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An Example: Chicken Weight data – 1

> data1 <- chickwts[chickwts$feed=="meatmeal",1]
> data2 <- chickwts[chickwts$feed=="sunflower",1]
> data1
[1] 325 257 303 315 380 153 263 242 206 344 258

> data2
[1] 423 340 392 339 341 226 320 295 334 322 297
318

→ The two sample test is to compare these two samples.
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An Example: Chicken Weight data – 2

Why do we care about comparing these two samples?
If you are a scientist, you may want to know if the feed for
chicken affects their growth (weight).
If you are a businessman, you may be interested in if the feed
changes the weight of chicken (so that you can make money
by using the best feed).
In many situations, we would like to see if the two samples are
different or not.
If the feed and weight are independent, then the
distributions of the two samples will be the same.
Today we will talk about two classes of approaches: visual
comparison and quantitative comparison.
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Visual Comparison: Boxplot

Showing boxplot for both samples is one way to compare them.

> boxplot(data1,data2, col=c("orchid","limegreen"),
+ names=c("Data 1 (meatmeal)",
+ "Data 2 (sunflower)"))
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Visual Comparison: Histogram – 1

Overlapping histograms is another approach.

Weight

D
en

si
ty

150 200 250 300 350 400 450 500

0.
00

0
0.

00
5

0.
01

0
0.

01
5

D
en

si
ty

150 200 250 300 350 400 450 500

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Data 1
Data 2

5 / 39



Visual Comparison: Histogram – 2

> hist(data1, col=rgb(1,1,0,0.7), ylim=c(0,0.015),
+ xlim=c(150,500), probability=T,
+ main="", xlab="Weight")
> par(new=T)
> hist(data2, col=rgb(0,1,1,0.4), ylim=c(0,0.015),
+ xlim=c(150,500), probability=T,
+ main="", xlab="")
> legend("topleft", c("Data 1","Data 2"),
+ col=c(rgb(1,1,0,0.7),rgb(0,1,1,0.4)),
+ lwd=8, cex=1.5, bg="gray")

col: we need to use transparent color.
probability: we need it to be T because two samples
may have different sample size.
par(new=T): the next plot will be overlapped with the
previous plot.
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Transparent color – 1

> hist(data2, col=rgb(0,1,1,0.1), ylim=c(0,0.015),
+ xlim=c(150,500), probability=T,
+ main="col=rgb(0,1,1,0.1)", xlab="")

col=rgb(0,1,1,0.1)
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Transparent color – 2

> hist(data2, col=rgb(0,1,1,0.4), ylim=c(0,0.015),
+ xlim=c(150,500), probability=T,
+ main="col=rgb(0,1,1,0.4)", xlab="")

col=rgb(0,1,1,0.4)
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Transparent color – 3

> hist(data2, col=rgb(0,1,1,0.7), ylim=c(0,0.015),
+ xlim=c(150,500), probability=T,
+ main="col=rgb(0,1,1,0.7)", xlab="")

col=rgb(0,1,1,0.7)
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Visual Comparison: QQ plot

> qqplot(data1, data2, xlim=c(150, 450),
+ ylim=c(150,450))
> abline(a=0,b=1, lwd=3, col="royalblue")
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Visual Comparison: Parallel Axes plot

> plot(x=c(data1,data2), y=c(rep(1, length(data1),),
+ rep(2, length(data2))), pch="|",
+ ylim=c(0,3), cex=2, ylab="", xlab="weight",
+ main="Parallel Axes Plot")
> text(x=170,y=0.7, labels="Data 1", cex=2)
> text(x=170,y=2.3, labels="Data 2", cex=2)
> abline(h=1);abline(h=2)
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Quantitative Comparison: Hypothesis Test

In many cases, visual comparison is not enough.
We want some quantitative way to compare two samples.
One quantitative approach is to frame the problem using the
hypothesis test.
In English: we want to know if the two samples are from the
same distribution.
In Statistics, the above question can be viewed as testing the
following null hypothesis:

H0 : two samples are from the same distribution.

Let P1 be the population distribution of data 1 and P2 be the
population distribution of data 2.
Then the above H0 is equivalent to

H0 : P1 = P2.
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Hypothesis Test

The goal is to test
H0 : P1 = P2.

There are several methods to test the above procedure.
These methods can be divided into two groups: parametric
methods and nonparametric methods.
Parametric methods: we use some parameters of the
distribution to carry out the test.
Examples of parametric methods: mean test and variance test.
Nonparametric methods: we directly use the entire distribution
to do testing.
Examples of nonparametric methods: KS-test and rank test.

13 / 39



Parametric Method: Mean Test – 1

Because
H0 : P1 = P2

implies µ1 = µ2 (µi is the mean of Pi ), the mean test is to test

H0 : µ1 = µ2, .

Testing µ1 = µ2 is equivalent to testing

H0 : µ1 − µ2 = 0.

So the test statistics is to use the difference between sample
means X̄1 and X̄2 and rescale it by the variance.
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Parametric Method: Mean Test – 2

Assume the sample 1 consists of IID X1,1, · · · ,X1,n and the
sample 2 consists of IID X2,1, · · · ,X2,m and sample 1 and
sample 2 are independent from each other.
Then the sample means have variance

Var(X̄1) =
σ2

1
n
, Var(X̄2) =

σ2
2
m
,

where σ2
1 and σ2

2 are the variance of P1 and P2.
Thus, the quantity X̄1 − X̄2 has variance σ2

1
n +

σ2
2
m (why?).

Because we do not know σ2
1 and σ2

2 in practice, we will replace
them by the sample variance S2

1 and S2
2 .

Thus, our final test statistics is

T =
X̄1 − X̄2√
S2

1
n +

S2
2
m

.

T will follow asymptotically a standard normal distribution
(think about why) so we can compare T to the standard
normal to obtain a p-value. 15 / 39



Parametric Method: Mean Test – 3

Test statistics is

T =
X̄1 − X̄2√
S2

1
n +

S2
2
m

.

We called this approach Z -test because we use the feature
that the asymptotic distribution is a standard normal.

> mean1 <- mean(data1)
> mean2 <- mean(data2)
> sd1 <- sd(data1)/sqrt(length(data1))
> sd2 <- sd(data2)/sqrt(length(data2))
> Test.stat <- (mean1-mean2)/sqrt(sd1^2+sd2^2)
> 2*(1-pnorm(abs(Test.stat)))
[1] 0.03105238
> 2*(pnorm(-abs(Test.stat)))
[1] 0.03105238

So the p-value is 0.03105238.
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Parametric Method: Mean Test – 4

Another approach is to use the T -test.
If we assume P1 and P2 are from the same normal distribution,
then the test statistics

T =
X̄1 − X̄2√
S2

1
n +

S2
2
m

follows a T-distribution with a complicated degree of freedom:

ν =
(S2

1/n + S2
2/m)2

(s21/n)2

n−1 +
(s22/m)2

m−1

.

In R, there is a built-in function t.test() that allows us to
T-test.

17 / 39



Parametric Method: Mean Test – 5

> t.test(data1,data2)

Welch Two Sample t-test

data: data1 and data2
t = -2.1564, df = 18.535, p-value = 0.04441
alternative hypothesis: true difference in means
is not equal to 0

95 percent confidence interval:
-102.572435 -1.442716

sample estimates:
mean of x mean of y
276.9091 328.9167
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Parametric Method: Mean Test – 6

So there are two approaches for testing the mean: Z -test and
T -test.
There is no definitely which test is better than the others
because they rely on different assumptions.
The Z -test requires very weak assumption on data–we do not
need to assume the true distribution is a normal distribution.
But the Z -test only works asymptotically; namely, it works
when sample size is large enough.
The T -test requires a strong assumption: the distribution is a
normal distribution.
However, if the samples are from normal distributions, T -test
works regardless of the sample size.
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Parametric Method: Variance Test – 1

Because
H0 : P1 = P2

implies σ2
1 = σ2

2, the variance test is to test

H0 : σ2
1 = σ2

2.

The null hypothesis H0 : σ2
1 = σ2

2 is equivalent to

H0 :
σ2

1
σ2

2
= 1.

So the test statistics is to use the ratio between sample
variance S̄2

1
S̄2

2
.

When the two samples are from the same normal distribution,
the test statistics S̄2

1
S̄2

2
follows a distribution called

F -distribution.
In R, you can use the command var.test() to carry out
variance test.
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Parametric Method: Variance Test – 2

> var.test(data1,data2)

F test to compare two variances

data: data1 and data2
F = 1.7661, num df = 10, denom df = 11,
p-value = 0.3645
alternative hypothesis: true ratio of variances
is not equal to 1

95 percent confidence interval:
0.5009206 6.4725366

sample estimates:
ratio of variances

1.766081
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Nonparametric Method: KS-test – 1

The nonparametric test directly test H0 : P1 = P2.
The KS-test (Kolmogorov-Smirnov test) is a classical approach
in nonparametric two-sample test.
Given X1,1, · · · ,X1,n IID from P1, we can estimate P1 by the
empirical distribution function (EDF):

P̂1(t) =
1
n

n∑
i=1

I (X1,i ≤ t),

where I (x) is the indicator function.
P̂1(t) is the ratio of data points whose value is below t.
Note: the definition of the distribution P1 is

P1(t) = P(X1,i ≤ t).

The EDF can be computed using function ecdf ().
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Nonparametric Method: KS-Test – 2

> ecdf(data1)
Empirical CDF
Call: ecdf(data1)
x[1:11] = 153, 206, 242, ..., 344,

380
>
> plot(ecdf(data1))
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Nonparametric Method: KS-Test – 3

The KS-test is to use the following test statistics:

K = sup
t
|P̂1(t)− P̂2(t)|.

After rescaling, the test statistics K has a known limiting
distribution called the Kolmogorov distribution.
An appealing feature is that the Kolmogorov distribution does
not depend on the true distribution P1 and P2.
In R, we use the command ks.test() to carry out the
KS-test.

> ks.test(data1,data2)

Two-sample Kolmogorov-Smirnov test

data: data1 and data2
D = 0.47727, p-value = 0.1085
alternative hypothesis: two-sided
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Nonparametric Method: Rank Test – 1

Now we introduce another nonparametric test: rank test.
This test is also known as the Wilcoxon Rank Sum test or
Mann-Whitney test.
Recalled that we want to test H0 : P1 = P2.
The rank test is to first pull the two samples together,
computing the rank of each data point.
Then use the sum of the rank of the data points from sample
1 as a test statistics.
Under H0, the two distributions are the same so the rank of
data points from sample 1 should be uniformly distributed
within {1, 2, · · · , n + m}.
In R, we will use the command wilcox.test().
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Nonparametric Method: Rank Test – 2

> data_all <- c(data1,data2)
> idx_all <- c(rep(1, length(data1)),
+ rep(2, length(data2)))
> rank_idx <- rbind(rank(data_all)[order(data_all)],
+ idx_all[order(data_all)])
> row.names(rank_idx) <- c("Rank", "Sample")
> rank_idx

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
Rank 1 2 3 4 5 6 7 8 9
Sample 1 1 2 1 1 1 1 2 2

[,10] [,11] [,12] [,13] [,14] [,15] [,16] [,17]
Rank 10 11 12 13 14 15 16 17
Sample 1 1 2 2 2 1 2 2

[,18] [,19] [,20] [,21] [,22] [,23]
Rank 18 19 20 21 22 23
Sample 2 2 1 1 2 2
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Nonparametric Method: Rank Test – 3

> wilcox.test(data1,data2)

Wilcoxon rank sum test

data: data1 and data2
W = 36, p-value = 0.06882

alternative hypothesis: true location shift
is not equal to 0
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Nonparametric Method: Comments

Nonparametric methods require a weaker assumption on the
distribution.
However, the power of the nonparametric tests is generally
lower than the parametric approach.
Namely, nonparametric tests tend to have a higher p-value
than the parametric approach when H0 is false and the
parametric assumption is reasonable.
In additional to the KS-test and rank test, there are many
other nonparametric tests.
For instance, we can use the difference in histogram to test
two samples.
Nonparametric two-sample test is still a very popular research
field in both statistics and machine learning.
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Case study: Chi-Square versus Normal – 1

Here we consider generating data from two distributions: a
chi-square distribution and a Normal distribution.
We compare the chi-square distribution with degree of freedom
2 and the Normal distribution with mean 2 variance 4.
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Case study: Chi-Square versus Normal – 2

The two distributions apparently look very different from each
other.
Now we generate 200 data points from each of these two
distributions and compare them.

> set.seed(1)
> data3<- rchisq(n=200, df=2)
> data4<- rnorm(n=200, mean = 2, sd=2)
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Case study: Chi-Square versus Normal – 3

Let’s first try Z -test:

> mean3 <- mean(data3)
> mean4 <- mean(data4)
> sd3 <- sd(data3)/sqrt(length(data3))
> sd4 <- sd(data4)/sqrt(length(data4))
> Test.stat <- (mean3-mean4)/sqrt(sd3^2+sd4^2)
>
> 2*(1-pnorm(abs(Test.stat)))
[1] 0.6430986

→ Not significant.
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Case study: Chi-Square versus Normal – 4

Now we try T -test:

> t.test(data3,data4)

Welch Two Sample t-test

data: data3 and data4
t = 0.46337, df = 396.18, p-value = 0.6434
alternative hypothesis: true difference in means
is not equal to 0

95 percent confidence interval:
-0.3196255 0.5167574
sample estimates:
mean of x mean of y
2.047846 1.949280

→ Also not significant.
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Case study: Chi-Square versus Normal – 5

Now we try variance test:

> var.test(data3,data4)
F test to compare two variances

data: data3 and data4
F = 1.1452, num df = 199, denom df = 199,
p-value = 0.3397

alternative hypothesis: true ratio of variances
is not equal to 1
95 percent confidence interval:
0.8666766 1.5132484

sample estimates:
ratio of variances

1.145206

→ Still... not significant.
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Case study: Chi-Square versus Normal – 6

Now we try KS-test:

> ks.test(data3,data4)

Two-sample Kolmogorov-Smirnov test

data: data3 and data4
D = 0.175, p-value = 0.004375
alternative hypothesis: two-sided

→ Now we get a significant result!
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Case study: Chi-Square versus Normal – 7

How aboutrank test:

> wilcox.test(data3,data4)

Wilcoxon rank sum test with continuity correction

data: data3 and data4
W = 18990, p-value = 0.3826
alternative hypothesis: true location shift
is not equal to 0

→ Does not work.
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Case study: Chi-Square versus Normal – 8

The reason why most tests fail is because the two distributions
have the same mean and the variance!
This is the power of a nonparametric test; the KS-test is still
capable of detecting the difference even when the mean and
variance are the same in both sample.
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Case study: Chi-Square versus Normal – 9

Now when we increase the sample size:

> data3<- rchisq(n=5000, df=2)
> data4<- rnorm(n=5000, mean = 2, sd=2)
>
> t.test(data3,data4)$p.value
[1] 0.1397539
> var.test(data3,data4)$p.value
[1] 0.4311391
> ks.test(data3,data4)$p.value
[1] 0
> wilcox.test(data3,data4)$p.value
[1] 1.431667e-06

→ The nonparametric tests work but the parametric tests still fail.
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Case study: Chi-Square versus Normal – 10

Data 3
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In-class Exercises

Go back to chickwts dataset.
Now try to compare the weight of group whose feed is
casein versus horsebean.
Use visual comparison to compare them.
Use quantitative comparison to test if the two samples are
significantly different from each other.
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