Stat 302 Statistical Software and Its Applications SAS: Simple Linear Regression

Yen-Chi Chen

Department of Statistics, University of Washington

Autumn 2016

• SAS procedures for simple linear regression.

- proc sgplot + reg
- proc corr
- proc reg
- Log transform and simple linear regression.
- Multiple linear regression.
- Examples of fitting linear regression.
 - student dataset.
 - A simulated dataset.

- Go to Canvas and download the dataset SpiritStLouis.csv.
- It is a dataset about airplane takeoff distance from http:
 //www.charleslindbergh.com/hall/spirit.pdf.
- Do the following to import the dataset into SAS:

```
data spirit;
    infile "U:\data\SpiritStLouis.csv" dsd;
    input gas weight headwind TO_distance; run;
title "Spirit of St. Louis Takeoff Distance";
    proc print data = spirit; run;
```

Spirit of St. Louis Takeoff Distance

C)bs	gas	weight	headwind	TO_distance
	1	36	2600	7	229
	2	71	2800	9	287
	3	111	3050	9	389
	4	151	3300	6	483
	5	201	3600	4	615
	6	251	3900	2	800
	7	301	4200	0	1023

- In today's analysis, we will focus on variable weight and TO_distance.
- We will treat weight as the response variable (Y) and TO_distance as the covariate (X).

• We can show the scatter plot with fitted linear regression using proc sgplot.

title "Scatter Plot with Regression Line";
 proc sgplot data=spirit;

reg y = weight x=TO_distance; run;

- To add a prediction interval, use /CLI.
- The command alpha=0.2 means that we are constructing a 1-alpha prediction interval.

```
title "Scatter Plot with Regression Line: 80% PI";
    proc sgplot data=spirit;
    reg y = weight x=TO_distance/
        CLI alpha=0.2;
```

run;

- To show a confidence interval, use /CLM.
- The quantity alpha controls the confidence level.

```
title "Scatter Plot with Regression Line: 90% CI";
proc sgplot data=spirit;
reg y = weight x=TO_distance/
CLM alpha=.1;
```

```
run;
```


• We can show both prediction interval and confidence interval at the same time.

```
title "Scatter Plot with Regression Line: 90% PI+CI";
    proc sgplot data=spirit;
    reg y = weight x=TO_distance/
        CLI CLM alpha=0.1;
```

run;

• To adjust the line attributes, use / lineattrs =

```
title "Scatter Plot with Regression Line: line attributes";
    proc sgplot data=spirit;
    reg y = weight x=TO_distance/
        lineattrs=(color=red thickness=5 pattern=dot);
```

run;

• To adjust the attributes of data points, use / markerattrs =

```
title "Scatter Plot with Regression Line:
    marker attributes";
    proc sgplot data=spirit;
    reg y = weight x=TO_distance/
        lineattrs=(color=red thickness=5)
        markerattrs=(color=blue size=10
            symbol=squarefilled);
```

run;

10/37

• To adjust the axes, use xaxis and yaxis.

```
title "Scatter Plot with Regression Line:
    adjusts axes";
    proc sgplot data=spirit;
    reg y = weight x=TO_distance;
        xaxis label="XXXX" min = 0 max = 2000
        labelattrs=(size=20 color=blue)
        grid gridattrs=(color=green) ;
```

run;

• The corr procedure is a method to obtain a table of the correlation analysis.

```
title "Correlation";
    proc corr data = spirit;
    var weight TO_distance; run;
```

proc corr (Plot)

Correlation

The CORR Procedure

2 Variables: weight TO_distance

Simple Statistics								
Variable N Mean Std Dev Sum Minimum Maximum								
weight	7	3350	583.80933	23450	2600	4200		
TO_distance	7	546.57143	286.64488	3826	229.00000	1023		

Pearson Correlation Coefficients, N = 7							
Prob > r under H0: Rho=0							
weight TO_distance							
weight	1.00000	0.98882 <.0001					
TO_distance	0.98882 <.0001	1.00000					

- The reg procedure is a power tool for regression analysis.
- It performs a comprehensive analysis for linear regression.
- First it generates a summary table.
- Then it shows diagnostic plots, a residual plot, and the scatter plot with fitted regression line.

```
title "Simple Linear regression";
proc reg data = spirit;
model weight = TO_distance;
run;
```

proc ref - 1 (Plot - 1)

Simple Linear regression

The REG Procedure Model: MODEL1 Dependent Variable: weight

Number of Observations Read 7

Number of Observations Used 7

Analysis of Variance							
Source	F Value	Pr > F					
Model	1	1999529	1999529	219.87	<.0001		
Error	5	45471	9094.24340				
Corrected Total	6	2045000					

Root MSE	95.36374	R-Square	0.9778
Dependent Mean	3350.00000	Adj R-Sq	0.9733
Coeff Var	2.84668		

Parameter Estimates							
Variable DF Estimate Error t Value Pr							
Intercept	1	2249.24429	82.52306	27.26	<.0001		
TO_distance	1	2.01393	0.13582	14.83	<.0001		

proc ref - 1 (Plot - 2)

16 / 37

proc ref -1 (Plot -3)

proc ref -1 (Plot -4)

- plots = diagnostics(unpack): this unpacks the diagnostic plot.
- It will be useful if you want to use an individual figure in the diagnostic plot.

proc reg-3

- plots = FITPLOT (nolimits): this removes the prediction interval and the confidence interval.
- plots = FITPLOT (nocli): no prediction interval.
- plots = FITPLOT (noclm): no confidence interval.
- It will be useful if you want to use an individual figure in the diagnostic plot.

proc ref - 3 (Plot)

- alpha = ...: this specifies the prediction level/confidence level.
- corr: this adds the correlation table from proc corr.

• To use log transform, we first create a new data object.

```
data spirit;
    infile "U:\data\SpiritStLouis.csv" dsd;
    input gas weight headwind TO_distance;
        TO_DistL10 = log10(TO_Distance);
        weightL10 = log10(weight); run;
title "Spirit of St. Louis Takeoff Distance L10";
    proc print data = spirit; run;
```

Spirit of St. Louis Takeoff Distance L10

Obs	gas	weight	headwind	TO_distance	TO_DistL10	weightL10
1	36	2600	7	229	2.35984	3.41497
2	71	2800	9	287	2.45788	3.44716
3	111	3050	9	389	2.58995	3.48430
4	151	3300	6	483	2.68395	3.51851
5	201	3600	4	615	2.78888	3.55630
6	251	3900	2	800	2.90309	3.59106
7	301	4200	0	1023	3.00988	3.62325

Log transform – 2

Get the correlation table:

```
title "L10: Correlation";
proc corr data = spirit;
var weightL10 TO_distL10; run;
```

Do the full linear regression analysis:

```
title "Simple Linear regression L10";
proc reg data = spirit;
model weightL10 = TO_distL10;
run;
```

Multiple Linear Regression – 1

- It is very easy to fit a multiple linear regression.
- model weight = TO_distance gas: the covariates will be in the right part of the 'equality'.
- In R, we use lm(weight~ TO_distance+gas).

```
title "LR: weight ~ TO_distance, gas";
proc reg data = spirit;
model weight = TO_distance gas;
run;
```


• To fit more variables, just add them in the right part of the equality.

title "LR: weight ~ TO_distance, gas, headwind"; proc reg data = spirit; model TO_distance = weight gas headwind; run; 1. First we import the dataset and print out to have an overview about this data.

data student; infile "U:\data\student.txt"; input Age Major \$ GPA; run; title "Student DATA"; proc print data= student; run;

- Assume our target is to analyze variable Age and GPA.
- 2. So the next step is to analyze these variables individually.

```
title "Student DATA: GPA";
proc univariate data= student;
histogram GPA/normal;
run;
```

```
title "Student DATA: age";
proc univariate data= student;
histogram age/normal;
run;
```

Data analysis example: student data - 3

3. Then we examine the scatter plot along with a simple linear fit.

```
title "Student DATA: GPA vs Age";
    proc sgplot data=student;
    reg y = GPA x=age;
run;
```

- It seems that there is a negative trend.
- 4. To see if this trend is significant, we use proc reg to perform a full analysis for these two variables.

```
title "Student DATA: GPA vs Age";
    proc reg data=student;
    model GPA=age;
run;
```

1. First we generate a random dataset:

Data analysis example: simulated data – 2

- Now we test how linear regression works when we treat variable U as the response and variable V as the covariate.
- 2. Use proc sgplot to show the scatter plot along with a simple linear fit:

```
title "Random data: scatter plot";
    proc sgplot data=randdata;
    reg y = U x=V;
```

run;

- It seems that there is a strong trend.
- 3. Now we add the prediction interval and confidence interval to the linear fit:

run;

Data analysis example: simulated data – 3 (Plot)

4. Finally, we apply simple linear regression to perform a detailed analysis.

```
title "Random data: regression analysis";
    proc reg data=randdata;
    model U=V;
run;
```

In-class Exercise

- Generate X=0.1, 0.2, ..., 5 and Y = X + N(0,1). Namely, the value of Y is the value of X plus a standard normal noise.
- Ose proc sgplot to show the scatter plot along with a regression line.
- Based on the previous result, add a 90% confidence interval to the regression line and change the color of the regression line into red.
- Use proc corr to show the correlation table. What is the correlation between variable X and Y?
- Use proc reg to perform a comprehensive linear regression for variable X and Y. What are the estimated intercept and slope? What are the errors of the estimation?
- Sased on the previous result, does the residual looks like a normal?