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ABSTRACT
Data from multifactor HCI experiments often violates the assump-

tions of parametric tests (i.e., nonconforming data). The Aligned Rank
Transform (ART) has become a popular nonparametric analysis in

HCI that can find main and interaction effects in nonconforming

data, but leads to incorrect results when used to conduct post hoc
contrast tests. We created a new algorithm called ART-C for con-

ducting contrast tests within the ART paradigm and validated it

on 72,000 synthetic data sets. Our results indicate that ART-C does

not inflate Type I error rates, unlike contrasts based on ART, and

that ART-C has more statistical power than a t-test, Mann-Whitney

U test, Wilcoxon signed-rank test, and ART. We also extended an

open-source tool called ARTool with our ART-C algorithm for both

Windows and R. Our validation had some limitations (e.g., only six

distribution types, no mixed factorial designs, no random slopes),

and data drawn from Cauchy distributions should not be analyzed

with ART-C.
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ACM Reference Format:
Lisa A. Elkin, Matthew Kay, James J. Higgins, and Jacob O. Wobbrock. 2021.

An Aligned Rank Transform Procedure for Multifactor Contrast Tests. In

The 34th Annual ACM Symposium on User Interface Software and Technology
(UIST ’21), October 10–14, 2021, Virtual Event, USA. ACM, New York, NY,

USA, 15 pages. https://doi.org/10.1145/3472749.3474784

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

UIST ’21, October 10–14, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8635-7/21/10. . . $15.00

https://doi.org/10.1145/3472749.3474784

1 INTRODUCTION
Statistical procedures are a mainstay of quantitative human-

computer interaction (HCI) research, particularly in the analysis of

human performance data, like task times and error rates; subjective

response data, like ordinal ratings and preference indications; and

count data, like counts of participants, behaviors, or choices. To im-

prove the soundness of conclusions drawn from HCI experiments,

many in the HCI community have tried to improve upon the tools

and methods we use to conduct our statistical analyses. For exam-

ple, Jun et al. [21] and Wobbrock et al. [51] created new software

tools for aiding statistical practice, Kay et al. [25] and Robertson

and Kaptein [38] introduced more modern statistical methods, and

Wobbrock et al. [51] and Kaptein et al. [23] developed statistical

techniques for analyzing data commonly arising in HCI.

Parametric tests such as t-tests and ANOVAs are widely used

in HCI, but when experiments give rise to data with residuals that

are not normally distributed (i.e., nonconforming data), researchers
and practitioners alike often turn to less familiar nonparametric

tests. The Aligned Rank Transform (ART ) [9, 16, 17, 40–42] is a
nonparametric procedure that can properly assess both main and

interaction effects in factorial designs. The ART pre-processes data

with an “alignment step” [19, 35] and then applies midranks to

that aligned data [8]. The resulting aligned-and-ranked data then

can be analyzed with an omnibus test, typically an ANOVA. Since

its introduction to HCI by Wobbrock et al. [51] in 2011, the ART

procedure has quickly become a popular technique within HCI,

and many HCI venues have published papers that use the ART

in their analyses (e.g., CHI [2, 14, 15], ASSETS [3], UIST [22, 39]).

Wobbrock et al.’s ARTool [51] has also been used in several fields

outside HCI (e.g., cellular biology [7], dentistry [36], zoology [10],

and cardiology [13]), and has been cited over 1000 times as of this

writing.

Although Wobbrock et al. [51] mention in passing that the orig-

inal ART’s aligning and ranking procedure can be followed by

contrast tests, a subsequent R package vignette by Kay [24] indi-

cated that contrasts involving combinations of levels across mul-
tiple factors cannot be conducted on ART’s aligned-and-ranked

data without exploding Type I errors. As it turns out, the data af-

ter aligning-and-ranking are not properly aligned-and-ranked for
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the multifactor contrasts. Rather, different alignment-and-ranking

procedures must be carried out to enable correct contrast tests.

Our work here contributes an algorithm for proper alignment-and-

ranking for contrast tests. Further, our work completes and extends

the open-source ART tools begun by Wobbrock et al. [51] for Win-

dows, and Kay [24] for R.

In addition to these contributions, we formally validated that the

original ART was incorrect for use with multifactor contrasts, and

we validated the correctness of our new algorithm and tools. In-

spired by the procedure presented in the aforementioned R package

vignette [24], we devised a new procedure for nonparametric multi-

factor contrasts within the ART paradigm, Aligned Rank Transform
Contrasts, or ART-C. ART-C uses an aligning-and-ranking proce-

dure, similar to ART before it, but specific to contrast tests. To

validate ART-C, we created 72,000 synthetic data sets using estab-

lished statistical simulation procedures [1, 5, 27, 34]. A range of

experimental designs, sample sizes, and distribution families were

simulated. We then compared the Type I error rates of ART-C and

t-tests [44]; we also compared the statistical power of ART-C to t-
tests [44], Wilcoxon signed-rank tests [48], Mann-Whitney U tests

[28], and the original ART procedure [16, 17, 41].

Our key findings are that when used to conduct contrast tests

involving levels across multiple factors, the original ART’s Type

I error rates are generally far from their expected values. Further,

ART’s statistical power is low. By comparison, ART-C’s Type I error

rates are at their expected values and are generally not inflated.

Also, for contrasts, ART-C has more statistical power than a t-
test, Wilcoxon signed-rank test, Mann-Whitney U test, and the

original ART procedure. Indeed, ART-C seems to be both correct

and powerful by comparison.

That said, we also discovered that ART-C should not be used

in cases where data appears to have been drawn from a Cauchy

distribution.
1
Additionally, the 72,000 synthetic data sets used in

our validation cover a wide range of experimental designs, but were

not exhaustive. Our synthetic data were limited to two factors of

up to three levels each, six types of population distributions, condi-

tion sample sizes between 8 and 40, and fully between-subjects or

within-subjects designs, not mixed factorial (i.e., split-plot) designs.

Moreover, like ART before it, ART-C is an alignment-and-ranking

procedure; it is followed by a statistical test. Since ART is often

followed by an ANOVA, for ART-C, we chose the t-test, but did not
evaluate other tests.

As mentioned, to facilitate the use of our new ART-C procedure,

we extended both the open-source Windows
2
and R

3,4
versions

of ARTool [51]. Both tools are already in widespread use, and our

extended versions integrate our new ART-C procedure for multi-

factor contrasts. Thus, HCI researchers and others who already use

either tool can easily use our new versions. They neither have to

risk incorrectly running multifactor contrasts on their aligned-and-

ranked data, nor do they have to break from the ART paradigm

1
Cauchy distributions are often used to “stress test” statistical analyses. As

Wikipedia puts it, “The Cauchy distribution is often used in statistics as the canonical

example of a ‘pathological’ distribution since both its expected value and its variance

are undefined.” http://en.wikipedia.org/wiki/Cauchy_distribution

2
Windows code: http://depts.washington.edu/acelab/proj/art/

3
R package: https://cran.r-project.org/package=ARTool

4
R code: https://dx.doi.org/10.5281/zenodo.594511

to conduct post hoc contrast tests after a statistically significant

omnibus test with ART.

The work reported here contributes: (1) a careful elucidation of

the problem of multifactor contrast testing using the original ART

procedure, now in regular use in HCI; (2) an algorithm, ART-C, for

correctly aligning-and-ranking data for multifactor contrasts within

the ART paradigm; (3) validation results from simulation studies

showing the correctness and power of ART-C; and (4) significant

extensions to the widely used ARTool Windows application and

ARTool R package.

2 RELATEDWORK
We created a multifactor contrast testing procedure within the ART

paradigm, called ART-C, to enable multifactor contrasts for noncon-

forming data. Therefore, relevant prior research includes the ART

procedure itself, the lack of a multifactor contrast testing method

within the ART paradigm, and prior statistical contributions, in-

cluding tools, directed at the HCI community.

2.1 The Aligned Rank Transform
Rank transforms have been explored in statistics for decades as a ba-

sis for nonparametric analyses (e.g., [12, 48]). Conover and Iman’s

[8] popular rank transform (RT) procedure applies midranks to

responses and then conducts an ANOVA on ranks. However, al-

though Type I error rates for main effects were reasonable un-

der RT, they were drastically inflated for interactions. The aligned

rank transform (ART) procedure was developed in response to this

problem [9, 16, 17, 40–42]. With ART, responses are first “aligned”

[19, 35] with respect to a specific main effect or interaction before

midranks are applied. The upshot is that both main effects and inter-

actions can be safely analyzed on aligned ranks using ANOVA-type

procedures without inflating Type I error rates. Owing to (1) the

prevalence of multifactor experiments in HCI, (2) the likelihood of

data arising that do not conform to the assumptions of parametric

analysis, and (3) the dearth of common statistical procedures to

analyze such data, the need for the ART was evident. So in 2011, a

paper at CHI was published [51] that offered ARTool, a Windows

application capable of performing data alignment-and-ranking that

would be otherwise tedious and error prone. In the decade since,

this CHI paper has garnered over 1000 citations according to Google

Scholar,
5
indicating the utility of ARTool. However, to the best of

our knowledge, no prior publication (or tool) has offered a method

for conducting contrast tests in the ART paradigm, an essential

missing piece, particularly after detecting a statistically significant

interaction. In this work, we supply this missing piece by devis-

ing ART-C and extending the open-source ARTool tools for both

Windows and R.

2.2 Multifactor Contrasts
Using a single example, Kay [24] demonstrated that using aligned-

and-ranked data from the original ART procedure [9, 16, 17, 40, 41]

to conduct multifactor contrasts leads to incorrect results, a claim

we validate below. A thorough search of the statistics literature

did not uncover a suitable solution to the problem of multifactor

5
https://scholar.google.com/scholar?cites=16254127723353600671
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contrast testing within the ART paradigm. Here we discuss the

most closely related statistics work.

Indeed, some ART contrast methods have been presented in

the literature [1, 4, 29–31], but the authors did not address how or

whether their methods can be used across multiple factors, showing

only examples of single-factor contrasts even in the presence of

significant interaction effects. Simulation studies analyzing the

effectiveness of ART contrasts also only included data with a single

factor [1, 4, 34]. Furthermore, none of these prior works provided

software tool support, as we do here.

Mansouri et al. [29] developed ART analogues of well-known

contrast procedures (Tukey’s HSD, Scheffé’s method, Fisher’s least

significant difference procedure) for data with two factors. How-

ever, they did not specify or demonstrate whether their methods

are applicable to multifactor contrasts; nonetheless, devising ART

analogues to complex contrast procedures is not our objective here.

Rather, we sought to find an aligning-and-ranking procedure that

can be followed by a common contrast test, especially the familiar

t-test.
Peterson et al. [34] compared the effectiveness of the ART using

six different statistics in the alignment process (sample mean, sam-

ple median, lightly trimmed Winsorized mean, heavily trimmed

Winsorized mean, Huber M-estimator, and Harrel-Davis estimator

of the median). Rather than changing the statistic used for align-

ment, our method changes the alignment process itself, tailoring it

to specified contrast tests. (Also, Peterson et al. did not test whether

their methods can be used to analyze multifactor contrasts.)

2.3 Statistics-Related Research in HCI
Statistical analyses are foundational, but only meaningful when sta-

tistical tests are used correctly. HCI researchers are well positioned

to improve the quality of results drawn from statistical analyses by

looking at them through a usability lens. Tools that aid researchers

in using statistical tests correctly can improve the quality of our

quantitative practices. Wobbrock [50] and Wobbrock and Kay [52]

have argued for the importance of nonparametric statistics in HCI.

To that end, Wobbrock et al. [51] extended the ART procedure to

multiple factors and provided a tool for carrying it out. Their AR-
Tool Windows application made the ART easy to use in HCI and

beyond. Kay subsequently created ARTool as an R package. (See

footnote 3.)

Other researchers in HCI have also recognized the value of pro-

viding useful tools for statistical analyses. Jun et al. [21] provided

Tea, a system in which users specify their study design and hypothe-

ses at a high level, and then Tea figures out which tests to run, runs

them, and returns the results, lowering the barrier to performing

valid statistical tests. Kay et al. [25] took a different approach to

user-centered statistics and looked at how using Bayesian analysis

can help the HCI community accrue knowledge without having to

conduct replication studies or meta-analyses, which conflict with

the priority the HCI community places on novelty.

Another important aspect of usable statistics is their visibility

and framing. Kay et al. [25], Wobbrock et al. [51], and Kaptein et al.

[23] introduced methods from other fields into the HCI literature.

Robertson and Kaptein’s [38] book, Modern Statistical Methods for

HCI, introduced the HCI community to modern statistical meth-

ods. Although none of these methods were wholly new, framing

them for an HCI audience and curating them in an HCI book made

them accessible to the HCI community, which might not otherwise

discover them.

This work extends a method already embraced by the HCI

community—the Aligned Rank Transform—making it more com-

plete with ART-C for multifactor contrasts. This work also provides

an updated version of ARTool for both Windows and R that make

multifactor contrasts easy to conduct, lowering the barrier to per-

forming correct statistical analyses within HCI and beyond.

3 THE PROBLEM: MULTIFACTOR
CONTRASTS IN ART

The problem we address in this work is best explained with an ex-

ample. We refer to this example as our “running example” through-

out this paper. Let us consider a within-subjects experiment with

three factors having two levels each: A : {A1,A2}, B : {B1,B2},
C : {C1,C2}, and response Y . There are 40 subjects and data for

each condition is drawn from a log-normal distribution. Table 1

shows the log-scale true population means for each condition, and

Figure 1 shows the resulting sample data.

Table 1: Log-scale population means for each condition in
our running example.

Condition A B C Log-scale Population Mean

1 A1 B1 C1 0.00

2 A1 B1 C2 0.50

3 A1 B2 C1 0.00

4 A1 B2 C2 0.50

5 A2 B1 C1 0.75

6 A2 B1 C2 1.25

7 A2 B2 C1 1.00

8 A2 B2 C2 0.50

Suppose we analyze this data using the original ART procedure

and an ANOVA. A significant main effect ofAwould tell us that the

levels ofA (i.e.,A1 vs.A2) correspond to significantly different mean

aligned-ranks ofY . A significantA×B interaction would tell us that

the effect A has on aligned-and-ranked Y is significantly different

for different levels of B, and vice-versa. Indeed, the original ART

procedure works well for detecting main effects and interactions.

But it lacks a suitable method for contrast tests. Contrast tests can

tell us which levels of each factor cause these effects; they are com-

monly used to conduct post hoc pairwise comparisons following

a statistically significant main effect or interaction. Contrast tests

can also be used to compare levels of factors directly when war-

ranted by the research question (i.e., “planned contrasts”). We use

the term “single-factor contrasts” to refer to comparisons between

levels within a single factor (e.g., A1 vs. A2), which is common

after significant main effects, and “multifactor contrasts” to refer

to comparisons between combinations of levels from multiple fac-

tors (e.g., (A1,B2) vs. (A2,B1)), which is common after significant

interactions.
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Figure 1: Sample data for each condition in our running ex-
ample. Dots indicate condition means, lines connect condi-
tion means for visual comparison, and a plus indicates the
mean of both connected conditions.

Single-factor contrasts can be conducted safely on data that

has been aligned-and-ranked with the original ART procedure.

However, conducting multifactor contrasts on data that has been

aligned-and-ranked with the original ART procedure produces

incorrect results. Our ART-C procedure for multifactor contrasts

remedies this problem.

We demonstrate these issues using our running example. Since

we know the data in our running example is drawn from a log-

normal distribution, we fit a linear mixed model (LMM) [11, 46]

to log-transformed data as a baseline, and fit an ART model to

the original (not log-transformed) data. Specifically, we wish to

compare levels inA and B, averaging over the levels ofC . That is,C
is not directly involved in the contrasts. This is achieved in R using

the following code. (Note that S is the subject identifier, which is

given a random intercept to account for repeated measures.)

# Fit LMM to log−transformed response

m.lmm = lmer(log(Y) ~ A∗B∗C + (1| S) , data=df)

# Fit ART model to raw response

m.art = art (Y ~ A∗B∗C + (1| S) , data=df)

# Conduct A x B contrasts on LMM

contrast (emmeans(m.lmm, ~ A:B), method="pairwise",

adjust="holm")

# Conduct A x B contrasts on ART model

contrast (emmeans(artlm(m.art, "A:B") , ~ A:B) ,

method="pairwise", adjust="holm")

We created the data such that there is no difference between

(A1,B1) and (A1,B2), and there is a difference between (A1,B1) and
(A2,B2) (Table 1). Comparing the two tests above, LMM contrasts

produce results that match the true effects (A1,B1 −A1,B2 : p =
.1792, i.e., no significant difference) and (A1,B1−A2,B2 : p < .0001,
i.e., a significant difference) (Table 2), but ART contrasts result in

a Type I error (i.e., finding a significant difference when there is

no true difference) (A1,B1 − A1,B2 : p < .0001), and a Type II
error (i.e., not finding a significant difference when there is a true
difference) (A1,B1 −A2,B2 : p = .9144) (Table 3, Figure 2).

Table 2: Highlighted results of contrasts conducted on an
LMM of log-transformed responses, comparing levels of A
and B in our running example. In the top row, a significant
difference was correctly not detected between (A1,B1) and
(A1,B2) (p = .1792), and indeed, there is no true difference. In
the bottom row, a difference was correctly detected between
(A1,B1) and (A2,B2) (p < .0001), and indeed, there is a true
difference.

contrast estimate SE df t.ratio p.value

(A1, B1) – (A1, B2) 0.0 0.0 273 1.3 0.1792

(A1, B1) – (A2, B2) -0.5 0.0 273 -165.9 <.0001

Table 3: Highlighted results of contrasts conducted on ART
data, comparing levels of A and B in our running example.
In the top row, a differencewas incorrectly detected between
(A1,B1) and (A1,B2) (p < .0001), but there is no true difference.
In the bottom row, a difference was incorrectly not detected
between (A1,B1) and (A2,B2) (p = .9144), but there is a true
difference.

contrast estimate SE df t.ratio p.value

(A1, B1) – (A1, B2) -43.2 3.8 273 -11.3 <.0001

(A1, B1) – (A2, B2) 0.4 3.8 273 0.1 0.9144
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ART failed to find a
difference between
A1,B1 and A2,B2.

ART incorrectly found 
a difference between 
A1,B2 and A1,B1.

Figure 2: Sample data for (A1,B2), (A1,B1), and (A2,B2). Dots
indicate condition means. Contrasts on data from the orig-
inal ART procedure found a difference between (A1,B2) ad
(A1,B1) even though there was no true difference. Further-
more, no difference was found between (A1,B1) and (A2,B2)
even though there was a true difference.

Obviously, we cannot judge the validity of a statistical procedure

from just one example! Therefore, we assessed the correctness of

the original ART procedure when used in multifactor contrasts on

72,000 synthetic data sets representing several different experimen-

tal designs and data distributions, confirming the issues illustrated
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by our running example. (Further details on our simulation proce-

dure are given below.) Our results show: (1) using the the original

ART procedure to conduct multifactor contrasts on data drawn

from log-normal, Cauchy, or exponential distributions produces

inflated Type I error rates (Figure 3); (2) conducting contrasts with

the original ART procedure on data drawn from any distribution

produces Type I error rates that are far from their expected value

(α = .05), either too high or too low (Figure 3); and (3) for mul-

tifactor contrasts, the original ART procedure has low statistical

power (high Type II error rates) (Figure 4). Single-factor contrasts

conducted with the the original ART procedure are, in fact, correct;

indeed, our new method ART-C reduces to the same mathematical

formula as the original ART in the single-factor case. ART-C results

are included in Figures 3 and 4 for comparison. We show ART-C’s

derivation and validation below.

Lognormal

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.05 0.15 0.05 0.15

A
RT

-C
A

RT
A

RT
-C

Normal

Cauchy t(3)

Exponential

Double
Exponential

A
RT

Using ART (gray) to conduct multifactor
contrasts can result in Type I error rates
that are inflated and / or far from 𝛼 = .05.

Conducting multifactor contrasts with
ART-C (teal) typically results in low 
Type I error rates that are close to 𝛼 = .05.

Observed Type I Error Rate

ART and ART-C inflate Type I error rates 
on data drawn from a Cauchy distribution.

Figure 3: ART Type I error rates (gray) compared to ART-
C Type I error rates (teal). Each data point represents the
observed Type I error rate of one “design,” explained below.
Values closer to α = .05 are better, indicating greater cor-
rectness. ART-C Type I error rates are closer to .05 for all
distributions.

4 THE SOLUTION: THE ART-C PROCEDURE
FOR ART CONTRASTS

To address the limitations of ART described above, and to extend

ART so as to make it more complete as an analysis, we developed

ART-C, a procedure to conduct nonparametric multifactor contrasts

within the ART paradigm. ART-C offers an alignment process spe-

cific to contrast tests involving one or more factors. Like ART before

it for main effects or interactions, ART-C first aligns data and then

ranks it with ascending midranks. Then, multifactor contrast tests

can be conducted to compare combinations of factors’ levels for

which the data was aligned-and-ranked. Thus, the process is much

like the original ART procedure, but the data is aligned not for main

effects and interactions, but for intended contrast tests.

ART (gray) has lower power 
than our new method, 
ART-C (teal).

Lognormal Normal

A
RT

A
RT

-C

Exponential Cauchy

A
RT

A
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-C
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Figure 4: ART statistical power (gray) compared to ART-C
statistical power (teal). Each data point represents the ob-
served statistical power of one “design,” explained below.
Larger values are better, indicating greater power. ART-C
has greater power for all distributions except Cauchy.

With ART-C, data must be aligned-and-ranked for each set of

factors whose levels will be compared. In our running example,

we found an A × B interaction effect. Response Y must be aligned-

and-ranked to compare combinations of levels of A and B. And,
for example, had we found an A ×C interaction effect and wanted

to conduct contrasts tests thereof, response Y would have to be

aligned-and-ranked separately to compare combinations of levels

of A and C .
Like the original ART procedure, ART-C can be used on noncon-

forming data, i.e., data that do not meet the parametric ANOVA

assumptions. For example, responses that are not conditionally nor-

mal, or, equivalently, residuals that are not normally distributed,

can be handled correctly by both ART and ART-C. Note, how-

ever, that the original ART procedure has been shown to inflate

Type I error rates on heteroscedastic data [37]. We did not exam-

ine heteroscedasticity specifically for ART-C, but given ART-C’s

underlying similarity to ART, the same observation probably holds.

4.1 ART-C Procedure for Multifactor Contrasts
In this section, we walk through the ART-C procedure with an

example, similar to our running example, with three factors:Awith

levels Ai , i = 1...a, B with levels Bj , j = 1...b, and C with levels

Ck ,k = 1...c , and response Y . We present the ART-C procedure in

four steps:
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Step 1. Prepare data. To prepare data for ART-C:

1. “Concatenate” the factors of interest to create a new factor. For

example, when conducting contrasts onA and B, we concatenate
A and B and create a new factor labeled AB. For any response Y
for which A has level Ai and B has level Bj , AB has level ABi j .

2. Remove original copies of the factors involved (here, A and B).
3. Keep unchanged any factors not concatenated in the contrasts

(here, C).

Step 2. Compute aligned response Y ′. Regardless of which fac-

tors were concatenated in Step 1.1 and which original factors were

removed in Step 1.2, Yi jk denotes all responses Y whereA had level

Ai , B had level Bj , andC had levelCk before Step 1.1 was completed.

As we will see, sometimes, the levels of all factors are taken into

account when aligningYi jk . For example,ABi jCk denotes the mean

of all responses where the new concatenated factor AB has level

ABi j and factor C has level Ck . Other times, we only care about

the levels of the concatenated factor. For example,ABi j denotes the
mean of all responses where AB has level ABi j , regardless of the
level of C . In all cases, µ denotes the grand mean (i.e., the mean of

all responses Yi jk ).
In our running example, there are three possible types of con-

trasts: three-factor contrasts, two-factor contrasts, and single-factor

contrasts. We present the ART-C alignment formula for all three

types of contrasts and then present the general case. As an example,

Table 4 shows a small subset of sample calculations for two-factor

contrasts (A × B) in a three-factor model (A × B ×C).
Three-factor contrasts in a three-factor model. To align re-

sponse Yi jk for contrasts between levels of factors A, B, and C ,
compute:

Y ′
i jk = Yi jk −ABCi jk +ABCi jk − µ

= Yi jk − µ .

Two-factor contrasts in a three-factor model. To align re-

sponse Yi jk for contrasts between levels of factors A and B, com-

pute:

Y ′
i jk = Yi jk −ABi jCk +ABi j − µ

Single-factor contrasts in a three-factor model. The focus of
this work is not on single-factor contrasts since the original ART

alignment procedure can be used for single-factor contrasts, but it

is worth noting that our method is mathematically equivalent to the

ART in the single-factor case. To align response Yi jk for contrasts

between levels of factor A compute:

Y ′
i jk = Yi jk −AiBjCk +Ai − µ

General Case: M-factor contrasts in an N -factor model. We

need more complex notation to describe the general case. In the

general case, we align response Yi j ...n for contrasts between levels

ofM factors in an N -factor model. In the example above, we named

our factors A, B, and C . Here, we name them X1, X2, ..., XN and

denote level j of factorXi asXi, j (e.g., level 2 of factorX1 is denoted

as X1,2). In Step 1.1, we concatenated theM factors for which we

were aligning the response to create a new factorX1X2 . . .XM . The

level of factor X1X2 . . .XM that was created by concatenating X1,i ,

X2, j , ..., XM,m is denoted as (X1X2 . . .XM )i j ...m . In Step 1.2, we

removed the original copies of theM factors concatenated in Step

1.1. So, after Step 1.3, there are N −M other non-concatenated fac-

tors in the model denoted XM+1,XM+2, . . . ,XN . Thus, XM+1,m+1
denotes a level of factor XM+1; XM+2,m+2 denotes a level of factor

XM+2; and XN ,n denotes a level of factor XN . With this notation

in hand, to align the data in the general case, we compute:

Y ′
i j ...n = Yi j ...n − (X1X2 . . .XM )i j ...mXM+1,m+1XM+2,m+2 . . .XN ,n

+(X1X2 . . .XM )i j ...m − µ

For example, with this notation, our "two-factor contrasts in a

three-factor model" formula would be:

Y ′
i jk = Yi jk − (X1X2)i jX3,k + (X1X2)i j − µ

Step 3. Compute ranked response Y ′′. Apply midranks to all

aligned values Y ′
in ascending order to create aligned-and-ranked

responses Y ′′
(see example in Table 4). That is, the smallest Y ′

is

given rank Y ′′
= 1, the next smallest Y ′

is given rank Y ′′
= 2, until

all Y ′
values have been assigned a rank. If there is a tie among k

values, the mean of the next k ranks that would have been assigned

is used as the rank for all k values (i.e., midranks). For example, if

there is a tie between the third and fourth smallest Y ′
, they would

both be assigned rank Y ′′
= (3 + 4) / 2 = 3.5. This is a standard

application of applying ascending midranks to data.

Table 4: Sample calculations to compute aligned response
Y ′ and aligned-and-ranked response Y ′′ for two-factor con-
trasts (A×B) in a three-factormodel (A×B×C) using the ART-
C procedure. The concatenated factor made from Ai × Bj is
ABi j . Factor C is not involved in the intended contrast tests,
so is left unchanged. The grand mean is µ = 5. Only 4 of 8
conditions are shown here, where A = A1 only, for consider-
ations of space.

A B AB C Y Y′ Y′′

A1 B1 AB11 C1 7 7 -
7+5
2

+
7+5+2+2

4
- 5 = 0 5.5

A1 B1 AB11 C1 5 5 -
7+5
2

+
7+5+2+2

4
- 5 = -2 1

A1 B1 AB11 C2 2 2 -
2+2
2

+
7+5+2+2

4
- 5 = -1 3

A1 B1 AB11 C2 2 2 -
2+2
2

+
7+5+2+2

4
- 5 = -1 3

A1 B2 AB12 C1 10 10 -
10+8
2

+
10+8+5+1

4
- 5 = 2 7

A1 B2 AB12 C1 8 8 -
10+8
2

+
10+8+5+1

4
- 5 = 0 5.5

A1 B2 AB12 C2 5 5 -
5+1
2

+
10+8+5+1

4
- 5 = 3 8

A1 B2 AB12 C2 1 1 -
5+1
2

+
10+8+5+1

4
- 5 = -1 3

Step 4. Conduct contrast tests on Y ′′. As with the original ART

procedure, ART-C is an alignment-and-ranking procedure that is

meant to be followed by statistical tests on aligned ranks. The ART

procedure is commonly followed by an ANOVA [51]; similarly, our

ART-C procedure can be followed by a t-test, since two means are

being compared in the case of contrasts. Despite ANOVAs and t-
tests being parametric, owing to their application to aligned ranks,

the ART and ART-C procedures can be considered nonparametric

in nature.

Post hoc contrast tests with ART-C are justified when the original

ART procedure results in significant main effects or interactions.

However, as stated above, contrasts do not need to follow significant

omnibus tests if warranted by the research question (i.e., “planned
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contrasts”). Also, note that conductingmultiple post hoc tests should
be accompanied by a p-value correction for multiple comparisons

(e.g., with the Bonferroni correction [47], Holm’s sequential Bon-

ferroni procedure [20], or Tukey’s HSD test [45], to name a few). In

the ART-C procedure, contrasts should be conducted using the full

factorial model comprising all factors that remain after Step 1.3, but

only the results of comparisons between levels of the concatenated

factor created in Step 1.1 can be interpreted; comparisons between

levels of any non-concatenated factors are meaningless.

Returning to our running example of conducting contrasts to

compare levels of A and B, we have factors AB and C , and have

computed Y ′′
as aligned ranks for factor AB. We would therefore

conduct contrasts using a full-factorial model with factors AB and

C (e.g., Y ∼ AB × C). We ignore the omnibus test results for this

model, but we follow it with contrasts among desired levels of AB.
Contrasts that would involve C are meaningless.

5 VALIDATING OUR APPROACH
In this section, we describe how we validated our ART-C procedure

for multifactor contrasts. As is customary, we examined Type I error

rates and statistical power. We conducted our validation consistent

with simulation-based validations from the statistics literature [1,

5, 27, 34].
6

5.1 Generating Synthetic Data
To create our 72,000 synthetic data sets, we drew responses as ran-

dom samples from known populations. We use the term “condition”

to refer to combinations of levels from any number of factors. Each

sample was drawn for conditions comprising one level of each fac-

tor. Our synthetic data sets varied according to the following four

properties:

• Layout: The number of factors and number of levels per factor

in the data set. Values: two factors with two levels each (2 × 2),

two factors with three levels each (3 × 3), and three factors with

two levels each (2× 2× 2). We chose these layouts owing to their

commonality in HCI studies.

• Population Distribution: The type of distribution from which

samples in the data set were drawn. Specific distributions (see Ta-

ble 5) were chosen because they represent data frequently found

in HCI studies (e.g., normal, log-normal, exponential), or because

they are commonly used in simulation studies in statistics due to

their heavy tails [1, 5] (e.g., Cauchy, t with 3 degrees of freedom,

double exponential). Note that the mean is a type of location and

the standard deviation is a type of scale; for consistency, we use

the general terms “location” and “scale.”

• Condition Sample Size: The number of data points randomly

sampled from a population for each condition. Values: 8, 16, 24,

32, and 40, selected because they represented typical sample sizes

in HCI.

• Between- or Within-Subjects: In a between-subjects design,

each subject contributes one response to the data set, and the

number of responses is equal to the number of subjects. In a

6
In statistics, validation of tests or procedures is generally achieved via either

asymptotic theory or simulation studies. For the latter, myriad data sets whose proper-

ties are known are synthesized. Then, the results of the tests or procedures in question

are compared to expected results, revealing Type I error rates and statistical power.

within-subjects design, each subject contributes one response

in each condition, and the number of subjects is equal to the

condition sample size. Values: “between” or “within.” (Mixed

factorial designs, i.e., “split-plots,” were left for future work.)

Table 5: Population Distributions and their parameters.

Distribution Parameters

Normal Mean, standard deviation

Log-normal Log mean, log standard deviation

Exponential Rate

Cauchy Location, scale

t(3) Location, scale

Double Exponential Location, scale

Our running example has a 2 × 2 × 2 layout, condition sample

size of 40, log-normal population distribution, and is within-

subjects. For each of the 3× 6× 5× 2 = 180 combinations of property

values, we generated approximately 200 data sets in which all condi-

tions in one data set were sampled from population distributions

with equal locations, and approximately another 200 data sets in

which all population distributions’ locations were randomly

chosen. Population distributions’ scales were equal to 1. We

describe our synthetic data-generating process in the following

four steps:

Step 1. Determine latent location. We begin by determining a

latent location for each condition (µ∗c ), which will undergo several

transformations before being used as a parameter value in a pop-

ulation distribution. When conditions have equal population

locations, the latent location is fixed at 0 (Equation (1a)). Otherwise,

its value is sampled from a standard normal distribution (Equation

(1b)). Scale is always equal to 1 in our analyses (Equation (2)).

µ∗c = 0 (1a)

Used when creating data to measure Type I error rate.

µ∗c ∼ N(0, 1) (1b)

Used when creating data to measure statistical power.

σc = 1 (2)

In Equations (1a) and (1b), µ∗c is the latent location for condition c ,
and in Equation (2), σc is the scale for condition c .

Step 2. Add random intercepts per subject. When generating

within-subjects data, each subject is assigned a unique random

offset (βs ) sampled from a normal distribution with mean 0, and

standard deviation SD (Equation (3b)), where SD is randomly cho-

sen from {0.1, 0.5, 0.9} (Equation (3a)) and is the same value for the

entire data set. These values were chosen to represent a reasonable

ratio between within-subject variance and between-subject vari-

ance. We now update our latent mean notation to (µ∗c,s ) to represent
the latent mean for each combination of condition and subject, and

a subject’s random offset is added to all of its associated latent

locations (Equation (3c)). For consistency, we use this notation for

760



UIST ’21, October 10–14, 2021, Virtual Event, USA Elkin, Kay, Higgins, Wobbrock

between-subjects data as well, but with a random per-subject offset

of 0 (Equation (3d)).

SD ∼ Random(0.1, 0.5, 0.9) (3a)

βs ∼ N(0, SD) (3b)

µ∗c,s = µ∗c + βs (3c)

Used when generating within-subjects data

µ∗c,s = µ∗c + 0 (3d)

Used when generating between-subjects data.

Equations (3a), (3b), and (3c) are used for within-subjects data. In

Equation (3b), βs is the random offset for subject s , and in Equation

(3c), βs is added to all latent locations µ∗c associated with subject s ,
resulting in a new latent location µ∗c,s for condition c and subject s .
In Equation (3d), µ∗c is simply relabeled µ∗c,s for consistency; how-
ever, each subject still has the same latent location µ∗c for condition

c .

Step 3. Transform latent location with an inverse link func-
tion. Latent location is currently expressed as a linear model, but

some distributions’ parameters must be expressed as a function
of a linear model. This function, customarily termed the “inverse

link function” (д−1), transforms the latent location (µ∗) into the

appropriate location for the distribution (µ) (Equation (4)).

µc,s = д
−1(µ∗c,s ) (4)

In Equation (4), д−1 is the inverse link function and it transforms a

latent location µ∗c,s into a location µc,s .
All population distributions (Table 5) use the identity inverse

link function (Equations 5a) except for the exponential distribution

(Equation 5b).

д−1id (x) = x (5a)

д−1exp (x) = exp(x) (5b)

In Equation (5a), д−1id is the identity inverse link function. In Equa-

tion (5b), д−1exp is the inverse link function used by the exponential

distribution.

Step 4. Generate data. ResponseYc,s is sampled from the relevant

distribution, represented here by the generic function

Distribution(x ,y) (Equation (6)). The exponential distribution only

has a single parameter (rate = 1/location) and follows Equation

(7):

Yc,s ∼ Distribution(µc,s ,σc,s ) (6)

Yc,s ∼ Exp(1/µc,s ) (7)

5.2 Example of Generating Synthetic Data
In this section, we illustrate the four steps of the above data-

generating process by generating response Y5,2 for condition 5 and
subject 2 in our running example.

Step 1. Since our example does not have equal population locations,

we use Equations 1b and 2.

µ∗
5
∼ N(0, 1)

= 0.75
(1b)

σ5 = 1 (2)

Step 2. Our example uses a within-subjects design, so we add per-

participant offsets. Note that SD would have already been chosen

for condition 1. The same value would be used here.

SD ∼ Random(0.1, 0.5, 0.9)

= 0.5
(3a)

β2 ∼ N(0, 0.5)

= 0.1
(3b)

µ∗
5,2 = 0.75 + 0.1

= 0.85
(3c)

Step 3.We use the inverse link function for the log-normal distri-

bution, which is the identity function.

µ5,2 = д
−1
id (0.85)

= 0.85
(5a)

Step 4. Finally, we sample a log-normal distribution with log mean

µ5,2 and log standard deviation σ5,2 to get response Y5,2.

Y5,2 ∼ Loдnormal(0.85, 1)

= 3.27
(6)

5.3 Testing Procedure
To explain our testing procedure, we first introduce some defini-

tions:

• An x-factor contrast is a contrast between two conditions com-

posed of one level each from x factors.

• Contrast size is the x in x-factor contrast.
• A design as a unique combination of a layout, population

distribution, condition sample size, between- or within-

subjects, and contrast size.

• A trial consists of one contrast test result, and all possible con-

trasts were conducted. There were:

– 8 trials in a data set with a 2 × 2 layout

– 42 trials in a data set with a 3 × 3 layout

– 49 trials in a 2 × 2 × 2 layout.

There were 72,000 total data sets split evenly among designs

with each layout (24,000 data sets each). Thus, there were a total

of 24, 000 × (8 + 42 + 49) = 2,376,000 trials. There were 1,094 data

sets out of 72,000 data sets (1.5%) with at least one trial for which

ART-C did not converge. All of these data sets were within-subjects

and were modeled as linear mixed models using the lmer method in

the R package lme4; it is not uncommon for lmer to fail to converge.
In any case, these data sets were removed.

By definition, ART-C is an aligning-and-ranking procedure fol-

lowed by a contrast testing method—our validation used a t-test.
Since we were validating a contrast testing method and not investi-

gating the cause of a significant omnibus test, we did not correct for

multiple comparisons. The R programming language was used to

generate all data sets, conduct all contrasts, and analyze the results.

All R code is included as supplementary material and is available

online for replication and extension.
7

Following the common approach in the statistics literature [1, 5,

27, 32–34], we validated our method on two metrics: Type I error

rate and power.

7
http://www.doi.org/10.5281/zenodo.4536432
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5.4 Type I Error Rate
A significance level (α ) represents the probability of a Type I error

(false positive) and is used as a threshold to reject a null hypothesis

(p < α ). Many readers will recognize that typically, α is set to .05,

although other values may be used. A large-scale simulation such

as ours shows that a method is correct when the proportion of tests

in which a true null hypothesis was rejected (the observed Type I

error rate) is close to the significance level α . That is, the proportion
of tests in which p was less than α should be close to α .

For example, 5,516 trials were conducted on data from a 2 × 2

× 2 layout, log-normal population distribution, condition

sample size 40, within-subjects, contrast size of three, and

no differences between conditions’ population locations. Using a

significance level of .05, ART-C found a significant difference in 265

trials, resulting in a 265 ÷ 5516 = .048 observed Type I error rate,

which is very close to the α = .05 significance threshold, indicating
the correctness of ART-C for this design.

Each data point in the following results represents the observed

Type I error rate for one design. All population locations were set

to 0 (Equation (1a)), and thus, the null hypothesis that there is no

true difference between conditions’ population locations is true for

all trials. As is common practice in statistics, we include observed

Type I error rates for the t-test as a baseline [32, 33].

Table 6:MeanType I error rates (and standard deviations) for
ART-C and, for comparison, the t-test, grouped by contrast

size and layout over all designs, excluding designs with a
Cauchy population distribution. Recall that contrast size

refers to the number of factors whose levels are involved in
the contrast test. Results for ART-C and the t-test that are
closer to .05 indicate greater correctness. ART-C has compa-
rable Type I error rates to the t-test, but as our additional
results show, much greater power.

Contrast Size Layout ART-C t-test

1 2 × 2 .046 (.011) .040 (.014)

1 3 × 3 .053 (.009) .048 (.007)

1 2 × 2 × 2 .057 (.016) .048 (.009)

2 2 × 2 .048 (.008) .042 (.009)

2 3 × 3 .050 (.004) .058 (.016)

2 2 × 2 × 2 .048 (.005) .045 (.007)

3 2 × 2 × 2 .049 (.004) .054 (.011)

Contrasts conducted with ART-C on designs with a contrast

size of one, Cauchy population distribution, and 3 × 3 or 2 × 2 ×

2 layout had inflated Type I error rates (M = .373, SD = .076), while

t-test contrasts did not (M = .025, SD = .004). Those Cauchy designs

were considered outliers and were not included in the remainder

of our analysis of Type I error rates; we address this further in our

discussion.

Results show that observed Type I error rates for contrasts con-

ducted with both ART-C and the t-test on remaining designs were

clustered around .05: ART-C (M = .050, SD = .009) and t-test (M =

.048, SD = .012), and design properties do not appear to have an

effect on observed Type I error rates, confirming the robustness of

the ART-C procedure. Observed Type I error rates for all designs are

included as supplementary material. Table 6 and Figure 5 illustrate

both methods’ observed Type I error rates, closely clustered around

.05, and show high Type I error rates for ART-C with a Cauchy

distribution.

Additional results are included in supplementary material and

available online (see Footnote 7).
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ART-C Type I error rates
(teal) and t-test Type I
error rates (gray) are both
clustered around 𝛼 = 0.05.

ART-C 1-factor contrasts 
on data with a Cauchy 
Population Distribution (red) 
have high Type I error rates.

Figure 5: ART-C (teal) and t-test (gray) observed Type I error
rates by contrast size and layout. Designs with a Cauchy
population distribution are shown in red. Each point rep-
resents an observed Type I error rate for one design. Values
closer to .05 indicate greater correctness. ART-C has compa-
rable Type I error rates to the t-test, but as our results below
show, much greater power.

5.5 Power
Statistical power is the probability of rejecting a false null hypoth-

esis (detecting a true difference) given a particular significance

level. Observed power is the proportion of tests in which a false

null hypothesis was rejected. Unlike for Type I errors, there is

no expected value to compare observed power to; instead, we fol-

lowed common practice in statistics [1, 5, 27] and compared to other

methods, specifically the t-test [44], Mann-Whitney U test [28] for

between-subjects designs, and Wilcoxon signed-rank test [48] for

within-subjects designs.
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For example, ART-C contrast tests conducted on data with a 2 ×

2 × 2 layout, log-normal population distribution, condition

sample size 40, within-subjects, contrast size of three, and

different population locations for each condition detected a true

significant difference in 4408 out of 5824 trials, therefore having

4408 ÷ 5824 = .76 observed power.

Population distribution latent locations for each condition

were randomly sampled from a standard normal distribution (Equa-

tion (1b)). Although we cannot guarantee these locations were

different, there is an infinitely small chance they were the same,

and we therefore assume that the null hypothesis of no difference

between condition population locations is false. In the following

results, a significance level of α = .05 was used, and each data point

represents the observed power of one design.

When averaged over all designs, our results show that ART-C

had the highest observed power (M = .598, SD = .143), followed by

Mann Whitney U test / Wilcoxon signed-rank test (M = .521, SD =

.149), and finally the t-test (M = .461, SD = .149). Observed powers

for all designs are included as supplementary materials.

Population distribution and condition sample size were

the only design properties that had a large impact on observed

power. ART-C had higher observed power than the t-test for all
population distributions other than the normal distribution,

for which it was the same, and had higher observed power than

the Mann-Whitney U test and Wilcoxon signed-rank test for all

population distributions (Table 7, Figure 6).

ART-C had higher observed power than the t-test and Mann-

WhitneyU test /Wilcoxon signed-rank test regardless of condition

sample size, but all tests’ power increased as condition sample

size increased, which is expected.

Additional results are included in supplementary material and

available online (see Footnote 7).

Table 7: Mean statistical power (and standard deviations)
for ART-C, t-test, Mann-Whitney U test (M-W) / Wilcoxon
signed-rank test (WSR), and ART, grouped by population

distribution. Higher values indicate more statistical power.
ART-C has the highest power of all tests on all population
distributions except Cauchy.

Normal Log-normal Exponential

ART-C .66 (.09) .69 (.10) .66 (.11)

t-test .66 (.09) .46 (.11) .52 (.12)

M-W/WSR .59 (.12) .58 (.12) .56 (.12)

ART .49 (.18) .62 (.14) .58 (.16)

Cauchy t(3) Double Exponential
ART-C .41 (.13) .58 (.11) .60 (.10)

t-test .07 (.02) .50 (.10) .56 (.10)

M-W/WSR .34 (.12) .52 (.13) .54 (.12)

ART .51 (.16) .42 (.18) .44 (.19)
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Figure 6: Mean statistical power by population distribution

for ART-C (teal), t-test (gray), and Mann-Whitney U test /
Wilcoxon signed rank-test (black outline). Higher values in-
dicate greater power. ART-C has the greatest power overall.
Each point represents observed statistical power from one
design.
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5.6 Comparison to Original ART
Contrasts conducted with ART-C had lower observed Type I error

(M = .067, SD = .072) than contrasts conducted on data aligned-

and-ranked using the original ART procedure (M = .121, SD = .174).

ART-C also had higher observed power (M = .598, SD = .143) vs.
ART (M = .511, SD = .182).

When separated by population distribution, ART-C had lower

observed Type I error rates than ART for the log-normal, expo-

nential, and Cauchy distributions (Table 8, Figure 3), but ART-C’s

observed Type I error rates were closer to the significance level

(α = .05) than ART’s for all population distributions, indicating

that ART-C is more correct. ART-C also had higher observed power

than ART for all population distributions except Cauchy (Table

7, Figure 4).

Table 8: Mean Type I error rates (and standard deviations)
for ART-C and ART, grouped by population distribution.
Values closer to α = .05 are better, indicating greater correct-
ness.

Normal Log-normal Exponential

ART-C .049 (.008) .054 (.015) .051 (.007)

ART .024 (.023) .141 (.096) .065 (.048)

Cauchy t(3) Double Exponential
ART-C .140 (.154) .049 (.006) .049 (.007)

ART .425 (.209) .033 (.015) .026 (.023)

Contrast size also had an interesting effect on power. Observed

power with ART-C was highest for single-factor contrasts, followed

by three-factor contrasts, and then two-factor contrasts, but the

differences were small. However, ART’s power decreased as con-

trast size increased, and the differences were much larger (Table

9, Figure 7). Recall that the alignment formulas for ART and ART-C

become mathematically equivalent in the single factor case.

Table 9: Mean statistical power (and standard deviations) for
ART-C and ART, grouped by contrast size. Higher values
indicate greater power.

1-Factor
Contrasts

2-Factor
Contrasts

3-Factor
Contrasts

ART-C .620 (.150) .580 (.140) .590 (.130)

ART .620 (.150) .460 (.150) .340 (.180)

Recall in our running example that we conducted multifactor

contrasts on levels of factors A and B, and contrasts conducted

with ART produced a Type I error and a Type II error (see Table 3,

Figure 2), but contrasts conducted with a linear mixed model (LMM)

on log-transformed data resulted in correct conclusions (see Table

2) that agreed with ground truth (see Table 1). Now we can say

that contrasts conducted on the same data with ART-C agree with

the LMM results and ground truth in finding a difference between

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

Observed Statistical Power

1-Factor Contrasts 2-Factor Contrasts 3-Factor Contrasts

As Contrast Size increases,
ART power (gray) decreases 
and ART-C power (teal)
 increases.

ART-C and ART 
are  equivalent
for 1-factor
contrasts.

A
RT

A
RT

-C

Figure 7: ART-C (teal) and ART (gray) observed statistical
power by contrast size. Each point represents observed
statistical power for one design. Higher values indicate
greater power. ART-C power is greater for all contrast sizes,
and increases with contrast size, compared to ART, which
decreases. Both methods are equivalent when conducting
single-factor contrasts because ART-C mathematically re-
duces to ART in such cases.

(A1,B1) and (A2,B2), and correctly not finding a difference between
(A1,B1) and (A1,B2) (Table 10).

Thus, taken as a whole, our results show that ART-C has appro-

priate Type I error rates clustered around α = .05, except for data
sampled from Cauchy distributions, for which ART-C should not

be used. Furthermore, ART-C has high statistical power, outper-

forming the t-test, Mann-Whitney U test, Wilcoxon signed-rank

test, and original ART. These results show that ART-C is a correct

and powerful procedure for use within the overall ART paradigm

for conducting nonparametric contrast tests within or across levels

of multiple factors.

Given ART-C’s impressive performance as an analysis method,

we sought to make it available to researchers and easy to employ.

Toward that end, we extended existing open-source tools that al-

ready provide the original ART procedure for main effects and

interactions to also include ART-C for multifactor contrast tests.

We describe our tool extensions in the next section.

Table 10: Highlighted results of contrasts conducted using
ART-C, comparing levels of A and B in our running exam-
ple. In the top row, a difference was correctly not detected
between (A1,B1) and (A1,B2) (p = .6758), and indeed, there
is not a true difference. In the bottom row, a difference was
detected correctly between (A1,B1) and (A2,B2) (p < .05), and
indeed, there is a true difference.

contrast estimate SE df t.ratio p.value

(A1,B1) – (A1,B2) 1.5 3.7 273 0.4 0.6758

(A1,B1) – (A2,B2) -89.9 3.7 273 -24.5 <.0001
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6 WINDOWS ARTOOL AND R PACKAGE
“ARTOOL”

To make ART-C available to the HCI community (and beyond), as

ART was made available previously [51], we extended the existing

open-source tools ARTool.exe for Windows (see footnote 2) and

the R package “ARTool” (see footnotes 3 and 4). This section briefly

describes our new tools.

6.1 ARTool.exe Windows Application
The ARTool.exe Windows application was released as an open-

source tool in 2011 [51] to facilitate aligning-and-ranking data for

analysis using the ART procedure. We extended this open-source

tool to include our ART-C procedure for multifactor contrasts. Users

can now indicate that they want contrasts with a checkbox (Figure

8, Top), which then offers them a separate dialog box (Figure 8,

Bottom) from which they can select the factors whose levels are

involved in their desired contrast test. ARTool then uses our ART-

C procedure to produce aligned-and-ranked output suitable for

statistical analysis (e.g., with a t-test).

6.2 R Package “ARTool”
The open-source R package “ARTool” makes it easy to conduct

nonparametric tests of main effects and interactions using the orig-

inal ART procedure. A single function aligns-and-ranks data for

each fixed effect in a formula f provided by the user. The result is

an ART statistical model m that retains a copy of formula f and

the data. Given m, another function in ARTool, anova, runs mul-

tiple ANOVAs behind the scenes, one for each fixed effect in f,
and returns the results of each test. In this work, we have added a

new function, art.con, that uses our ART-C procedure to conduct

multifactor contrast tests. Given the same model m and a contrast

formula fc , the ART-C procedure is used to align-and-rank the

data saved in m for the contrasts specified in fc . It then parses

the formula f saved in m, conducts the contrasts, and returns the

results.

In our running example, we first conducted A× B contrasts with

ART, which, of course, is incorrect given ART’s propensity for

Type I errors. Now, we can correctly use ART-C to perform these

contrasts. Figure 9 shows how we would use ART-C to conduct

contrasts correctly in R.

7 DISCUSSION
In this work, we have presented a new procedure and software tools

for aligning-and-ranking data for multifactor contrast tests in the

Aligned Rank Transform (ART) paradigm, now widely used in HCI

(and beyond) for nonparametric analyses. Owing to the popularity

of ART in HCI, the ART-C procedure promises to fill an extant gap

in current statistical practice.

Our results showed that ART-C’s Type I error rate is clustered

around α = .05, offering strong evidence for ART-C’s correctness.
Our results also showed that ART-C’s statistical power is greater

than the t-test, Mann-Whitney U test, Wilcoxon signed-rank test,

and original ART, except for when used on data drawn from a

Cauchy distribution. In fact, ART-C’s greater power was largest for

data drawn from log-normal and exponential distributions.

Figure 8: Top: ARTool.exe with “Want contrasts” checked.
Higgins et al.’s Table 5 [16] is being aligned-and-ranked. Bot-
tom: Our new tool for specifying multifactor contrasts. Two
factors, Moisture and Fertilizer, each have levels 1-4. Select-
ing both factors would allow, e.g., a comparison of (Moisture
2, Fertilizer 3) vs. (Moisture 4, Fertilizer 1), etc.
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Figure 9: Screenshot using ART-C to conductA×B contrasts
in our running example in R. The anova call first would pro-
duce omnibus test results for any A, B, and C main effects
and interactions; if, for example, the A × B interaction were
statistically significant, art.con could be used to conduct post
hoc pairwise comparisons as shown here.

This finding is particularly satisfying because the log-normal

and exponential distributions were included due to their frequent

emergence in HCI studies.

As noted, our results showed that single-factor ART-C contrasts

conducted on data drawn from a Cauchy distribution had high

observed Type I error rates. This is not unique to ART-C; the Cauchy

distribution is known to be “pathological” and many well-known

statistics concepts do not hold for Cauchy-distributed data (e.g., the

Central Limit Theorem [26]). This situation occurs because Cauchy

distributions have tails that are so fat that neither their mean nor

variance is well defined. In practice, this concern can arise in data

with extreme outliers. Thus, we encourage users to avoid using

ART-C if they have theoretical reasons to suspect the data is drawn

from a Cauchy distribution or if the data has extreme outliers.

In HCI, nonparametric tests are typically used as a catch-all

when parametric tests are not appropriate. The particular Cauchy

result above illuminates that this practice can be problematic. In

fact, ART-C is mathematically equivalent to ART in the single-

factor case, and ART was thought to be appropriate for single-

factor contrasts, but would also be ill-suited in the Cauchy case.

A disclaimer to not use a method to analyze data drawn from a

particular distribution is not useful unless researchers investigate

experimental data distributions beyond checking for normality.

The American Psychological Association’s Taskforce on Statistical

Inference encourages researchers to take a closer look at their data

by saying:

As soon as you have collected your data, before you

compute any statistics, look at your data. Data screen-
ing is not data snooping. It is not an opportunity to

discard data or change values to favor your hypothe-

ses. However, if you assess hypotheses without exam-

ining your data, you risk publishing nonsense. [49]

(emphasis in original)

Even nonparametric tests are have certain assumptions. There

are many tried-and-tested visualizations for model diagnostics that

can be applied to assess assumptions relevant to ART: quantile-

quantile (q-q) plots [18], for example, allow one to check for the

presence of fat tails in the distribution of residuals (i.e., excess kurto-
sis, which in extreme cases could indicate the presence of Cauchy-

distributed data). Modern visualizations like worm plots [6] can

make it even easier to diagnose fat tails. The point, though, is that

there is no all-encompassing solution in statistical analysis: model

fit and assumptions cannot be assumed and must be checked, and

nonparametric approaches are no exception to this maxim.

8 LIMITATIONS AND FUTUREWORK
There are infinitely many combinations of layouts, population dis-

tributions, and condition sample sizes one could examine in a study

like ours, but we could only analyze a finite amount of data and had

to be selective. These decisions were carefully made, considering

the needs of the HCI community and statistical norms—but they

were certainly not exhaustive.

Our validation only investigated data in which all conditions’

populations had the same location or all conditions’ populations

had different locations. Additionally, even when parameter values

were varied, conditions in the same data set were always drawn

from the same distribution. Data in which there are differences

between some conditions and not others arises frequently in HCI,

but we chose our validation process because it is commonly used

in statistics [1, 5, 27, 43].

We included models with random intercepts, which represented

the impact each subject had on the response. However, we did not

include models with random slopes, which allow, for some types

of responses, better-fitting models where subjects’ responses vary

differentially across another variable (e.g., time). Random intercept

models generally handle the kinds of repeated measures experi-

ments that occur often in HCI, whereas models with random slopes

are often relevant for longitudinal studies. Although random slope

models would certainly be valuable, fixed-effects models and mod-

els with random intercepts are used more frequently in HCI, so we

chose to focus our validation on such models, leaving other models

for future work.

ART-C is an alignment procedure, followed by a ranking proce-

dure, and then a contrast test like the t-test. We chose to use the

t-test in our analyses because it is the most familiar to the HCI

community and therefore how we anticipate most researchers will

use our new method. Still, it would be worthwhile to examine how

ART-C performs when a different contrast test is used.

In addition to our extensions to the open-source Windows AR-

Tool application and “ARTool” R package, we envision a platform-

agnostic tool that does not require programming experience, and

even an ART and ART-C package for other common statistics soft-

ware packages (e.g., SAS, SPSS, Stata). With the algorithmic and
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validation work we have done here, it should be relatively straight-

forward to create additional add-ons for common statistical pack-

ages.

9 CONCLUSION
The Aligned Rank Transform (ART) procedure has enabled any-

one familiar with an ANOVA to conduct nonparametric statistical

analyses on data arising from factorial experiments in HCI, and to

correctly obtain results for not only main effects, but interactions as

well [51]. Unfortunately, however, until now, multifactor post hoc
contrast tests could not be appropriately conducted within the ART

paradigm, and required using different tests altogether. This state

of affairs not only creates an inconsistency in statistical analyses,

but opens the door to widespread errors in statistical practice if

original ART data is used in multifactor contrast tests. Specifically,

we have shown that the original ART procedure results in inflated

Type I error rates and poor statistical power when used to conduct

multifactor contrast tests.

To remedy these problems, we have developed, presented, and

validated the ART-C procedure for aligning-and-ranking data for

nonparametric multifactor contrasts within the ART paradigm, giv-

ing researchers a procedure and tools to analyze data correctly from

factorial experiments. We have validated our method’s Type I error

rate and statistical power on 72,000 synthetic data sets whose prop-

erties represent data commonly arising within HCI experiments.

Our results show that ART-C does not inflate Type I error rates,

and has greater statistical power than a t-test, Mann-Whitney U
test, Wilcoxon signed-rank test, and the original ART. To facilitate

the widespread use of ART-C, we have extended existing open-

source tools, namely the Windows ARTool.exe application and the

“ARTool” R package.

It is our hope that by providing ART-C to supplement analyses

conducted in the ART paradigm, we will positively impact the HCI

community by enabling researchers to correctly and consistently

conduct nonparametric statistical analyses, especially for factorial

experiments. Owing to ART’s evident popularity, we believe ART-C,

and our tools that provide it, can be immediately useful to many

researchers in HCI and beyond.
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