
Stat 302
Statistical Software and Its Applications

Introduction to R

Yen-Chi Chen

Department of Statistics, University of Washington

Autumn 2016

1 / 23

Statistical Software

There are many, many statistical packages, see
http://en.wikipedia.org/wiki/List_of_statistical_packages
We start out with R and follow it by introducing SAS
SAS is favored by corporations, because it is backed by a
corporation.
There is no corporation behind R, it is supported by a
worldwide consortium of developers and users.
R and SAS =⇒ marketability to prospective employers.
The yearly SAS license is expensive, R is free.

2 / 23

http://en.wikipedia.org/wiki/List_of_statistical_packages

Introduction to R

I assume you installed R and RStudio on your computers.
What is R?
R is a free software environment for statistical computing and
graphics.
It compiles and runs on a wide variety of UNIX platforms,
Windows and MacOS.
It is a gigantic calculator and a programming tool.
Flexible data manipulation tool.
It produces gaphics in many formats, even animation.
Many statistical analysis tools in its basic installation.
Today, R has more than 9000 available packages.
It can be extended via C, C++, Fortran (for speed).

3 / 23

Interface to R

On Windows it comes with an RGui interface. It opens up
when you double click the large blue R on your desktop.
On a Mac you have an application called R. When you run it,
it opens a console window, similar to the above Rgui, but
different.
On Linux you type the command R in a terminal window. This
turns the terminal into a command console.
You can work with any plain text editor to store your
commands.
Cut and paste your commands from the editor into the
command console.
We will use RStudio as common interface for all common
computers.
It has a built in editor and many other utilities.

4 / 23

The RGui Interface to R
Windows only, different menu options, depending on active panel (here R Console)

5 / 23

The Mac R Console

6 / 23

The Linux R Console and Graphics Window

7 / 23

The RStudio Interface to R
same for Windows/Mac/Linux

8 / 23

Creating Project Workspaces

Create separate workspaces for different projects.
Avoids clutter/confusion among all saved workspace objects.
Within RStudio File =⇒ New Project
=⇒ New Directory =⇒ Empty Project
Enter a directory name, say Lab1.
=⇒ Browse to a location where to place that working directory
Push Create Project button.
This switches you to a new instance of RStudio in Lab1.
At the command prompt > type in x <- 1:5. Then type x.
Don’t type x < - 1:5. But try anyway and decipher result.
After exiting that RStudio session (using q()) you can reopen
that R session by double clicking the blue R icon in Lab1.
Note that the x object is still part of your workspace if you
choose ‘Save workspace image’.

9 / 23

R as Calculator
Using RStudio

If the Edit window is not open, then =⇒ File =⇒ New File
=⇒ choose R Script or use shortcut Ctrl+Shift+N
(Windows) or Shift + Command + N (Mac).
Note the use of unexecuted comments preceded by #.
In the Edit or R Script pane of RStudio’s upper left enter

sqrt(3^2+4^2) # or sqrt(3**2+4**2)
qnorm(.975) # normal 97.5 percentile, .975 quantile
pnorm(qnorm(.975)) # left tail prob. of qnorm(.975)

highlight these lines, click Run in the Edit pane, upper right.
This executes the highlighted commands in the Console below.
You can enter the same commands also directly after the >
prompt in the Console pane.

10 / 23

The Difference of Source and Run
Using RStudio

Use Run and Source buttons on these lines in Edit pane

exp(1) # Euler’s constant
print(exp(1))

Run will echo and execute the cursor line or the highlighted
lines and show the results in the Console pane.
Source will run the whole script in the Console pane, but to
show results it needs the print() wrapper around
commands that would show results at the command prompt >.
The advantage of using the Edit pane and of running/sourcing
commands is that you can try out a sequence of commands
and then edit/change them for repeat tries.

11 / 23

Using Functions to Build up Scripts
Using RStudio

Source the following script in the Edit pane

myfun <- function(x){
exp(x) # exponential function
}

Note that the Workspace pane on the upper right now shows
the myfun object, identified as function object, in addition to
the integer object x.
In the Console execute the command myfun(1).
Functions can have more than one argument.

myfun2 <- function(x,y,z){x+y^2+z^3}

Try to run myfun2(1,2,3).

12 / 23

Vector Functions
Using RStudio

Previously used myfun on single number arguments. Now try
> myfun(x)
[1] 2.718282 7.389056 20.085537 54.598150 148.413159

Evaluation of exp(x) is vectorized over all components of x.
Vectorize computations whenever possible, avoid loops.

13 / 23

R Reference Materials

Look under Manuals in http://cran.r-project.org/ and you find
An Introduction to R
and further down, under contributed documentation, many
guides in many languages.
See also
http://en.wikipedia.org/wiki/R_%28programming_language%29
The recommended introductory text is R for Dummies
by de Vries and Meys.

14 / 23

http://cran.r-project.org/
http://en.wikipedia.org/wiki/R_%28programming_language%29

Learning R

R is learned by reading and doing. Experiment!
The math expressions should be obvious.
Many functions/commands will become second nature,
because you use them a lot
Of course, you will make mistakes, and learn from them.
Experience = recognizing a mistake when you make it again.
Many ways to ask R for help, e.g., help.start(),
opens web help interface
?mean or help(mean) opens Help pane in RStudio.
Similarly ?"+" and ?"if", note quotes.
??plotting and ??"regression model" searches for
topics containing these phrases.
apropos("sor") or apropos("sort"), good for finding
relevant commands, note difference in result.

15 / 23

Math Expressions Should Be Obvious

The first three of these expressions

-2^.5 -2**.5 -(2^.5) (-2)^.5

will give same result. The last produces NaN, not a number.
In EXCEL the first produces an error (also in C).
It is interpreted just as the 4-th expression above.
Fortan77 same as R, i.e., correct mathematical convention.
When in doubt, use () to enforce proper order of evaluation.
factorial(5) produces 5! = 1 · 2 · 3 · 4 · 5 = 120
choose(8,4) produces

(8
4

)
= 70.

sqrt(2) gives
√
2 = 1.414214.

Instead of statistical tables see R under ?Distributions.

16 / 23

Some Lab Exercises

Use R to compute the following

1+ 2(3+ 4)

log(43 + 32+1)

√
(4+ 3)(2+ 1)

(
1+2
3+4

)2

Use LATEX to typeset the above 4 expressions.

17 / 23

R Even Handles the Infinite and π

R’s expression for ∞ is Inf.
When it makes sense, R does proper arithmetic involving Inf
e.g., 1/Inf and 1/0 return 0 and Inf, respectively.
When it does not make sense it returns NaN, Not a Number
e.g., 0*Inf and Inf-Inf and 0/0 return NaN.
π is represented by pi, thus avoid using pi as object name.
However, pi <- 3 is legal. Then each use of pi means 3,
until you rm(pi) (you remove the object pi from workspace)
Read about the infamous Indiana Pi Bill of 1897.
No corresponding expression for Euler’s number e,
use exp(1) instead.

18 / 23

http://en.wikipedia.org/wiki/Indiana_Pi_Bill

Work Space House Keeping Tools

ls() or objects() lists objects in your work space
ls(pattern="un") lists objects with names containing un.
getwd() gives path of active working directory.
rm(x,y,z) removes objects x,y,z from work space. There
is no undo, but you can decline save when you exit R.
rm(list=ls()) cleans out all objects from your work space.
rm(list=ls(pattern="un")) cleans out all objects
containing un in their names.
save(x,y,z,file="objects.rda") saves objects
x,y,z to the file "objects.rda" in your working directory.
load("objects.rda") loads the objects in file
"objects.rda".
save.image("ws.rda") saves the whole work space to
"ws.rda".
load("ws.rda") loads that whole work space in again.
The above .rda files are not readable in a normal text editor.

19 / 23

Exporting/Importing R Objects via dput and dget

Any object in an R workspace can be exported to the working
directory via the dput command

> x <- c(1:3,2:1)
> dput(x,"xobject")
when editing "xobject" you see
c(1L, 2L, 3L, 2L, 1L)
That is R’s way of storing integers,
as opposed to numerics
> xx <- c(1,3,2)
> dput(xx,"xxobject")
view "xxobject" in an editor and see
c(1, 3, 2)
treated as a numeric
> rm(x,xx)
> x <- dget("xobject") # imports x back again
> xx <- dget("xxobject") # imports xx back again

20 / 23

Exporting/Importing Exercise

Enter the following instructions in R:
1 x <- 3:7

2 y <- log(x)

3 dput(y, "yobject")

4 y <- 5

5 y

6 y <- dget("yobject")

7 y

What will happen if we enter x <- dget("yobject")?

21 / 23

More Lab Exercises

Use R to compute the following

log10(20)

sin(180)

sin(π)

5cos(π2)

22·23···25
5·4···1

log5(15 · 14 · · · 11)

Use LATEX to typeset the above expressions.

22 / 23

Quick Review for Today

Run versus Source.
The ? and ?? command.
factorial, choose, and sqrt.
Inf and NaN.
Basic Import/Export: load, save, dput, and dget.

23 / 23

