Stat 302 Statistical Software and Its Applications SAS: Data I/O

Yen-Chi Chen

Department of Statistics, University of Washington

Autumn 2016

Getting Data Files

- Get the following data sets from the course web site
 - patient.txt: space separated data items, no header.
 - patient.csv: single sheet csv spread sheet, no header.
 - patient_names.csv: single sheet csv spread sheet, with header line giving variable names.
 - ice.txt: space separated data items, with header.
 - student.txt: space separated data items, no header.
- Save them to a data folder that you create on the UDrive U:\data on the terminal server.
- Other data file formats, e.g., fixed column format, are possible, but we won't deal with them here. Consult *Learning SAS by Example* by Ron Cody on other data formats.

Formatting Raw Data in Text Format

- We need to take a few steps to format our data before reading them via the data step.
 - Use a text editor (Notepad) to make any (global) changes on delimiters and missing values.
 - The SAS default delimter is a blank " ", or several blanks between individual data items.
 - Header Rows: If you have a header row, you can skip it by using

infile "U:\data\patient.txt" firstobs=2; and specify the header names as well as the data type explicitly in the data step.

- There are ways to read the header rows to get the name of variables.
- Missing Values: We must find any missing values or NA's and convert them to a period "." for SAS to recognize as such.
- The period must be be separated from other values by one or more spaces.
- Separate adjacent missing values by spaces as well.

• Read and print the data in patient.txt to the screen.

```
data patient1; * data set name;
    infile "U:\data\patient.txt";
    input ID Age Sex $;
    run;
title "Patient DATA 1";
proc print data= patient1;
run;
```

• When you have I/O questions, experiment with the feature in question on some small data set.

Reading Data Values Separated by Comma (.csv files)

- Use the dsd (Delimiter-Sensitive Data) option in infile.
- Read and print the data in patient.csv to the screen.

```
data patient2; * data set name;
    infile "U:\data\patient.csv" dsd;
    input ID Age Sex $; run;
title "Patient DATA 2";
proc print data= patient2; run;
```

- Changes default delimiter to a comma.
- Assumes missing values for empty slots. No need for periods to indicate missing values.
- Character values in quotes have the quotes stripped off.
- For a file fname.txt with other delimiters like ":" use infile "U:\data\fname.txt" dsd dlm= ':'; instead.

Reading Data: Using the Import Wizard

- First create a folder with name U:\My SAS Files on the UDrive, if it does not yet exist there.
- On the SAS Tool Bar \Rightarrow File \Rightarrow Import Data ...
- Select a data source from the list below, choose Comma Separated Values (*.csv) ⇒ Next
- Navigate to the file from which you want to import data.
 Via Browse... open U:\data\patient_names.csv
 ⇒ Open
- Under options check Get variable names from first row and at First row of data, enter 2 ⇒ OK ⇒ Next
- At Library take WORK, at Member enter <code>PATIENT3</code> \Rightarrow Next
- Browse to the directory where you want the generated SAS import statement saved and specify its file name,
 U:\My SAS Files\patient3.sas ⇒ Finish.

What Has Happened?

- It imported the data set to the WORK folder. You can view it by ⇒ View ⇒ Explorer ⇒ Work and double clicking Patient3.
- It also saved the following commands in

```
U:My SAS Filespatient3.sas They can be used in future SAS programs for importing this data set for use with other procs.
```

- I won't elaborate on PROC IMPORT used in place of data.
- To this we can add the following proc print commands to print out the data as in our two previous examples.

```
title "Patient DATA 3";
proc print data= patient3; run;
```

- SAS procs only work on SAS data sets, which are created with the data input step.
- They are temporarily stored in the WORK library folder.
- After a SAS session closes these data sets are gone. They need to be recreated for each new SAS session.
- This would require another data input step.
- No big deal for small data sets, but for large ones it would be preferable to have a SAS data set from the start.

How to Create Permanent SAS Data Sets

```
libname mydata "U:\data"; *an existing location;
data mydata.patient4;
    infile "U:\data\patient.csv" dsd;
    input ID Age Sex $ ;
run;
title "Patient Data 4";
proc print data=mydata.patient4;
run;
```

- These lines create the permanent SAS data set patient4 U:\data\patient4.sas7bdat.
- That data set also appears in the temporary Library folder Mydata. Mydata disappears after the end of a SAS session.
- Instead of the libref <code>mydata</code> you can use any other proper SAS name with \leq 8 characters.

Comments

- When you delete U:\data\patient4.sas7bdat it also disappears from the temporary Library folder Mydata.
- When you delete patient4 from the temporary Library folder Mydata it also disappears from U:\data
- If you rename it to U:\data\patient5.sas7bdat, it also renames to patient5 in Mydata, after stepping out and back into the Mydata library.
- In a later SAS session or in the same session you can access patient4 by giving another libref statement, e.g., libname mydata2 "U:\data"; and use mydata2.patient4 wherever you used mydata.patient4 before.
- View mydata or mydata2 as conduits to U: \data, and whatever you do (delete or rename) w.r.t. any SAS data set in one it is also done in the other. Play around with this.

How to Use Permanent SAS Data Sets

 Prior to using a permanent data set, such as patient4, in a new SAS session, you need an appropriate libname statement, i.e., you need a conduit, e.g., in a new SAS session try

```
libname mydata "U:\data";
title "Patient Data 4";
proc print data=mydata.patient4;
run;
```

- SAS needs to know where to find a permanent SAS data set.
- Running simply the first line above, you can look at the data via SAS Explorer ⇒ Libraries ⇒ the newly created folder Mydata ⇒ double click patient4, which opens up VIEWTABLE on that file.

• The following code saves the permanent SAS data set patient4.sas7bdat in folder U:\data to a file U:\data\odsexample.csv

libname mydata 'U:\data'; ods csv file='U:\data\odsexample.csv'; proc print data=mydata.patient4 noobs; run; ods csv close;

- ODS stands for Output Delivery System
- The ODS CSV opens the CSV file as an output destination.
- Close file with ODS CLOSE following PROC PRINT.

How Export Permanent SAS Data Sets to CSV File – 2

• Here is a method that outputs data without the name of variables.

```
libname mydata 'U:\data';
ods csv file='U:\data\odsexample.csv';
proc report data=mydata.patient4;
define _all_ / display ' ';
run;
ods csv close;
```

• proc report is pretty much the same as proc print but some defaults and arguments are different.

Summary Statistics – 1: freq

```
libname mydata "U:\data";
title "Gender Frequencies";
proc freq data=mydata.patient4;
table Sex; run;
```

Gender Frequencies

The FREQ Procedure

Sex	Frequency	Percent	Cumulative Frequency	Cumulative Percent
F	5	50.00	5	50.00
М	5	50.00	10	100.00

• Without the variable after table you will get errors.

Summary Statistics – 2: means

```
libname mydata "U:\data";
title "Age Summary";
proc means data=mydata.patient4
    n mean std median clm alpha=.005;
    var Age; run;
```

Age Summary

The MEANS Procedure

	Analysis Variable : Age											
N	Mean	Std Dev	Median	Lower 99.5% CL for Mean	Upper 99.5% CL for Mean							
10	17.0000000	5.4160256	17.5000000	10.6807238	23.3192762							

• Without var Age; get stats on all numeric variables.

Summary Statistics - 3 sort and by

```
libname mydata "U:\data";
title "Sorting by Sex";
proc sort data=mydata.patient4;
by Sex; run;
```

- This sorts the SAS data set by Sex (also in its permanent location). Needed if you split analyses using by .
- See what happens when using by Sex Age and by Age Sex.

```
title "Summaries by Sex";
proc means data=mydata.patient4;
var Age;
by Sex; run;
* first sort by Sex alone again,
if you tried the above: by Age Sex;
```

The MEANS Procedure

Sex=F

	Analysis Variable : Age									
Ν	Mean	Std Dev	Minimum	Maximum						
5	20.0000000	4.2426407	14.0000000	24.000000						

Sex=M

Analysis Variable : Age										
Ν	Mean	Std Dev	Minimum	Maximum						
5	14.0000000	5.0497525	8.0000000	21.0000000						

```
data patient5;
infile "U:\data\patient.csv" dsd;
input ID Age Sex $;
if Sex = "M";
run;
title "Patient DATA 5";
proc print data= patient5; run;
```

Obs	ID	Age	Sex
1	31	12	М
2	99	17	М
3	75	8	М
4	54	12	М
5	74	21	М

```
data patient5;
infile "U:\data\patient.csv" dsd;
input ID Age Sex $;
if ID <= 20 then IDgroup = "A";
if ID > 20 and ID<= 50 then IDgroup = "B";
if ID > 50 and ID<= 70 then IDgroup = "C";
if ID > 70 then IDgroup = "D";
run;
title "Patient DATA 5 with IDgroup";
proc print data= patient5; run;
```

Data Manipulation – 3

Obs	ID	Age	Sex	IDgroup
1	31	12	М	В
2	62	18	F	С
3	50	20	F	В
4	99	17	М	D
5	53	14	F	С
6	75	8	М	D
7	54	12	М	С
8	58	24	F	С
9	4	24	F	А
10	74	21	М	D

```
data patient5;
infile "U:\data\patient.csv" dsd;
input ID Age Sex $;
if ID <= 20 then IDgroup = "A";
if ID > 20 and ID<= 50 then IDgroup = "B";
if ID > 50 and ID<= 70 then IDgroup = "C";
if ID > 70 then IDgroup = "D";
if IDgroup in ("A", "B", "C") then ID_lab = 1;
run;
title "Patient DATA 5 with IDgroup";
proc print data= patient5; run;
```

Data Manipulation – 5

Obs	ID	Age	Sex	IDgroup	ID_lab
1	31	12	М	В	1
2	62	18	F	С	1
3	50	20	F	В	1
4	99	17	М	D	
5	53	14	F	С	1
6	75	8	М	D	
7	54	12	М	С	1
8	58	24	F	С	1
9	4	24	F	А	1
10	74	21	М	D	-

Data Manipulation - 6: where

title "Patient DATA 5 with IDgroup = A or C"; proc print data= patient5; where IDgroup in ("A", "C"); run;

Obs	ID	Age	Sex	IDgroup	ID_lab
2	62	18	F	С	1
5	53	14	F	С	1
7	54	12	М	С	1
8	58	24	F	С	1
9	4	24	F	А	1

```
data ice:
   infile "U:\data\ice.txt" firstobs=2;
   input Heat Method $ ; run;
title "Latent Heat of Fusion of Ice";
proc print data=ice; run;
title "Latent Heat of Fusion of Ice,
  Testing H: mean=80 for Method A";
proc ttest data=ice H0=80;
var Heat;
 where Method = "A"; run;
title "Latent Heat of Fusion of Ice,
  Testing Equality of Methods A & B";
proc ttest data = ice;
   class Method; * sorted by method first!;
  var heat; run;
```

Latent Heat for Fusion of Ice: Data, t-Test $H: \mu_A = 80$

Latent Heat of Fusion of Ice

Obs	Heat	Method
1	79.982	A
2	80.041	A
3	80.018	A
4	80.041	A
5	80.030	A
6	80.029	A
7	80.038	A
8	79.968	A
9	80.049	A
10	80.029	A
11	80.019	A
12	80.002	A
13	80.022	A
14	80.020	В
15	79.939	в
16	79.980	в
17	79.971	в
18	79.970	в
19	80.029	В
20	79.952	в
21	79.968	в

	1	atent H	Heat	of F	usio	on o	f Ice	, Тe	stin	g H:	mear	1=8	0 for	Met	hod	A		
						т	ne TT	rest	Proc	edur								
							Va	riabl	e: He	at								
			N	N Mean Std Dev Std Err Minimum Maximum						n								
			13	80.0	206	0.0	238	0.00	660	79.	9680	8	0.049	D				
			N	lean	95	5% C	L Me	an	Std	Dev	95% (td De	v				
			80.0	206	80.0	062	80.0	0350	0.0	0238	0.01	71	0.039	3				
						6	DF t	Valu	e P	r > iti								
							12	3.1	3 0.	0088								
						With	95%	Confl	dence	Interv	leat al for N	lear						
50 -									1	\frown	$\langle \rangle$				E		Normal	
									1								TVET FEI	
40 -								X	T		$ \rangle$							
							/					\backslash						
10 - 10 -						/						\						
0. 20 -						/						Ι	(
							/											
10 -			/	7	4	/												
		\bigwedge	/												<			
0 -	-			_	-	_	-	_				-					-	
			•				н		•		-	4				5% CON	nuerice	
	79	95				80	00		Hos			80.0	5				80.1	0
									1100									

Method "A" QQ-Plot & t-Test for $H: \mu_A = \mu_B$

Latent Heat of Fusion of Ice, Testing Equality of Methods A & B

The TTEST Procedure

Variable: Heat

Method	Ν	Mean	Std Dev	Std Err	Minimum	Maximum
A	13	80.0206	0.0238	0.00660	79.9680	80.0490
в	8	79.9786	0.0311	0.0110	79.9390	80.0290
Diff (1-2)		0.0420	0.0267	0.0120		

Method	Method	Mean	95% C	L Mean	Std Dev	95% CL Std Dev		
A		80.0206	80.0062	80.0350	0.0238	0.0171	0.0393	
в			79.9526	80.0046	0.0311	0.0206	0.0633	
Diff (1-2)	Pooled	0.0420	0.0169	0.0671	0.0267	0.0203	0.0390	
Diff (1-2) Satterthwaite		0.0420	0.0141	0.0699				

Method	Variances	DF	t Value	$\Pr > t $
Pooled	Equal	19	3.50	0.0024
Satterthwaite	Unequal	12.03	3.27	0.0066

		Equality	lity of Variances			
	Aethod	Num DF	Den DF	F Value	Pr > F	
F	olded F	7	12	1.71	0.3943	

Latent Heat for Fusion of Ice: 2 Sample t-test

- In R you would use t.test.
- In this case SAS presents a whole bunch of pages as results, some in tabular form, some in the form of graphics.
- This is typical for packages like SAS. It is a package deal!
- The previous output illustrations were done by printing specific page pairs to PDF and including them via trim and clip parameters using includegraphics in LATEX.
- For graphics output you can right click on the graphic and save it as a .png file, which you then include like any other graphic in your LATEX file, using includegraphics.
- Right clicking tabular output allows saving as Excel file.
- The next 3 slides show previous graphics via .png versions.

Latent Heat for Fusion of Ice: Data, t-Test H_0 : $\mu_A = 80$

2 Sample t-test for H_0 : "A" = "B"

- There are a large number of SAS Procs.
- We have seen examples usages of FREQ, MEANS, SORT, and TTEST. Others of interest are: ANOVA, BOXPLOT, CORR, NPAR1WAY, PLOT, REG.
- Each such Proc has quite a few usage options.
- To access documentation with examples on these Procs click on SAS Procs under the next bullet.
- SAS Procs or search for SAS Procs in Google.

In-class Exercise

- Now import the data student.txt into a data object called student with the three variables as Age, Major, GPA.
 Note that the variable Major is a character variable.
- **2** Use proc freq to obtain a frequency table of Major.
- **O** Use proc means to analyze variable GPA.
- Sort the data by variable Age and print out the result.
- Sort the data by variable Major Age and print out the result.
- **(** Use proc means to analyze variable GPA for each Major.
- Create a new variable Group and for those students with Major being Math or Stat, assign their Group to be 1 otherwise the Group is 2.
- Sort the data by variable Group, print out the data and then use proc means to analyze the variable Age for the two groups.
- **Output the data into a .**csv file called new_student.csv.