",

xlab="Value of 'spar'", ylab="LOOCV prediction error")

0.2 0.4 0.6 0.8 1.0

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

Value of 'spar'

LO
O

C
V

 p
re

di
ct

io
n

er
ro

r

sp_seq[which(CV_err_sp == min(CV_err_sp))]

[1] 0.75

10

	Nonparametric Regression
	Exercise 1:

	Cross-Validation
	Exercise 2:

	Smoothing Spline

