
Stat 302
Statistical Software and Its Applications

Data Objects (Vectors)

Yen-Chi Chen

Department of Statistics, University of Washington

Autumn 2016

1 / 29

Vectors

A vector is a sequence of entities of the same type, i.e.,
numerical, integer, character, logic.
Single values are just vectors of length 1.

> x <- rev(1:20) # rev() reverses order of 1:20
> str(x) # gives structural information about x
int [1:20] 20 19 18 17 16 15 14 13 12 11 ...

> z <- seq(1,4,.5)
> z
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0

2 / 29

How to Create Vectors

We saw 1:20 and seq(1,4,.5).
By concatenation of values or other vectors, using c(...).

> x1 <- rev(1:5)
> x2 <- 1:4
> y <- c(x1,x2,5)
> str(y)
num [1:10] 5 4 3 2 1 1 2 3 4 5

Note the type becomes num because 5 is viewed as numeric.

> str(c(x1,x2,as.integer(5)))
int [1:10] 5 4 3 2 1 1 2 3 4 5

3 / 29

Character Vectors

The elements of character vectors can be single characters or
strings of characters, enclosed in single or double quotes.

> a <- c(’hearts’,"A B C","C","Z")
> a
[1] "hearts" "A B C" "C" "Z"

Special character vectors (note the subscripting)

> letters[2:5]
[1] "b" "c" "d" "e"
> LETTERS[c(1,3,25)]
[1] "A" "C" "Y"

4 / 29

Logic Vectors

There are two logic values T and F, without quotes,
same as TRUE and FALSE.

> Lvec <- c(T,T,F,F,TRUE)
> Lvec
[1] TRUE TRUE FALSE FALSE TRUE

Logic vectors are most often created by logic expressions

> Lvec <- 1:5 < 2.5
> Lvec
[1] TRUE TRUE FALSE FALSE FALSE
> Lvec+1
[1] 2 2 1 1 1

Logic vectors can be interpreted numerically, T⇔ 1 and F⇔ 0

5 / 29

Testing Object Types

For each object type there is a test function
is.numeric(), is.logical(), is.character(),
is.integer(), is.function()

> is.logical(Lvec+0)
[1] FALSE
> is.logical(Lvec)
[1] TRUE
> is.function(myfun)
[1] TRUE

6 / 29

Coercing Object Types

When appropriate you can also coerce an object type.
This is not about the value but its storage type in memory.

> as.integer(Lvec)
[1] 1 1 0 0 0
> Lvec+1
[1] 2 2 1 1 1
> is.integer(Lvec+1)
[1] FALSE
> z <- as.integer(Lvec+1)
> z
[1] 2 2 1 1 1
> is.integer(z)
[1] TRUE

7 / 29

Repeating Vectors

The rep() function is useful in creating vector patterns.

> rep(c(0,0,7),times=3)
[1] 0 0 7 0 0 7 0 0 7

> rep(c(0,0,7),each=3)
[1] 0 0 0 0 0 0 7 7 7

> rep(c(0,0,7),length.out=7)
[1] 0 0 7 0 0 7 0

8 / 29

Extracting Values from Vectors

We already saw two examples letters[2:5] and
LETTERS[c(1,3,25)].
letters[c(5)] and letters[5] both work, but
letters[1,5] does not.
Using negative indices in extraction means omitting those
indexed vector values.

> (1:10)[-c(5,7)]
[1] 1 2 3 4 6 8 9 10
> 1:10[-c(5,7)]
[1] 1 2 3 4 5 6 7 8 9 10

10[-c(5,7)] has precedence and is 10

9 / 29

Extracting Vector Values Via Logic Vectors

If x is any vector and Lx is a logic vector of same length, then
x[Lx] extracts all those vector elements from x, whose
position shows T or TRUE in the vector Lx.
If Lx has shorter length than x it is recycled (with possible
warning. when length(x) 6= multiple of length(Lx)).

> x <- 1:10
> Lx <- x>6
> x[Lx] # same as x[x>6]
[1] 7 8 9 10
> (1:21)[3<c(2,4)]
[1] 2 4 6 8 10 12 14 16 18 20
> 3<c(2,4)
[1] FALSE TRUE
> x[x!=6]
[1] 1 2 3 4 5 7 8 9 10

Note the logic operator != meaning "not equal".
10 / 29

Changing Selected Vector Values

> x <- 1:10
> x[5] <- 6
> x
[1] 1 2 3 4 6 6 7 8 9 10

> x[x>5] <- 6
> x
[1] 1 2 3 4 6 6 6 6 6 6

> x[-4] <- 6
> x
[1] 6 6 6 4 6 6 6 6 6 6

11 / 29

Logic Operators

x == y tests equality between x and y.
x != y tests inequality between x and y.
x > y, x < y, x >= y, and x <= y
test respective types of inequality.
x & y returns TRUE when both x and y are TRUE,
otherwise FALSE is returned.
For numeric x, y only 0 counts as FALSE.
x | y returns TRUE when x or y are TRUE,
otherwise FALSE is returned.
! x return the negation of x, when interpreted as logic
value.
All the above operations work in vectorized form, making x
and y of same length by recycling the shorter vector.

> (1:5)[1:5 > 3] # replacing 3 by c(3,3,3,3,3)
[1] 4 5

12 / 29

Extracting Truth Positions Using which

The which() function gives the index positions of a logic
vector which hold a TRUE value.

> which(6:1 > c(3,4))
[1] 1 2 3

same as
> which(6:1 > c(3,4,3,4,3,4))
[1] 1 2 3

> 6:1
[1] 6 5 4 3 2 1
> c(3,4,3,4,3,4)
[1] 3 4 3 4 3 4

13 / 29

Some Useful Vector Functions

length(x) gives the length of the vector x.
sum(x) gives the sum of all elements in x.
prod(x) gives the product of all elements in x.
min(x) and max(x) give the minimum and maximum of all
elements in x.
cumsum(x) gives the cumulative sums of all elements in x.
cummin(x) and cummax(x) give the cumulative minima
and maxima of all elements in x.
diff(x) gives the differences of adjacent values in x.
The resulting vector has length length(x)-1.
sort(x) sorts x, numeric or character
ind <- order(x) =⇒ x[ind] is sorted.
Try out these functions and see documentation on them,
concerning missing value NA behavior.

14 / 29

Numerical Formatting

round(x,k) rounds x to k decimals.
signif(x,k) shows the k significant digits of x.
If in rounding the first dropped digit is 5,
rounding is to the nearest even digit.

> signif(4.45,2)
[1] 4.4
> signif(4.35,2)
[1] 4.4

trunc(x) rounds x to nearest integer in the direction of 0.
floor(x) gives the greatest integer ≤ x.
ceiling(x) gives the smallest integer ≥ x.
All these functions are vectorized.

15 / 29

Math Operations on Vectors

Most arithmetic operations and many functions are vectorized.
Operations involving 2 vectors x and y require that the longer
vector is a multiple of the shorter one, warning otherwise.

x+y, x-y, x*y, x/y, x^y

add, subtract, multiply, divide, exponentiate componentwise.

> 2^(1:3) # same as c(2,2,2)^(1:3)
[1] 2 4 8
> (1:3)^2 # same as (1:3)^c(2,2,2)
[1] 1 4 9

The trigonometric and hyperbolic functions,
try ?cos and ?cosh.
Also sqrt, log, exp, abs, see ?log for more.

16 / 29

Problem of Zeros

> sin(pi)
[1] 1.224606e-16

> log(5/2)-log(5)+log(2)
[1] 1.110223e-16

> log(5/2)-log(5)+log(2)+log(exp(1))
[1] 1 # no problem here,

> log(5/2)-log(5)+log(2)+log(exp(1))-1 == 0
[1] TRUE

> log(5/2)-log(5)+log(2)+(log(exp(1))-1)
[1] 1.110223e-16

17 / 29

More on Problem of Zeros

> seq(0,.4,.1)==.3
[1] FALSE FALSE FALSE FALSE FALSE

> .1==.3/3
[1] FALSE

> unique(c(.3,.4-.1,.5-.2,.6-.3,.7-.4))
[1] 0.3 0.3 0.3

> .6-.3 - .7+.4
[1] 5.551115e-17

18 / 29

Machine Representation of Numbers

Limitations of representing numbers in a computer.
It manifests mostly for numbers that are zero, technically.
Sometimes the results are surprising and can bite you.
Important to mind when testing x == 0.
It would result in FALSE when x is 1.224606e-16.
Sometimes you get away with such a test, previous example.
It can show in unexpected place like in == tests or in unique.
Better test abs(x) <= 1e-12 = 10−12

19 / 29

Naming Vectors

Sometimes it is useful to name vectors.

> month.name
[1] "January" "February" "March"
[4] "April" "May" "June"
[7] "July" "August" "September"

[10] "October" "November" "December"
a vector of month names, built into R
> month.days <- c(31,28,31,30,31,30,31,
+ 31,30,31,30,31)
> names(month.days) <- month.name
> month.days

January February March April
31 28 31 30
May June July August
31 30 31 31

September October November December
30 31 30 31

20 / 29

Manipulating Text

R has many tools for manipulating text data.
Good coverage is given on pages 76-86 of R for Dummies.
We will skip this here.
Note that analyzing text data is a big field; here are some
keywords:

text mining.
natural language processing.
bag-of-word model.

21 / 29

Factors

The factor data type is the most confusing to new users.
It seems to be neither numeric nor character
or it seems to be both at the same time.
It is used to classify certain data aspects

M or F (male/female)
North, East, South, West
strongly agree, agree, neutral, disagree, strongly disagree
green, red, blue, yellow, ...

22 / 29

Factors by Example

> directions <- c("North","East","South","South")
> dir.factor <- factor(directions)
> dir.factor
[1] North East South South
Levels: East North South
> as.character(dir.factor)
[1] "North" "East" "South" "South"
> as.numeric(dir.factor)
[1] 2 1 3 3 # numbers reflect alphabetical order
> levels(dir.factor)
[1] "East" "North" "South"
> str(dir.factor)
Factor w/ 3 levels "East","North",..: 2 1 3 3

The number coding may be the reason for the existence of factors.

23 / 29

Dates

Often data come with dates, providing points on a time axis.
Differences between dates may serve as life lengths.
Dates can be incremented.

> dx <- as.Date("2012-1-6")
> dx
[1] "2012-01-06"
> dx <- as.Date("2012/1/6")
> dx
[1] "2012-01-06"
> months(dx)
[1] "January"
> weekdays(dx)
[1] "Friday"
> dx+1:3
[1] "2012-01-07" "2012-01-08" "2012-01-09"

24 / 29

Dates with Other Formats?

Dates come in many formats in external data sets.
This can be accommodated via the format argument in
as.Date().

> as.Date("27 Jun 2012",format="%d %b %Y")
[1] "2012-06-27"
> as.Date("27 June 2012",format="%d %B %Y")
[1] "2012-06-27"
> as.Date("27, Jun, 2012",format="%d,%B,%Y")
[1] NA
> as.Date("27, Jun, 2012",format="%d, %B, %Y")
[1] "2012-06-27"

Read the documentation on as.Date if uncertain.

25 / 29

Date and Time

> apollo <- "July 20, 1969, 20:17:39"
> apollo.fmt <- "%B %d, %Y, %H:%M:%S"
> xct <- as.POSIXct(apollo,format=apollo.fmt)
> xct
[1] "1969-07-20 20:17:39 PDT"
> as.numeric(xct)
[1] -14157741

as.POSIXct expresses date/time in seconds since start of 1970.

Sometimes date/time formats in data sets are not consistent.

Hunt for produced NA’s or clean the data via text manipulation.

26 / 29

Arithmetic with Date and Time

> xct
[1] "1969-07-20 20:17:39 PDT"
> xct + 24*3600
[1] "1969-07-21 20:17:39 PDT"
increment in seconds for as.POSIXct objects.
> as.Date("1969-07-20")+12
[1] "1969-08-01"
increment in days for as.Date objects.
> xct.e <- xct + 77781
> xct.e
[1] "1969-07-21 17:54:00 PDT"
> xct.e-xct
Time difference of 21.60583 hours
> xct.e > xct
[1] TRUE

27 / 29

System Times

> Sys.time()
[1] "2012-11-05 10:27:25 PST"
current system time, local to your computer

> system.time(rnorm(1e7))
user system elapsed

3.712 0.068 3.968
no output beyond timing
rnorm(1e7) generates 10000000
standard normal deviates

> system.time(xr <- rnorm(1e7))
user system elapsed

3.708 0.072 4.029
also produces xr in workspace
> xr[1:3]
[1] 0.03957654 0.61420864 -1.24596152

28 / 29

In-class Exercises

Use R to do the following and think about the result.
Set x <- c(7,3,2,5,9,1), think about two ways to sort
them in decreasing order.

Set y <- 1:6. Try prod(y) and factorial(y).
Set z <- 3.5. Try floor(z), ceiling(z), and
trunc(z).
What would happen if we change z into z <- -1.5?
Set a <- c(1,5,9,2,3,13). Try a>4, !a>4,
which(a>4), a[which(a>4)], and a[a>4].

Set a1 <- 1:3, a2 <- c(1,2,3). Try
is.integer(a1) and is.integer(a2). Try also
is.numeric(a1) and
is.integer(as.numeric(a1)).

29 / 29

