
Understanding Expressions of Unwanted Behaviors in Open Bug Reporting

Parmit K. Chilana, Amy J. Ko and Jacob O. Wobbrock

The Information School, DUB Group, University of Washington

{pchilana, ajko, wobbrock}@uw.edu

Abstract

Open bug reporting allows end-users to express a vast

array of unwanted software behaviors. However,

users’ expectations often clash with developers’

implementation intents. We created a classification of

seven common expectation violations cited by end-

users in bug report descriptions and applied it to 1,000

bug reports from the Mozilla project. Our results show

that users largely described bugs as violations of their

own personal expectations, of specifications, or of the

user community’s expectations. We found a correlation

between a reporter’s expression of which expectation

was being violated and whether or not the bug would

eventually be fixed. Specifically, when bugs were

expressed as violations of community expectations

rather than personal expectations, they had a better

chance of being fixed.

1. Introduction

Popular Open Source Software (OSS) projects such

as Mozilla are inundated with hundreds of bug reports

every day from end-users around the world. One way

that the OSS community copes with this daily wave of

issues is to separate them roughly into two categories:

(1) problems that violate developers’ intents, and (2)

everything else, including feature requests, help

requests, issues out of a team’s control, among others

[1,12].

Of course, most end-users know little about

developers’ intents: they simply know that an

application did something unwanted and often users

report that unwanted behavior as a bug. But what is an

―unwanted‖ behavior from the user’s perspective? And

how are users notions of ―unwanted‖ software

behaviors related to developers’ intents? And how does

this clash between users’ expectations and developers’

intents affect which reported bugs are addressed? This

paper investigates these questions, complementing

recent studies of bug reporting from developers’

perspectives [2,3,7]. We analyzed user contributions to

the bug reporting process in a prior study [9], but in this

paper, we focus on bug report topics that emerge from

user descriptions.

Our approach was to randomly sample bug reports

from Mozilla’s Bugzilla repository, analyzing

unwanted behaviors described in the report titles and

descriptions. We found that in describing unwanted

behaviors, reporters implicitly referred to one or more

common classes of expectations that had been violated,

including the reporter’s personal experiences or the

practices of the user community at large. From this

initial analysis, we extracted a classification scheme of

seven common expectation violations and applied it to

1,000 Mozilla bug reports. Using these classifications,

we analyzed the relationship between the expectations

identified in each report and whether the report was

eventually resolved as fixed. Our key findings reveal

that, at least in the Mozilla project, whether a bug is

fixed depends largely on whether the reporter explicitly

refers to the developers’ intents or to the expectations

of the Mozilla user community. All other forms of

expectations receive little attention.

This work contributes: (1) a conceptualization of

unwanted behaviors described in bug reports as a

violation of expectations, (2) a classification scheme

for capturing the different types of expectation

violations, (3) an analysis of expectation sources from

a large sample of Mozilla reports, and (4) empirical

findings that show the relationship between the

expectation source identified in a bug report and the

report’s final resolution. We conclude by discussing

the implications of our classification scheme on open

bug reporting and bug reporting tools, highlighting

some ways that OSS communities can better leverage

contributions from end-users.

2. Method

To study and classify unwanted behaviors described

in bug reports, we gathered data from the Bugzilla

repository of the Mozilla project. We chose to study

the Mozilla project because of its large user base and

its reputation as a user-centered open source project.

We downloaded all available Mozilla bug reports,

496,766 in total, on August 14, 2009 using standard

HTTP queries. Since we were interested in whether or

not a bug was eventually fixed, we did not include any

bug reports that were still open. We focused on bugs

that had been reproduced and decided upon by

selecting bugs marked as CLOSED, RESOLVED, or

VERIFIED in Bugzilla. This filtering criteria resulted in

420,005 reports. We wrote Perl scripts for our initial

exploration of the bug report data and for computing

some variables of interest.

We next describe the method that we used to

classify unwanted behaviors in bug descriptions and

our application of the resulting classification scheme

onto a sample of 1000 reports.

2.1 Classification of Unwanted Behaviors

We first selected a sample of 50 bug reports and

analyzed unwanted behaviors described in the report’s

titles and descriptions. Through this analysis, we found

that users implicitly referred to different expectations that

had been violated as they described unwanted behaviors.

We decided that the source of expectation a reporter

believed was violated was a potentially interesting and

important variable. To operationalize source of

expectation, we employed an inductive analysis approach

[6], classifying and reclassifying our descriptions of the

different sources of expectations. The first author

independently examined 3 sets of randomly selected bug

reports (100 reports each), generating descriptions of

what was being violated in the bug report titles and

descriptions. These descriptions converged on a single

coding scheme after numerous iterations and discussions

with the other authors.

Our classification of the different sources of

expectations consisted of seven codes. The first three

codes represent more conventional notions of a bug as a

violation of developer intent:

Runtime logic. Explicit violations of some runtime

expectation, including errors, warnings, assertion

violations, crashes, and hangs (e.g., “…scary deadlock
assertions exiting mozilla after referencing nsInstallTrigger…”).

Specification. An agreed upon functional requirement

among the developers (e.g., ―There's an incorrectly placed
PR_MAX in the code for pref width distribution of colspanning
cells.”).

Standards. Specifications shared by the industry in

which the application is deployed (e.g., “'codebase'
attribute of the HTML 4.0 OBJECT element is not supported…”).

The remaining four categories refer to other sources of

expectations, outside the scope of the implementation,

developer community, or industry:

Reporter expectations. A reporter’s personal

perspective about what the system should do (e.g.,
“Every time I Sort By Name by Bookmarks Firefox sorts and
closes my Bookmark menu... Why does it do this??”).

Community expectations. A reporter’s belief about a

―typical‖ user’s expectations, including specific

references to user, users, user interface, or usability.

(e.g., “The preference to not show the tab bar when only one
tab is open could be set to false by default. This would at least
alert a new user to the possibility that tabs exist) The old tabbed
browsing preferences could be returned.”).

Genre conventions. References to applications with

similar functionality; allusions to how a specific

feature behaves for the same action. (e.g., “Firefox does
not limit the slideshow horizontal size to the window width. The
same source works correctly in IE.”).

Prior behavior: References to the prior desirable

behavior of the system (e.g., “The latest version of Firefox
only imports one certificate from each file. I used to import all
certificates previously.”).

While these categories may not be exhaustive, they

did capture the full range of expectation violations

found in our sample.

2.2 Sampling and Analysis

To test our classification, we next selected a uniform

random sample of 1,000 bug reports from our data set,

excluding those used to develop the classification. The

first author applied the coding scheme described above to

our sample. To assess the reliability of the coding

scheme, the second author coded a subset of 100 reports.

For this subset, there was a 78% agreement on issue

types between the two coders (κ=0.62). Finally, note that

a small portion of bugs in our sample (n=25) did not fit

our coding scheme because they described meta-issues

about the bug reporting process; these were excluded

from our analyses.

Next, we explored the association between source of

expectation and bug resolution. Upon our initial analysis,

we observed that 30.07% were marked DUPLICATE. We

then further analyzed the resolution of these DUPLICATE

bugs to determine their final resolution flags. For

simplicity, we marked the bugs that were fixed as

DUPLICATE_FIXED and grouped all other resolution flags

as DUPLICATE_NOTFIXED. Table 1 shows the distribution

of bug resolution flags in our sample, and a brief

description of each resolution status.
1

1
 Source of Mozilla-specific bug resolution definitions:

https://developer.mozilla.org/en/What_to_do_and_what_not_to_
do_in_Bugzilla

FIXED
fixed by a check-in

40.00%

DUPLICATE_FIXED
duplicate of another bug and was fixed

16.40%

DUPLICATE_NOTFIXED
duplicate of another bug and was not fixed

13.70%

WORKSFORME
cannot be reproduced

13.40%

INVALID
observed behavior is the intended behavior

9.80%

WONTFIX
valid but cannot be fixed

3.50%

EXPIRED
expired after a period of inactivity

1.80%

INCOMPLETE
steps to reproduce are not complete

1.40%

Table 1: Distribution of Resolution Flags in Our Sample

3. Results

We now report our main findings: (1) the

distribution resulting after applying our coding scheme

to a sample of 1,000 bugs and (2) the correlation

between the source of expectation and bug resolution.

Figure 1: Distribution of sources of expectations.

Figure 1 shows the distribution of sources of

expectations violated in our sample of 1,000 bugs.

Clearly, the largest portion of our bugs in our sample

were reporter expectations, which referred to

violations of reporter’s personal expectations (n=337).

Violations of runtime logic (n=195) and specification

(n=177) were the next largest groups. The remaining

groups each accounted for less than 10% of the sample

and were distributed as follows: community

expectations (n=85), genre conventions (n=71), prior

behavior (n=69), and standards (n=41).

Figure 2: Distribution of resolution categories for
sources of expectations.

To assess how the source of expectation affected

bug resolution, we performed multinomial regression

with source of expectation as a nominal predictor and

bug resolution as a nominal outcome. We found that

the source of expectation had a significant effect on

bug resolution (χ
2
(7, N=1000) = 35.8, p<.001). Figure

2 shows the relationship between the source of

expectation and bug resolution categories. As shown,

over half of the bugs that were about violations of

specification and community expectations were

FIXED. Although reporter expectations occupied the

largest proportion in our sample distribution (Figure 1),

only about 20% of these reports were first resolved as

FIXED—about half of these bugs were initially marked

as DUPLICATE and only about 20% of the duplicate

bugs were eventually FIXED. Bugs about standards,

genre conventions, and prior behavior were more

likely to get marked INVALID, meaning that the

developers considered the actual behavior to be the

intended behavior and not violations.

Furthermore, the distribution of FIXED bugs shows

that when users identified unwanted behaviors that

were violations of specification, community

expectations, or runtime logic, they were more

successful in getting their bugs resolved as FIXED. On

the other hand, when users cited personal experiences

only, or conventions in competing systems, they

achieved little success.

4. Discussion

Our study contributes a detailed articulation of the

unwanted behaviors that users describe in bug reports.

Our analysis shows that there is a correlation between a

user’s expression of whose expectation is being

violated and whether or not the bug will be fixed.

Although, our results are limited to Mozilla, below we

discuss implications of our classification scheme on

understanding end-user bug reporting behavior and

augmenting the design of bug reporting tools.

4.1 Implications for Expanding the Notion of a

Bug

First, our findings reveal the limitations of simple

divisions between unintended behavior and feature

requests, expanding the notion of a bug to a wide

variety of sources of user expectations. If we look at

the bugs in our sample from the perspective of binary

classifications (i.e.,[1]), real ―bugs‖ (the specification

and runtime logic violations in our scheme) only

accounted for about 37.2% of our sample. By this

measure, over 60% of the other bug reports were

simply ―non-bugs.‖ But through our classification, we

learned that these ―non-bugs‖ encompassed a range of

unwanted behaviors that violated the users’

idiosyncratic personal expectations, exposure to

previous versions of a system or use of other similar

systems. The developers were in fact responsive to

fixing many of these ―non-bugs‖ provided that they

were expressed as violations of the user community’s

expectations. (These findings also contrast the extant

belief (cf. [5,10]) that OSS developers tend to focus

only on issues relevant to errors in code or

functionality problems.)

Our results open an intriguing question: can users

―game‖ open bug reporting by articulating a problem

in community terms? Or do developers eventually

0% 5% 10% 15% 20% 25% 30% 35% 40%

standards

prior behavior

genre conventions

community expectations

specification

runtime logic

reporter expectations

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

INCOMPLETE

EXPIRED

WONTFIX

INVALID

WORKSFORME

DUPLICATE_NOTFIXED

DUPLICATE_FIXED

FIXED

uncover the reality of an issue? It appears that what

users write and what the real issue is are two

dimensions of a bug report. Future studies should

investigate how an issue’s phrasing really affects the

outcome of a report. Our results suggest that the

answer to this question will depend on the source of

expectation. For example, it appeared that many users

had a difficult time accurately interpreting the meaning

of HTML specifications, which led to several invalid

reports. However, in the case of reporter

expectations, there may be many common, critical

usability issues behind individual issue descriptions

that are never discovered, simply because of how they

are phrased.

4.2 Implications for Bug Reporting Tools

With the current design of open bug reporting tools,

it is likely that end-users will continue to submit a

large number of isolated idiosyncratic descriptions of

unwanted behaviors, most of which will not get fixed.

But if 10,000 such idiosyncratic descriptions were to

point to the same issue, how could we redesign bug

reporting tools so that the community impact of such

an issue is more obvious and the chances of that issue

being resolved are increased?

Current focus on enhancing bug tracking tools has

been on improving the quality of the bug report [3,8],

and the information exchange between end-users and

developers [4]. But these improvements largely benefit

developers. To better leverage user participation in

open bug reporting, our results suggest that bug

reporting tools should provide the user with: (1) more

concrete ways to express a range of unwanted

behaviors, and (2) some form of feedback about the

extent to which the reported issue also affects the

larger user community. For example, if tools could

automatically identify violations of personal

expectations in bug report descriptions, users could

learn up front that their bugs are not likely to get fixed.

This feedback would perhaps encourage users to refine

their reports or investigate other ways of resolving

their individual issue.

Also, if end-users have more concrete ways of

expressing unwanted behaviors, and bug reporting

tools can be designed to aggregate these in a

meaningful way, OSS developers could have a rich

view of community impact and be able to make more

informed software evolution decisions.

4.3. Conclusion

Open bug reports serve as a forum for users to

communicate with developers and express a range of

unwanted behaviors, as seen by our classification

scheme. Our results illustrate how articulation of

community impact can allow users to have more

success in getting problems resolved. Our current

analysis did not take into account possible confounds

that could affect bug resolution, which we plan to

include in future work. It would be particularly

interesting to examine other factors that influence

reporters to describe bugs as violations of their

personal expectations. For example, reporters who

have not yet diagnosed their problems may just tend to

report non-issues and tend to explain things in personal

terms instead of community terms.

Acknowledgements

This material is based in part upon work supported by the

National Science Foundation under Grant Number CCF-

0952733 and a doctoral fellowship by the Social Sciences

and Humanities Research Council of Canada.

References

[1] Antoniol, G., Ayari, K., Di Penta, M., Khomh, F., and

Guéhéneuc, Y. Is it a bug or an enhancement?: a text-

based approach to classify change requests. Proc Conf of

the Center for Advanced Studies on Collaborative

Research, (2008).

[2] Anvik, J., Hiew, L., and Murphy, G. Who should fix this

bug? Proc ICSE, (2006), 361-370.

[3] Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj,

R., and Zimmermann, T. What makes a good bug report?

Proc FSE (2008), 308-318.

[4] Breu, S., Premraj, R., Sillito, J., and Zimmermann, T.

Information needs in bug reports: improving cooperation

between developers and users. Proc CSCW, (2010).

[5] Dalle, J., den Besten, M., and Masmoudi, H. Channeling

Firefox Developers: Mom and Dad Aren't Happy Yet. In

Open Source Development, Communities and Quality.

Springer, Boston, (2008), 265-271.

[6] Glaser, B.G. Basics of grounded theory analysis:

emergence vs forcing. Sociology:Mill Valley, CA, (1992).

[7] Glerum, K., Kinshumann, K., Greenberg, S., et al.

Debugging in the (Very) Large: Ten Years of

Implementation and Experience. Proc SOSP (2009).

[8] Just, S., Premraj, R., and Zimmermann, T. Towards the

next generation of bug tracking systems. Proc VL/HCC,

(2008), 82–85.

[9] Ko, A.J. and Chilana, P.K. How power users help and

hinder open bug reporting. Proc CHI'10, 1665-1674.

[10] Lakhani, K. and Wolf, R.G. Why hackers do what they do:

Understanding motivation and effort in free/open source

software projects. Perspectives on Free and Open Source

Software, MIT Press, Cambridge, (2005), 3–21.

[11] Nichols, D. and Twidale, M. The usability of open source

software. First Monday 8, (2003), 1-6.

[12] Weiss, C., Premraj, R., Zimmermann, T., and Zeller, A.

How Long will it Take to Fix This Bug? Proc ICSE

Workshop on Mining Software Repositories, (2007).

