
Stat 302
Statistical Software and Its Applications

Data Import and Export

Yen-Chi Chen

Department of Statistics, University of Washington

Autumn 2016

1 / 30

General Remarks on I/O (Import/Export)

We generally don’t type data manually into R.
In earlier times data came to us in ASCII files.
ASCII = American Standard Code for Information Interchange.
Items had to be in some logical order so that they could be
arranged properly for use in software.
Data items were separated by spaces or tabs (\t) or other
special characters that are not used as part of data items.
Nowadays the most common form of a data file is a
filename.csv file as provided by Excel or OpenOffice Calc.
csv = comma-separated values.
Many software platforms can export and import data formats
for other platform, e.g., R ←→ SAS.
After I/O verify that the data are in the correct form.

2 / 30

Importing from an ASCII Text File

The first 3 and last line of the ASCII text file
ReactionTime.txt are given below.
The first line provides the header information for the variables.
For each EMS1 call these variables are the reaction time to get
out the fire station door, the fire station, and the crew shift.

Reaction,Station,Shift
86,ST64,B
182,ST64,B
...
189,ST64,B

1Emergency Medical Service
3 / 30

Using read.table

> ReactionTime <- read.table("ReactionTime.txt",
sep=",",header=T)

> str(ReactionTime)
’data.frame’: 2028 obs. of 3 variables:
$ Reaction: int 86 182 132 196 160 3 0 0 95 152 ...
$ Station : Factor w/ 3 levels "ST63","ST64",..: 2 2 2 2 2 3 2 2 2 1 ...
$ Shift : Factor w/ 4 levels "A","B","C","D": 2 2 2 2 1 1 1 1 1 1 ...

> ReactionTime[c(1,2,2028),]
Reaction Station Shift

1 86 ST64 B
2 182 ST64 B
2028 189 ST64 B

4 / 30

Location of file

You need to specify the location of the file for the
read.table function.
Use getwd() to check current directory address.
Use setwd("<location of your dataset>") to
change your directory address.
Or you can use Session =⇒ Set Working Directory =⇒
Choose Directory to change.

5 / 30

Features of read.table

It imports the data as a data.frame.
There are many arguments in read.table.
Generally we use only the first three arguments.
The first argument file is the location of the file.
The second argument header is a logical argument; TRUE if
the file contains a header for each variable.
The third argument sep is how the variables for one
observation are separated.

6 / 30

read.table: header – 1

> is.data.frame(ReactionTime)
[1] TRUE
> ReactionTime_1 <- read.table("ReactionTime.txt",
+ header=F,sep=",")
> head(ReactionTime_1)

V1 V2 V3
1 Reaction Station Shift
2 86 ST64 B
3 182 ST64 B
4 132 ST64 B
5 196 ST64 B
6 160 ST64 A

7 / 30

read.table: header – 2

> ReactionTime_1 <-
+ read.table("ReactionTime_no_header.txt",
+ header=F,sep=",")
>
> head(ReactionTime_1)

V1 V2 V3
1 86 ST64 B
2 182 ST64 B
3 132 ST64 B
4 196 ST64 B
5 160 ST64 A
6 3 ST65 A
> # if the file has no header: OK

8 / 30

read.table: header – 3

> ReactionTime_1 <-
+ read.table("ReactionTime_no_header.txt",
+ header=T,sep=",")
>
> head(ReactionTime_1)

X86 ST64 B
1 182 ST64 B
2 132 ST64 B
3 196 ST64 B
4 160 ST64 A
5 3 ST65 A
6 0 ST64 A
> # if no header but header=T: the first
> # observation is treated as the header

9 / 30

read.table: sep

> ReactionTime_1 <- read.table("ReactionTime.txt",
+ header=T,sep="")
>
> head(ReactionTime_1)

Reaction.Station.Shift
1 86,ST64,B
2 182,ST64,B
3 132,ST64,B
4 196,ST64,B
5 160,ST64,A
6 3,ST65,A
> # the wrong "sep" will merge variables...
> length(ReactionTime_1)
[1] 1

10 / 30

Importing from a .csv File

It is possible to import directly from an Excel spreadsheet,
but the advice is to convert it to a single sheet .csv file.
The first 3 and last line of the file ReactionTime.csv are
shown below

11 / 30

Using read.csv

> ReactionTimecsv <- read.csv("ReactionTime.csv",
+ header=T,sep=",")
>
> head(ReactionTimecsv)

Reaction Station Shift
1 86 ST64 B
2 182 ST64 B
3 132 ST64 B
4 196 ST64 B
5 160 ST64 A
6 3 ST65 A

12 / 30

Features of read.csv

If variables are separated by semicolon ;, then use
read.csv2.
read.csv and read.csv2 are identical to read.table
except for the defaults.
In addition to read.csv, there are many other data import
approach based on read.table.
Try help(read.table).

13 / 30

Using write.table

> write.table(ReactionTime,"xx.txt",sep=",")

produces a file xx.txt with first 3 lines

"Reaction","Station","Shift"
"1",86,"ST64","B"
"2",182,"ST64","B"

Read the documentation on write.table and read.table.

14 / 30

Features of write.table

There are many arguments in read.table.
Here are some commonly used arguments:

x: the data you want to export.
file: the file name (and location) you want to output to.
quote: adding quotes to the character/factor variables.
sep: how different variables are separated.
row.names/col.names: output the name of row/the
name of column.

Read the documentation on write.table and
read.table.

15 / 30

Using write.table: quote

> write.table(ReactionTime,"xx.txt",sep=",",
quote=F)

produces a file xx.txt with first 3 lines

Reaction,Station,Shift
1,86,ST64,B
2,182,ST64,B

16 / 30

Using write.table: row.name

> write.table(ReactionTime,"xx.txt",sep=",",
+ quote=F, row.name=F)

produces a file xx.txt with first 3 lines

Reaction,Station,Shift
86,ST64,B
182,ST64,B

17 / 30

Using write.table: col.name

> write.table(ReactionTime,"xx.txt",sep=",",
+ quote=F, row.name=F)

produces a file xx.txt with first 3 lines

1,86,ST64,B
2,182,ST64,B
3,132,ST64,B

18 / 30

Using write.table: sep – 1

> write.table(ReactionTime,"xx.txt",sep=" ",
+ quote=F)

produces a file xx.txt with first 3 lines

Reaction Station Shift
1 86 ST64 B
2 182 ST64 B

19 / 30

Using write.table: sep – 2

> write.table(ReactionTime,"xx.txt",sep="--",
+ quote=F)

produces a file xx.txt with first 3 lines

Reaction--Station--Shift
1--86--ST64--B
2--182--ST64--B

20 / 30

Manipulating Data – 1

We can do some analysis and add extra columns to the original
data.

> new_time <- ReactionTime$Reaction/10
>
> ReactionTime_new <- cbind(ReactionTime, new_time)
>
> colnames(ReactionTime_new)[4] = "RT_mins"
>
> head(ReactionTime_new)

Reaction Station Shift RT_mins
1 86 ST64 B 8.6
2 182 ST64 B 18.2
3 132 ST64 B 13.2
> write.table(ReactionTime_new,"new_RT.txt",
+ sep=",",quote=F, row.names=F)

21 / 30

Manipulating Data – 2

We may remove columns or rows in the data.

> ReactionTime_rm <- ReactionTime[,-3]
> # this removes the third column.
> head(ReactionTime_rm)

Reaction Station
1 86 ST64
2 182 ST64
3 132 ST64
4 196 ST64
5 160 ST64
6 3 ST65

22 / 30

Summarizing Data – 1

summary(x): a function that provides summary information for
the object x.

> summary(ReactionTime)
Reaction Station Shift

Min. : 0.0 ST63:498 A:477
1st Qu.: 73.0 ST64:902 B:531
Median : 99.0 ST65:628 C:479
Mean :100.3 D:541
3rd Qu.:132.0
Max. :318.0

23 / 30

Summarizing Data – 2

table(x): a function that creates a table for summarizing
information. Particularly useful for objects whose structure is
factor.

> table(ReactionTime$Station)
ST63 ST64 ST65
498 902 628

>
> table(ReactionTime$Station,ReactionTime$Shift)

A B C D
ST63 120 133 117 128
ST64 205 216 221 260
ST65 152 182 141 153

24 / 30

Built-in Datasets in R

R has many built-in datasets. Try data().

> data()
>
> head(iris)
> # ’iris’ is a well-known dataset in R.

25 / 30

Getting Data from the Internet

In many cases, you can download the data by clicking the link.
But sometimes you may need to right click the link and choose
Save Link As
As an example, go to
http://www.stat.cmu.edu/ larry/all-of-nonpar/data.html and
try to download a dataset:

26 / 30

http://www.stat.cmu.edu/~larry/all-of-nonpar/data.html

Interfacing with other Packages

R has a base package called foreign, that interfaces with
other packages, such as SPSS, SAS, Systat, Octave, Stata,
Minitab.
To activate its commands you first have to issue the command
library(foreign).
Under help.start(), html help interface, read the
documentation for functions in foreign.
They mostly concern reading exports from these other
packages for use in R.

27 / 30

Working with Databases

Packages are available to connect to some databases such as
MySQL
Oracle
PostgreSQL
SQLite

Consult Chapter 4 of the R manual R-Data Import/Export.
Consult this manual on all other issues concerning I/O.

28 / 30

https://cran.r-project.org/doc/manuals/r-release/R-data.html

Packages

Previously we referred to the package foreign.
To use any function in it you need to execute
library(foreign).
That works because foreign is in the base distribution of R.
For other packages (there are over 9000) you need to first
install it on your system via
install.packages("packageName").
When prompted choose a distribution site near you.
You only need to do this install step once.
The library command needs to be done anew for each new
R session that wants to use the package functions.

29 / 30

In-class Exercises

cars is a built-in dataset in R.
To explore this dataset, try summary(cars) and
head(cars).
Now declare two new variables by

speed2 <- cars$speed^1.5
res <- speed2-cars$dist

Create a new data.frame whose first two columnas are the
same as cars and the third column is the vector speed2 and
the last column is the vector res.
Ouput the dataset with file name cars_new.txt.

30 / 30

