Stat 302

Statistical Software and Its Applications Other Data Objects

Yen-Chi Chen

Department of Statistics, University of Washington
Autumn 2016

- A matrix object is a rectangular $n \times m$ array of elements of same type: numerical, character, etc.
- n is the number of rows, m is the number of columns.
- Typically rows represent subjects, and columns represent different variables measured for each subject.
- The rectangular data structure ensures same number of measurements per subject.
- Having more than one variable per subject allows us to examine correlations between various measurements.
- We could also view such data as a collection of equal length variable vectors, stacked next to each other.

```
>A <- matrix(1:12,nrow=3,ncol=4,byrow=F)
> A
```

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1	4	7	10
$[2]$,	2	5	8	11
$[3]$,	3	6	9	12

$>\mathrm{B}<-\operatorname{matrix}($ letters [1:12], nrow=3,byrow=T)
$>B$

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	$" a "$	"b"	"c"	"d"
$[2]$,	"e"	"f"	"g"	"h"
$[3]$,	"i"	"j"	"k"	"l"

Only nrow or ncol need to be specified.

```
\(>A<-\) cbind \((1: 3,4: 6,7: 9,10: 12)\)
\(>\mathrm{A}\)
\begin{tabular}{rrrr}
{\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} \\
1 & 4 & 7 & 10 \\
2 & 5 & 8 & 11 \\
3 & 6 & 9 & 12
\end{tabular}
\(>B<-\) rbind(letters[1:4], letters[5:8],
+ letters[9:12])
\(>\mathrm{B}\)
```

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	$" a "$	$" b "$	$" c "$	"d"
$[2]$,	$" e "$	$" f "$	$" g "$	$" h "$
$[3]$,	"i"	"j"	"k"	"l"

Naming Rows and Columns

```
> names(B)
NULL
```

> rownames (B) <- c("row1","row2","row3")
$>B$
row1 "a" "b" "c" "d"
row2 "e" "f" "g" "h"
row3 "i" "j" "k" "l"
> colnames(B) <- c("col1","col2", "col3", "col4")
$>\mathrm{B}$

	col1	col2	col3	col4
row1 "a"	"b"	"c"	"d"	
row2 "e"	"f"	"g"	"h"	
row3 "i"	"j"	"k"	"l"	

$>\mathrm{A}$

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1	4	7	10
$[2]$,	2	5	8	11
$[3]$,	3	6	9	12
$>A[1: 2,3: 4]$				
$[12]$	$[, 2]$			
$[1]$,	7	10		
$[2]$,	8	11		

Extracting Matrix Values by Name

$>B$

$$
\begin{aligned}
& \text { col1 col2 col3 col4 } \\
& \text { row1 "a" "b" "c" "d" } \\
& \text { row2 "e" "f" "g" "h" } \\
& \text { row3 "i" "j" "k" "l" } \\
& \text { > B[c("row1", "row3"), c("col2", "col3")] } \\
& \text { col2 col3 } \\
& \text { row1 "b" "c" } \\
& \text { row3 "j" "k" } \\
& \text { > B[c("row1","row3"), 2:3] } \\
& \text { cow1 "b" "c" } \\
& \text { row3 "j" "k" }
\end{aligned}
$$

Matrix Arithmetic

```
> Ar <- matrix(12:1,ncol=4)
>A+Ar
\begin{tabular}{lrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} \\
{\([1]\),} & 13 & 13 & 13 & 13 \\
{\([2]\),} & 13 & 13 & 13 & 13 \\
{\([3]\),} & 13 & 13 & 13 & 13
\end{tabular}
```

Matrices are added by adding corresponding elements. Same for - , * , / .
Matrices must have same dimension (columns and rows), otherwise the computer will cycle the smaller matrix.

Matrix/Vector Arithmetic

$>\mathrm{A}$

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1	4	7	10
$[2]$,	2	5	8	11
$[3]$,	3	6	9	12

$>A+1: 3$

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	2	5	8	11
$[2]$,	4	7	10	13
$[3]$,	6	9	12	15

$>A+1: 4$

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	2	8	10	12
$[2]$,	4	6	12	14
$[3]$,	6	8	10	16

Vectors are expanded by column to a conforming matrix
Same for $-, *, 1$.

Matrix Multiply (Linear Algebra)

An $m \times n$ matrix C can be multiplied by an $n \times k$ matrix D using the command $C \% * \% D$
> C

	$[, 1]$	$[, 2]$
$[1]$,	1	3
$[2]$,	2	4
$>D$		

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	6	4	2
$[2]$,	5	3	1
$>C \% * \% D$			
	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	21	13	5
$[2]$,	32	20	8

To partially verify: $1 \cdot 6+3 \cdot 5=21,1 \cdot 4+3 \cdot 3=13$

Matrix Vector Multiply (Linear Algebra)

An $m \times n$ matrix C can be multiplied by an $n \times 1$ vector d using the same command $C \% * \% \quad d$
$>\mathrm{C}$

	$[, 1]$	$[, 2]$
$[1]$,	1	3
$[2]$,	2	4
$>d<-c(2,3)$		
$>C \% * \% d$		
$[1]$		
$[1]$,	11	
$[2]$,	16	

$$
\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)\binom{2}{3}=\binom{1 \cdot 2+3 \cdot 3}{2 \cdot 2+4 \cdot 3}=\binom{11}{16}
$$

Inverting a Square Matrix

For some square matrices G we can find a matrix G^{-1} such that by matrix multiply we get $G G^{-1}=G^{-1} G=I . G^{-1}=\operatorname{solve}(G)$. Here I is the identity matrix, 1 's on diagonal, 0 's off diagonal.

```
> G <- matrix(1:4,ncol=2)
> G
```

	[,1]	[,2]
[1,]	1	
[2,]	2	
> solve(G)		
	[,1]	[,2]
[1,]	-2	1.
[2,]	1	-0.
> solve (G) \% * \% G		
	[,1]	, 2$]$
1,]	1	
2,]	0	

Solving an $n \times n$ System of Equations

For a given $n \times n$ matrix $A=\left(a_{i j}\right)$ and given vector $b=\left(b_{1}, \ldots, b_{n}\right)$ solve the following equations for the unknown vector $x=\left(x_{1}, \ldots, x_{n}\right)$

$$
\begin{aligned}
a_{11} x_{1}+\ldots+a_{1 n} x_{n} & =b_{1} \\
\ldots & =\ldots \\
a_{n 1} x_{1}+\ldots+a_{n n} x_{n} & =b_{n}
\end{aligned}
$$

in matrix multiply form this is just $A x=b$ for vectors
$x=\left(x_{1}, \ldots, x_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right) . x=A^{-1} A x=A^{-1} b$. x can be obtained by the solve command via solve $(A, b)=x$. For some A (singular) the equations cannot be solved, and A^{-1} does not exist.

The notion of matrices as $m \times n$ arrays can be generalized to $n_{1} \times n_{2} \times n_{3} \times \ldots$ arrays.
$>\operatorname{array}(1: 12, \operatorname{dim}=c(2,3,2))$
, , 1

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1	3	5
$[2]$,	2	4	6

, , 2

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	7	9	11
$[2]$,	8	10	12

Many of the matrix operations work here as well. Leave it at that.

Lists are objects which are collections of other objects, such as data or function objects, lists, and lists of lists,...

```
> L <- list(M=1:4,A=letters[1:6],
+ F = function(x){x^2})
> L
$M
    [1] 1 2 3 4
$A
[1] "a" "b" "c" "d" "e" "f"
$F
function (x)
{
    x^2
}
```


Indexing of Lists via []

Within [] use an index vector or vector of component names

```
> L[1:2]
$M
[1] 1 2 3 4
```

\$A
[1] "a" "b" "c" "d" "e" "f"
> L[c("M","A")]
\$M
[1] 1234
\$A
[1] "a" "b" "c" "d" "e" "f"
\# sublist of first 2 elements of the source list

Indexing of Lists via [[]] and \$

Within [[]] use a single index or component name
> L[["A"]] \# same as L\$A
[1] "a" "b" "c" "d" "e" "f"
> L[[2]]

\# You get the indicated list object,
\# not a sublist
> L[[2]][3] \# same as L\$A[3]
[1] "c"
> L[[3]](6) \# same as L\$F(6)
[1] 36
The \$ referencing works only when list component is named.

List within a List

> LL <- list(num = 1:3,list(letters[3:1],

+ LETTERS[1:2]))
> LL
\$num \# first component has name num
[1] 123
[[2]] \# 2nd list component does not have a name [[2]][[1]] \# 1st subcomponent of 2nd component [1] "c" "b" "a"
[[2]][[2]] \# 2nd subcomponent of 2nd component [1] "A" "B"
> LL[[2]][[1]] \# 1st subcomp. of 2nd comp.
[1] "c" "b" "a"
> LL[[2]][[1]][2] \# 2nd element of previous
[1] "b"

Data of different types can be captured in data frame objects.
> X <- data.frame (num=1:6,let=letters[6:1],

+ Date=as.Date("1965/5/15") +0:5)
> X
num let Date
1 f 1965-05-15
2 e 1965-05-16
3 d 1965-05-17
4 c 1965-05-18
5 b b 1965-05-19
6 6 a 1965-05-20
> str(X)
'data.frame': 6 obs. of 3 variables:
\$ num : int 123456
\$ let : Factor w/ 6 levels "a","b","c","d",..: 65
\$ Date: Date, format: "1965-05-15" "1965-05-16" ..

A data frame is really a special list, with the restriction that all its components are vectors of various types, all of the same length.

Referencing is the same as with lists
> X[[1]] \# same as X\$num
[1] 123456
Note that $\mathrm{X} \$ 1$ let is automatically a factor.

To keep strings as character, use stringsAsFactors=F in data.frame().
> X <-data.frame(num=1:6,let=letters[6:1],

+ Date=as.Date("1965/5/15") +0:5,
+ stringsAsFactors=F)
> X[1:3,2:3] \# extract from data frames ~ matrices let Date
1 f 1965-05-15
2 e 1965-05-16
3 d 1965-05-17
$>\operatorname{str}(X[1: 3,2: 3])$
'data.frame': 3 obs. of 2 variables:
\$ let : chr "f" "e" "d"
\$ Date: Date, format: "1965-05-15" "1965-05-16" ..

Why do we want to use data.frame?

Many datasets have different types of attributes. Here is an example from the CO2 dataset in R .
> head (CO2)
Plant Type Treatment conc uptake

1 Qn1 Quebec nonchilled 9516.0
2 Qn1 Quebec nonchilled 17530.4
3 Qn1 Quebec nonchilled 25034.8
4 Qn1 Quebec nonchilled 35037.2
5 Qn1 Quebec nonchilled 50035.3
6 Qn1 Quebec nonchilled $675 \quad 39.2$
> is.data.frame (CO2)
[1] TRUE
Try str(CO2).

In-class Exercises

What would happen if we c.bind vectors with different structures?
Try the following:
cbind(c(1:6), letters[1:6])
str(cbind(c(1:6), letters[1:6]))
Also try the following:
X <-data.frame (num=1:6, let=letters[6:1],
stringsAsFactors=F)
as.matrix(X)
is.character(X)
is.character(as.matrix(X))
is.character (X\$let)
Think about what happened.

