

JustCorrect: Intelligent Post Hoc Text Correction
Techniques on Smartphones

Wenzhe Cui1, Suwen Zhu1, Mingrui Ray Zhang2, Andrew Schwartz 1,
Jacob O. Wobbrock2, Xiaojun Bi1

1Department of Computer Science, Stony Brook University, Stony Brook, NY, United States
2The Information School, University of Washington, Seattle, Washington, United States

{wecui, suwzhu, has, xiaojun}@cs.stonybrook.edu, {mingrui, wobbrock}@uw.edu

ABSTRACT
Correcting errors in entered text is a common task but usually
diffcult to perform on mobile devices due to tedious cursor
navigation steps. In this paper, we present JustCorrect, an
intelligent post hoc text correction technique for smartphones.
To make a correction, the user simply types the correct text at
the end of their current input, and JustCorrect will automati-
cally detect the error and apply the correction in the form of
an insertion or a substitution. In this way, manual navigation
steps are bypassed, and the correction can be committed with
a single tap. We solved two critical problems to support Just-
Correct: (1) Correction Algorithm: we propose an algorithm
that infers the user’s correction intention from the last typed
word. (2) Input Modalities: our study revealed that both tap
and gesture were suitable input modalities for performing Just-
Correct. Based on our fndings, we integrated JustCorrect into
a soft keyboard. Our user studies show that using JustCorrect
reduces the text correction time by 12.8% over the stock An-
droid keyboard and by 9.7% over the "Type, then Correct" text
correction technique by Zhang et al. (2019). Overall, JustCor-
rect complements existing post hoc text correction techniques,
making error correction more automatic and intelligent.

Author Keywords
Text entry; error correction; smartphones.

CCS Concepts
•Human-centered computing → Human computer inter-
action (HCI); Interaction techniques;

INTRODUCTION
Correcting errors in entered text is an inseparable yet diffcult
part of mobile text entry. The bottleneck lies in the need for
precise and repetitive manual control. The de facto cursor-
based text correction technique requires accurately positioning
the cursor at the error text, repeatedly pressing backspace to

delete errors, and re-positioning the cursor back at its orig-
inal location. The recent "Type, then Correct" technique
(TTC) [42] eliminated these cursor control operations by (1)
letting the user "throw" the correction at the error text, or
(2) pressing a key to locate error candidates and eventually
commit the correction. However, TTC still requires users to
specify the correction location. Our question is whether we
can further simplify this correction process by reducing the
necessary user actions even further. In particular, can we make
text correction as effcient as text entry?

Figure 1. This fgure shows how JustCorrect works. 1. The user enters
a sentence with an error jimo using tap typing; 2. To correct jimo to
jumps, they can either tap-type jumps and press the editing button (2a),
or switch to gesture type jumps(2b). 3. JustCorrect then substitutes jimo
with jumps. Two alternative correction options are also presented. The
editing procedure involves no manual operations except entering the cor-
rect text.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’20, October 20–23, 2020, Virtual Event, USA
© 2020 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7514-6/20/10 ...$15.00.
http://dx.doi.org/10.1145/3379337.3415857

Session 7A: Responsive/Adaptive Input:
State Changes and Correction

 UIST '20, October 20–23, 2020, Virtual Event, USA

487

http://dx.doi.org/10.1145/3379337.3415857
mailto:permissions@acm.org
mailto:wobbrock}@uw.edu
mailto:xiaojun}@cs.stonybrook.edu
http://dx.doi.org/10.1145/3379337.3415857
mailto:permissions@acm.org
mailto:wobbrock}@uw.edu
mailto:xiaojun}@cs.stonybrook.edu

2

In this paper, we present JustCorrect, an intelligent post hoc
text correction technique. To substitute an incorrect word or
insert a missing word in the current entered sentence, the user
simply types the correction at the end of their entered text, and
JustCorrect will automatically commit the correction without
user’s intervention. Additional options are also provided for
better correction coverage. In this way, JustCorrect makes
post hoc text correction on the recently entered sentence as
straightforward as text entry.

In creating and evaluating JustCorrect, we make the following
contributions. (1) We offer a post hoc correction algorithm
that infers a user’s correction intention in the current entered
sentence based on the newly entered word. (2) In our user
study, we found both tap typing and gesture typing are ap-
propriate input modalities for JustCorrect. Based on these
fndings, we propose two forms of JustCorrect: JustCorrect-
Tap and JustCorrect-Gesture. The former uses tap typing, and
the latter uses gesture typing for JustCorrect. Finally, (3) we
integrated both JustCorrect-Tap and JustCorrect-Gesture into
a soft keyboard. Our evaluation shows that using JustCorrect
reduces post hoc text correction time by 12.8% over the stock
Android keyboard, which uses de facto cursor-based text cor-
rection, and by 9.7% over TTC [42]. Overall, our research
shows JustCorrect complements existing post hoc text cor-
rection techniques and makes text correction more automatic
and intelligent than prior techniques. It well serves the users
who type a full sentence ahead before checking mistakes or
rephrasing the wording.

RELATED WORK
We review previous research on text correction and multi-
modal text input.

Error Correction Techniques on Smartphones
Correcting errors is an inseparable and costly part of the mo-
bile text entry process [19, 29]. Previous work often adopted a
cursor-based editing approach. For example, previous research
proposed controlling cursor by using magnifying lens [3],
pressing hard on the keyboard to turn it into a touchpad [3], or
adding arrow keys [39]. Gestural operations have also been
proposed to facilitate positioning cursor. Examples included
using left and right gestures [11], sliding left or right from
the space-key [16] to move the cursor, or using a “scroll ring”
gesture along with swipes in four directions [43].

In addition to controlling cursor, a number of techniques have
also been proposed to facilitate text selection. The default
operations on a text feld on Apple iOS devices [3] and An-
droid include pressing and sliding the fnger to select a word,
holding the fnger down on a word to select it, and double-
tapping to select a word. Gestural operations have also been
explored, such as using two-fnger gestures [11], and clock-
wise gestures [16]. To edit the text after selecting it, modern
keyboards [3] often adopt a widget- or menu-based approach:
displaying a widget or pop-up menu flled with possible ac-
tions. Gesture-based command input methods [2, 8, 21] have
been proposed to operate on the selected text.

These cursor-based correction methods often involve repet-
itive manual operations challenging for users due to small

screen sizes and underlying ambiguities in fnger touch lo-
cations [6, 15, 37]. To address these challenges, intelligent
interaction techniques such as auto-correction was introduced.
Auto-correction – automatically correcting the word being
composed – has been a signature feature of modern keyboards
on smartphones [12, 7, 36]. However, autocorrection is largely
limited to the immediate word being composed, and not suit-
able for correcting errors in entered text. The smart-restorable
backspace technique [4] adds intelligence to the backspace
usage. It determines the number of deleted characters for each
backspace press based on the predicted correction positions
and can restore the previously deleted text. It can reduce the
number of needed backspace presses in error correction. Dif-
ferently, our work aims to completely bypass the backspace
usage. Relatedly, grammar check has been widely adopted for
correcting typos in entered text. For example, Gboard [24]
allows a user to tap on a word and shows alternatives on sug-
gestion bar. But correction is only limited to misspellings.
Grammarly keyboard [17] continuously tracks entered text
and provides suggestions on the suggestion bar. However, it
offers all possible correction suggestions without knowing
user’s correction intention, which could clutter the suggestion
bar. In contrast, JustCorrect adopts a more user-guided ap-
proach. The user decides when to trigger the correction and
indicates which word she will use for correction.

The "Type, then Correct" technique [42] is a recent effort at
reducing cursor operations by injecting intelligence into the
post hoc text correction process. To correcct an error, a user
types a correction word and either: (1) "throws" the word from
the suggestion bar towards the error, or (2) drags their fnger
atop a designated "Magic Key" to navigate among highlighted
error candidates, pressing the key to commit the correction.
This technique saves cursor manipulation, but still requires
manual operations to specify the correction location. JustCor-
rect removes these manual operations. As we demonstrate, our
study shows that saving these additional manual operations
signifcantly improves post hoc text correction speed over the
"Type, then Correct" technique [42].

Multi-Modal Text Input
Many soft keyboards (e.g., Gboard [24]) support entering text
via different modalities, such as tap typing, gesture typing, and
voice input. Previous research has explored fusing informa-
tion from multiple modalities to reduce text entry ambiguity,
such as combining speech and gesture typing [28, 32], using
fnger touch to specify the word boundaries in speech recogni-
tion [31], or using unistrokes together with key landings [18]
to improve input effciency. In desktop computing, combin-
ing eye gaze with keyboard typing is an effective approach
to improve text editing [33]. Our research investigated how
different input modalities performed for JustCorrect. It in-
volved multiple input modalities, but for correcting post hoc
errors, not for text entry decoding which was the main focus
of previous research. JustCorrect was particularly inspired by
ReType [33], which used eye-gaze input to estimate the text
editing location. We advanced it by inferring the editing in-
tention based on the entered word only, making the technique
suitable for mobile devices, which typically are not equipped
with eye-tracking capabilities.

Session 7A: Responsive/Adaptive Input:
State Changes and Correction

 UIST '20, October 20–23, 2020, Virtual Event, USA

488

3

A USAGE SCENARIO FOR JUSTCORRECT
JustCorrect signifcantly improves text correction effciency by
allowing the user to enter a correction at the end of their text
and simply applying it to a previous error. Before explaining
the technical details, we frst show a usage scenario.

Sarah was texting a message to her friend Tom when she typed:
We worked on the project lsst week. She discovered a miss-
spelling: lsst. Instead of moving the cursor fve characters
back, deleting the wrong characters, and typing the correct
characters, Sarah simply typed the word last and pressed the
edit button. JustCorrect automatically replaced lsst with last.
Sarah also noticed that it might be better to replace worked
with focused, so she typed focused at the end and pressed the
edit button again to correct the word. Lastly, she wanted to
insert the modifer mainly before focused. She gesture typed
mainly and JustCorrect automatically completed the task for
her. In this case, JustCorrect was triggered by switching from
tap typing to gesture typing. The fnal sentence then became
We mainly focused on the project last week. In this example,
Sarah successfully corrected a typo, substituted a word, and
inserted a new word without ever adjusting the cursor position.

THE POST HOC CORRECTION ALGORITHM
The key to JustCorrect lies in successfully inferring a user’s
editing intention based on the entered word and the prior
context. To enable this, we developed a post hoc correction
algorithm, as described below.

The post hoc correction algorithm takes the current entered
sentence S and an editing word w ∗ as input, and revises S by
either substituting a word wi in S with w ∗, or inserting w ∗ at an
appropriate position. The post hoc correction algorithm offers
three post hoc correction suggestions, with the top suggestion
automatically adopted by default and the others easily selected
with only one additional tap.

Take the sentence S = a quick fox jimo over a lazy dog. The
user inputs jumps as the editing word w ∗ . Because the sen-
tence has 8 words, there are 8 substitution and 9 insertion
possibilities: _a_quick_fox_jimo_over_a_lazy_dog_. The 9
possible insertion positions are indicated by the underscores.
The post hoc correction algorithm then generates 8 substitu-
tion candidates (S1 − S8), as shown in Table 1, and 9 insertion
candidates (I1 − I9) as shown in Table 2.

Substitution candidates SubScorei SSi ESi WSi

S1: jumps quick fox jimo over a lazy dog
S2: a jumps fox jimo over a lazy dog
S3: a quick jumps jimo over a lazy dog
S4: a quick fox jumps over a lazy dog
S5: a quick fox jimo jumps a lazy dog
S6: a quick fox jimo over jumps lazy dog
S7: a quick fox jimo over a jumps dog
S8: a quick fox jimo over a lazy jumps

0.56
0.89
0.42
1.71
0.75
0.56
1.11
0.48

0
0.2
0.42
1
0.18
0
0.11
0.18

0
0.2
0
0.6
0
0
0
0

0.56
0.48
0
0.11
0.57
0.56
1
0.31

Table 1. An example of 8 substitution candidates. They are generated
by replacing a word in the sentence “a quick fox jimo over a lazy dog”
with “jumps”. Si means that ith word in the sentence wi is replaced by
w ∗ . SubScorei is substitution score for ranking substitution candidates.
SSi, ESi, and WSi are scores from Edit Distance, Word Embedding, and
Sentence channels, respectively.

 Insertion candidates InserScorei

I1: jumps a quick fox jimo over a lazy dog 0.06
I2: a jumps quick fox jimo over a lazy dog 0.04
I3: a quick jumps fox jimo over a lazy dog 0.52
I4: a quick fox jumps jimo over a lazy dog 1
I5: a quick fox jimo jumps over a lazy dog 0.91
I6: a quick fox jimo over jumps a lazy dog 0.24
I7: a quick fox jimo over a jumps lazy dog 0
I8: a quick fox jimo over a lazy jumps dog 0
I9: a quick fox jimo over a lazy dog jumps 0.5

Table 2. An example of 9 insertion candidates. They are generated by
inserting “jumps” before or after every word in the sentence “a quick
fox jimo over a lazy dog”. Ii means w ∗ is inserted at the ith insertion
location. InserScorei is insertion score for ranking insertion candidates.

The algorithm then ranks the substitution candidates according
to the substitution scores, and ranks the insertion candidates
according to the insertion scores. These scores are later com-
pared to generate ultimate correction suggestions.

Substitution Score
The substitution score refects how likely it is that a substitu-
tion candidate represents the user’s actual editing intention.
It is calculated based on the assumption that there are two
main intentions behind word substitutions: (1) correcting ty-
pos, or (2) replacing valid words with new words. We look
for robust evidence of the substituted word along three dimen-
sions: orthographic (i.e. character) distance, syntactosemantic
(i.e. meaning) distance, and sequential coherence (i.e. making
sense in context). More specifcally, for the ith substitution
candidate Si, its substitution score SubScorei is defned as:

SubScorei = ESi +WSi + SSi, (1)

where ESi is editing similarity, WSi is word embedding simi-
larity, and SSi is the sentence score for substitution candidates
(explained below). The edit distance channel ESi is intended
to handle spelling corrections. The edit distance between a
typo and a correct word is usually small [38]. On the other
hand, when replacing a word with a more preferred choice,
e.g., replacing ‘great’ with ‘fantastic’, or replacing ‘road’ with
‘path’, the two words are both valid spellings and usually close
in meaning. The word embedding channel WSi captures simi-
lar meanings. Finally, the sentence channel SSi ensures overall
coherence of the word choice or replacement within its con-
text. For example, in “the cost of that dresser is too great,"
replacing ‘great’ with ‘fantastic’ would change the meaning
of the sentence, whereas inserting ‘fantastic’ before dresser
would not.

Edit Distance Channel
The edit distance channel calculates the editing similarity
for each substitution candidate. The Levenshtein edit dis-
tance [22] between two strings is the minimum number of
single-character edits including deletions, insertions, or substi-
tutions needed to transform one string into another string. For
example, the Levenshtein edit distance between “heel” and
“health” is 3: 1 edit for replacing e with a and 2 edits for insert-
ing t and h. In this channel, we frst calculate the Levenshtein
edit distance L(wi,w ∗) between the editing word w ∗ and the
substituted word wi in the ith substitution candidate Si. The

Session 7A: Responsive/Adaptive Input:
State Changes and Correction

 UIST '20, October 20–23, 2020, Virtual Event, USA

489

editing similarity ESi is defned as:

L (w ∗,wi)ESi = , ∗ (2)
max(|w |, |wi|)

where max(|w∗ |, |w ∗
i|) denotes the max length of w and wi.

Equation 2 normalizes the edit distance score, similar to a
previously introduced text entry error metric [34].

Word Embedding Channel
The word embedding channel estimates the semantic and syn-
tactic similarity W Si between the editing word w∗ and the
substituted word wi in Si. In an “embedding model”, words
from the vocabulary are mapped to vector of real numbers
derived from statistics on the co-occurence of words within
documents [10]. The distance between two vectors (i.e. word
embeddings) can then be used as a measure of syntactic and
semantic difference [1].

We learned our word embedding model over the “Text8”
dataset [25] using the Word2Vec skip-gram approach [26].
Then, we calculate the cosine similarity WS

C(w ∗ ,wi) between
w ∗ and each wi using word vectors [1]. For example, in the sec-
ond row of Table 1, the substituted word wi =“quick” is re-
placed by the editing word w ∗ =“jumps”. We then obtain the
word embedding similarity WS

i by normalizing WS
C(w∗ ,wi)

in the range [0,1].

Sentence Channel
The sentence channel estimates the normalized sentence score
of Si using a language model – a model that estimates the
probability of a sequence of words.

To compute the language model probability for a given sen-
tence, we trained a 3-gram language model using the KenLM
Language Model Toolkit [14], which is a memory- and time-
effcient implementation of a Kneser-Ney smoothed language
model [27]. Based on word frequencies, word pairs, and word
triples, a 3-gram language model takes each substitution can-
didate Si as the input, and outputs its estimated log probability
P(Si). By normalizing P(Si) in the range of 0 to 1, we get the
normalized sentence score SSi:

P(Si) − min(P(S j)) SSi = , (j = 1, 2, ...,N) (3)
max(P(S j)) − min(P(S j))

where min(P(S j)) and max(P(S j)) are the minimum and max-
imum sentence channel scores among all the N substitution
possibilities, assuming the sentence S has N words. The lan-
guage model itself was trained over the Corpus of Contem-
porary American English (COCA) [9] (2012 to 2017), which
contains over 500 million words. The ftted language model
fle was compiled into a binary fle to accelerate processing.

Insertion Score
For insertion candidates, we only use the sentence channel for
insertion scores, as there are no word-to-word comparisons for
insertion candidates. Assuming S has N words and therefore
N + 1 candidates for insertion, the insertion score InserScorei

4

for the candidaite Ii is calculated as:

P(Ii) − min(P(I j)) InserScorei = ,(j = 1,2, ...,N + 1)
max(P(I j)) − min(P(I j))

(4)
where min(P(I j)) and max(P(I j)) are the minimum and maxi-
mum sentence channel scores among all the N + 1 insertion
possibilities (I1, I2, ..., IN+1). As shown, InserScorei is normal-
ized in [0,1].

Combining Substitution and Insertion Candidates
The post hoc correction algorithm combines the substitution
and insertion candidates to generate correction suggestions
according to the pseudocode in Algorithm 1. It outputs three
correction suggestions, and automatically commits the top
suggestion to the text (see Figure 1, part 3). The algorithm
frst compares top suggestions from the substitution candidate
list and the insertion candidate list, respectively. The one with
a higher log probability(P(Ii) or P(Si)) in its sentence channel
is the top correction suggestion of combined candidates, while
the other is the second suggestion. This operation ensures that
at least one substitution and one insertion will be provided to
the user. We compare substitution and insertion candidates by
their log probabilities in sentence channel because sentence
channel is the common component between these two types
of suggestions: insertion score is calculated by sentence chan-
nel only; one of the three channels for substitution scores is
sentence channel. Using sentence log probability could avoid
potential bias toward substitution candidates.

EXPERIMENT 1: EVALUATING THE POST HOC CORREC-
TION ALGORITHM WITH DIFFERENT INPUT MODALITIES
To understand whether the post hoc correction algorithm is ef-
fective, especially when combined with different input modal-
ities, we evaluated three forms of JustCorrect: JustCorrect-
Gesture, JustCorrect-Tap, and JustCorrect-Voice. These varia-
tions are different JustCorrect techniques with different input
modalities, as explained below.

Participants
We recruited 16 participants (four females) from 19 to 40
years old (Mean = 26.4,Std. = 4.4). All were right-handed.
The self-reported median familiarity with tap typing, gesture
typing, and voice input (1: not familiar, 5: very familiar) were
5.0, 3.5, and 2.5 respectively. Seven participants had gesture
typing experience. The participants were instructed to use
their preferred hand posture throughout the study.

Apparatus
A Google Nexus 5X device (Qualcomm Snapdragon 808 Pro-
cessor, 1.8GHz hexa-core 64-bit Adreno 418 GPU, RAM:
2GB LPDDR3, Internal storage: 16GB) with a 5.2 inch screen
(1920×1080 LCD at 423 ppi) was used for the experiment.

Design
The study was a within-subjects design. The sole independent
variable was the text correction method with four levels:

• Cursor-based Correction. This was identical to the existing
de facto cursor-based text correction method on the stock
Android keyboard.

Session 7A: Responsive/Adaptive Input:
State Changes and Correction

 UIST '20, October 20–23, 2020, Virtual Event, USA

490

5

Algorithm 1 Post Hoc Correction Algorithm
1: procedure GET CORRECTION RESULT
2: input:
3: w ∗ ← editing word
4: S ← editing sentence
5: process:
6: SC : list of substitution candidates
7: IC : list of insertion candidates
8: SC ← creating substitution candidate list (e.g., table 1)
9: IC ← create insertion candidate list (e.g., table 2)

10: calculate substitution scores for each Si in SC(eq. (1))
11: calculate insertion scores for each Ii in IC(eq. (4))
12: SortedSC ← sort SC by descending substitution scores
13: SortedIC ← sort IC by descending insertion scores
14: P(SC0) ← Sentence log probability of SortSC(0)
15: P(IC0) ← Sentence log probability of SortIC(0)
16: if P(SC0) > P(IC0) then
17: f irstSuggestion ← SortedSC(0)
18: secondSuggestion ← SortedIC(0)
19: else
20: f irstSuggestion ← SortedIC(0)
21: secondSuggestion ← SortedSC(0)
22: P(SC1) ← Sentence log probability of SortedSC(1)
23: P(IC1) ← Sentence log probability of SortedIC(1)
24: if P(SC1) > P(IC1) then
25: thirdSuggestion ← SortSC(1)
26: else
27: thirdSuggestion ← SortIC(1)
28: output:
29: f irstSuggestion,secondSuggestion, thirdSuggestion

• JustCorrect-Tap. After entering a word with tap typing,
the user presses the editing button to invoke the post hoc
correction algorithm (see Section 1).
Taking the sentence “a quick fox jimo over a lazy
dog”, for example, if the user wants to replace “jimo” with
“jumps”, she tap types the editing word “jumps” and then
presses the editing button (see Section 1). The post hoc
correction algorithm takes “jumps” as the editing word and
outputs “a quick fox jumps over a lazy dog”.

• JustCorrect-Gesture. A user performed JustCorrect with
gesture typing [20, 41, 40]. After entering the correction
word w∗ with a gesture and the fnger lifts off, the system
applied the post hoc correction algorithm to correct the ex-
isting phrase with the word. The other interactions were the
same as those in JustCorrect-Tap. The only difference is that
in JustCorrect-Tap a button was used to trigger JustCorrect
because tap typing required a signal to indicate the end of
inputting a word, while this step is omitted in JustCorrect-
Gesture because gesture typing naturally indicates the end
of entering a word when the fnger lifts.

• JustCorrect-Voice. A user performed JustCorrect with voice
input. The user frst pressed the voice input button on the
keyboard, and spoke the editing word. The post hoc cor-
rection algorithm took the recognized word from a speech-
to-text recognition engine as the editing word w ∗ to edit

the phrase. We used the Microsoft Azure speech-to-text en-
gine [5] for speech recognition. The remaining interactions
were identical to the previous two conditions.

Procedure
Each participant was instructed to correct errors in the same
set of 60 phrases in each condition, and the orders of the sen-
tences were randomized. We randomly chose 60 phrases with
omission and substitution errors from Palin et al.’s mobile typ-
ing dataset [29]. This dataset included actual input errors from
37,370 users when typing with smartphones, and their target
sentences. We focused on omission and substitution errors
since the post hoc correction algorithm was designed to handle
these two types of errors. We also fltered out sentences with
punctuation or number errors because our focus was on word
correction. Among 60 phrases, 8 contained omission errors,
and the rest contained substitution errors. The average(SD)
edit distance between the sentence with errors and target sen-
tences was 1.9(1.2). Each phrase contained an average(SD) of
1.1(0.3) errors. The average length of a target phrase in this
experiment was 37± 14 characters. The largest phrase length
was 68 characters, and the shortest was 16 characters. Table 3
shows 4 examples of phrases in experiment.

Sentences with errors Target sentences

1. Tjank for sending this Thanks for sending this
2. Should systematic manage

the migration
Should systems manage
the migration

3. Try ir again and let me know Try it again and let me know
4. Kind like silent freworks Kind of like silent freworks

Table 3. Examples of phrases in the experiment. The frst three sentences
contained substitution errors. The last sentence contained an omission
error.

In each trial, participants were instructed to correct errors in
the “input phrase” so that it matched the “target phrase” using
the designated editing method. Both the input phrase and
the target phrase were displayed on the screen. The errors in
the input phrase were underlined to minimize the cognitive
effort required to identify errors across conditions, as shown
in Figure 2. The participants were required to correct errors in
their current trial before advancing to their next trial.

Should a participant fail to correct the errors in the current
trial, they could use the undo button to revert the correction
and redo it, or use the de facto cursor-based editing method.
We kept the cursor-based method as fallback in each editing
condition because our JustCorrect techniques were proposed
to augment rather than replace it. We recorded the number of
trials corrected by this fallback mechanism in order to measure
the effectiveness of each JustCorrect technique.

Prior to each condition, each participant completed a warm-
up session to familiarize themselves with each method. The
sentences in the warm-up session were different from those
in the formal test. After the completion of each condition,
participants took a three minutes break. The order of the
four conditions was counterbalanced using a balanced Latin
Square.

Session 7A: Responsive/Adaptive Input:
State Changes and Correction

 UIST '20, October 20–23, 2020, Virtual Event, USA

491

6

Figure 2. A user editing a sentence using JustCorrect-Gesture. The tar-
get sentence is displayed at the top of the screen, and the sentence with
errors is displayed below. The underlines show two errors in the phrase:
this –> that, making –> working. The user is shown gesture typing the
word that to correct the frst error.

In total, the experiment included: 16 participants × 4 condi-
tions × 60 trials = 3,840 trials.

Results
Text Correction Time
We defned the “text correction time” as the duration from
when a sentence was displayed on the screen to when it was
submitted and completely revised. Thus, this metric conveys
the effciency of each JustCorrect text correction technique.

Figure 3. Mean (95% CI) text correction times for each method for suc-
cessful trials.

Figure 3 shows text correction time for trials that were success-
fully corrected using the designated editing method in each
condition (unsuccessful trials are described below in the next
subsection). The mean ± 95% CI of text correction time was
6.21 ± 0.59 seconds for the de facto cursor-based technique,
6.05 ± 0.83 seconds for JustCorrect-Gesture, 5.62 ± 0.70
seconds for JustCorrect-Tap, and 10.22 ± 1.14 seconds for
JustCorrect-Voice. A repeated measures ANOVA showed that
the text correction technique had a signifcant main effect of on
overall trial time (F3,45 = 71.96, p < .001). Pairwise compar-
isons with Bonferroni correction showed that differences were
statistically signifcant between all pairs (p < 0.001) except
for JustCorrect-Tap vs. JustCorrect-Gesture (p = 0.17) and
JustCorrect-Gesture vs. the cursor-based technique (p = 0.67).

To understand the effectiveness of the algorithm under differ-
ent conditions, we analyzed cases which were successfully
edited in the frst editing attempt. In total, there were 3328
such trials, among 3840 total trials. We grouped these trials

by edit distance between the target sentence and the incorrect
sentence. The average text correction times on different meth-
ods are shown in Figure 4. When the edit distance was 1, the
correction times in de facto cursor-based technique were close
to those in the gesture-based and tap-based techniques. When
the edit distance was 2, 3 or 4, the gesture- and tap-based
techniques were faster than the de facto baseline.

Figure 4. Mean (95% CI) text correction times for the tasks successfully
completed on the frst attempt.

Success Rate
We defne the success rate as the percentage of correct tri-
als out of all trials for a given correction technique. Figure 5
shows success rates across conditions. The mean ± 95% CI for
success rate for each input technique was: 100.0± 0% for the
de facto cursor-based technique, 96.2 ± 2.2% for JustCorrect-
Gesture, 97.1 ± 0.03% for JustCorrect-Tap, and 95.1± 0.03%
for JustCorrect-Voice. A repeated measures ANOVA showed
that text editing technique had a signifcant effect of on the
overall success rate (F3,45 = 14.31, p < .001). Pairwise com-
parisons with Bonferroni correction showed the difference
was signifcant between JustCorrect-Tap vs. Cursor-based,
JustCorrect-Gesture vs. Cursor-based, JustCorrect-Voice vs.
Cursor-based (p < 0.01). All other pairwise comparisons were
not statistically signifcant.

We discovered that there were some cases that were challeng-
ing to correct with our JustCorrect techniques (i.e., JustCorrect-
Tap, JustCorrect-Gesture, and JustCorrect-Voice). In the frst
example of Table 4, some users found it was diffcult to input
“John” correctly using JustCorrect-Voice. In the second exam-
ple, users sometimes failed to input contract correctly because
they often mistyped it as contact.

Sentences with errors Target Sentences

phone this message concern me John this message concerns me
Has Brian had his concert yet Has Brian had his contract yet

Table 4. Two examples of sentences that were hard to correct with
JustCorrect (JustCorrect-Tap, JustCorrect-Gesture, and JustCorrect-
Voice).

Subjective Feedback
At the end of the study, we asked the participants to rate
each method on a scale of 1 to 5 (1: dislike, 5: like). As

Session 7A: Responsive/Adaptive Input:
State Changes and Correction

 UIST '20, October 20–23, 2020, Virtual Event, USA

492

7

Figure 5. Success rate by input technique.

Figure 6. The median rating for cursor-based correction, JustCorrect-
Gesture, JustCorrect-Tap and JustCorrect-Voice.

shown by Figure 6, the median rating for cursor-based editing,
JustCorrect-Gesture, JustCorrect-Tap, and JustCorrect-Voice
was 3.0, 4.0, 5.0, and 2.5, respectively. A non-parametric
Friedman test of differences among repeated measure was car-
ried out to compare the ratings for the four conditions. There
was a signifcant difference between the methods (Xr

2(3) =
17.29, p < 0.001).

Participants were also asked which method(s) they would like
to use during text entry on their phones. Twelve participants
mentioned they would use JustCorrect-Tap, and eight would
also like to use JustCorrect-Gesture. Six participants also
considered the de facto cursor-based method useful, especially
for revising short words or character-level errors. Only two
participants liked to use JustCorrect-Voice for text editing,
while most participants had privacy concerns about using it in
a public environment.

Discussion
Our investigation led to the following fndings.

First, both JustCorrect-Gesture and JustCorrect-Tap showed
good potential as correction methods. Both JustCorrect-
Gesture and JustCorrect-Tap successfully corrected more than
95% of the input phrases. They both saved average correc-
tion time over the de facto cursor-based correction method.
These two methods were especially benefcial for correcting
sentences that had large editing distances relative to the tar-
get sentences. As shown in Figure 4, for sentences with an
editing distance of 4, JustCorrect-Gesture and JustCorrect-Tap
reduced correction time by nearly 30% over the cursor-based
method.

Second, JustCorrect-Gesture and JustCorrect-Tap exhibited
their own pros and cons. Participants had differing prefer-
ences: users who were familiar with gesture typing liked
JustCorrect-Gesture because it did not require pressing the edit-
ing button, while other participants preferred JustCorrect-Tap
because they mostly used tap-typing for text entry. JustCorrect-
Gesture saved the editing button-tap compared to JustCorrect-
Tap because gesture typing naturally signals the end of enter-
ing a word by the lifting of the fnger. On the other had, in
JustCorrect-Gesture, gesture typing is used to correct text only,
limiting its scope of usage. We implemented both of the meth-
ods on our keyboard prototype (see below) and investigated
how users would choose between them.

Third, the cursor-based text editing method serves as a reliable
fallback technique. JustCorrect-Gesture and JustCorrect-Tap
failed to edit 3 - 4 % of input phrases, while the cursor-based
editing method was successful for all phrases. We suggest
using JustCorrect-Gesture and JustCorrect-Tap to complement
the cursor-based editing method, rather than replacing it.

Fourth, contrary to the promising performance of JustCorrect-
Gesture and JustCorrect-Tap, JustCorrect-Voice under-
performed. The reason was that JustCorrect required a user
to frst enter the editing word, but the existing speech-to-text
recognition engine often performed poorly when recognizing
a single word in isolation, especially for short words. We
discovered that entering common words such as for, to, and
are are challenging when using voice, which caused diffculty
in correcting phrases with errors on these words.

Overall, our study suggested that JustCorrect nicely aug-
ments a soft keyboard; both tap typing and gesture typing
are promising modalities for JustCorrect. As a result, we de-
veloped a fully functional keyboard prototype implementing
both JustCorrect-Tap and JustCorrect-Gesture, called JustCor-
rect Keyboard, and systematically evaluated it against existing
text editing methods.

AUGMENTING A SOFT KEYBOARD WITH JUSTCORRECT
Based on the fndings and lessons learned from Experiment
1, we augmented a soft keyboard with JustCorrect, called
JustCorrect Keyboard.

Supporting JustCorrect-Tap and JustCorrect-Gesture
First, we integrated the two most promising JustCorrect tech-
niques: JustCorrect-Gesture and JustCorrect-Tap, into the
keyboard. We expected both of them would complement
the de facto cursor-based correctly method. In other words,
JustCorrect-Gesture, JustCorrect-Tap, and the cursor-based
correction method all co-existed together in JustCorrect Key-
board.

As in Experiment 1, the default setting is that a user triggers
JustCorrect-Tap by pressing the editing button, and triggers
JustCorrect-Gesture by switching from tap typing to gesture
typing. In the case where a user wants to have gesture typing
available for text entry and not just text editing, the keyboard
has an option for using the editing button to trigger JustCorrect-
Gesture. If this option is selected, a user needs to press the edit-
ing button after gesture typing to trigger JustCorrect-Gesture,

Session 7A: Responsive/Adaptive Input:
State Changes and Correction

 UIST '20, October 20–23, 2020, Virtual Event, USA

493

8

just as with JustCorrect-Tap. This option keeps the gesture
typing available for regular text entry.

Double-Tapping as a Fallback
Second, we introduced double-tapping as a fallback technique
to address the problem that some errors were hard to correct
with JustCorrect, as revealed by Experiment 1. It works as
follows: In the case where JustCorrect cannot provide accurate
correction suggestions, a user can refne the correction location
by double-tapping the area. Then the keyboard automatically
applies the correction to the specifed area. More specifcally,
if the user double-taps a word, the post hoc text correction
algorithm will substitute the tapped word wi with the editing
word w ∗, and insert w ∗ before or after the tapped word as the
two additional suggestions. If the user double-taps on a space
between two words, the algorithm will insert w ∗ into the space,
and substitute the words before and after the space with w ∗ for
the two additional suggestions.

JustCorrect Keyboard, was implemented based on the An-
droid AOSP keyboard. It used a commonly known statistical
decoder [12] for tap typing input, and a commonly known
gesture typing algorithm [20, 41] to decode gestures. It used a
trigram language model with a lexicon size of 60K words.

After the integration, we evaluated JustCorrect Keyboard in a
controlled experiment.

EXPERIMENT 2: EVALUATING JUSTCORRECT KEY-
BOARD
We conducted a controlled experiment to formally evaluate
JustCorrect Keyboard in a post hoc text correction task. Our
goal was to understand whether having multiple text correction
techniques available together would beneft users. In other
words, we aimed to understand whether JustCorrect comple-
ments existing text correction methods. On JustCorrect Key-
board, users could choose whatever correction method they
preferred, including JustCorrect-Tap, JustCorrect-Gesture, the
cursor-based method, or the newly added fallback method of
double-tapping to indicate the correction position.

Our experiment included two studies. The frst study com-
pared JustCorrect Keyboard with the stock Android Keyboard
with cursor-based method, while the second study compared
JustCorrect Keyboard with the recently published “Type, then
Correct” (TTC) keyboard [42]. The two studies were almost
identical except for the levels of independent variable and par-
ticipants. We ran these two separate studies to minimize the
potential carryover effects from learning across conditions.

Participants and Apparatus
In the frst study, we recruited 16 participants (4 females)
between 21 and 30 years old (Mean = 25.4,Std. = 2.3). The
self-reported median familiarity with tap typing and gesture
typing (1: not familiar, 5: very familiar) were 4.5 and 4.0,
respectively.

In the second study, we recruited an entirely different group
of 16 participants (4 females) between 19 and 24 years old
(Mean = 21.1, Std. = 1.3). The self-reported median familiar-
ity with tap typing and gesture typing (1: not familiar, 5: very

familiar) were 5.0 and 4.0, respectively. A Google Nexus 5X
smartphone was used in both studies. A 2017 Macbook Pro
(Processor: 2.9 GHz Quad-Core Intel Core i7, Memory: 16
GB 2133 MHz LPDDR3) with a 15-inch screen was used as
the server for “Type, then Correct” (TTC) condition [42].

Design
Both studies 1 and 2 adopted within-subject designs. The
independent variable was the keyboard with different text cor-
rection methods in both studies. The only difference was that
this independent variable had different levels in two studies.

In study 1 the independent variable had two levels : (1) An-
droid stock keyboard with the de facto cursor-based method
for correction and (2) JustCorrect Keyboard, the keyboard
augmented by JustCorrect.

In study 2, the frst level of the independent variable changed.
Its two levels were: (1) “Type, then Correct” (TTC) keyboard
[42], and (2) JustCorrect Keyboard.

Procedure
We designed a text editing task similar to Experiment 1. We
frst randomly chose 120 sentences with errors from Palin’s
dataset [29]. This dataset included both the target sentences
and the input sentences with errors from users. Palin’s
dataset [29] was collected on mobile devices, which suited our
study well. We then evenly divided 120 sentences into “Set
1” and “Set 2”, and balanced the number of errors in both sets.
Among the 60 sentences in each set, 8 of them had word omis-
sion errors, and 52 had word substitution errors. The average
length of sentences was 41 character long for “Set 1” and 42
character long for “Set 2”. The average(SD) editing distance
between the input sentences and target sentences were 2.0(1.4)
for “Set 1” and 2.2(1.6) for “Set 2”.

In the frst study, each participant was instructed to correct
phrases containing errors to transform them into target phrases.
They would not advance to the next trial until all the errors
were corrected. The two levels of the independent variable
were counterbalanced across participants. Half of the partici-
pants frst edited “Set 1” with JustCorrect Keyboard and then
edited “Set 2” with the cursor-based method of the stock An-
droid keyboard. The other half did so in the opposite order.
A similar experiment design was used in prior work [13, 23,
30, 35, 36] to avoid potential carryover effects from learning.
Each participant completed a warm-up session for 3-5 minutes
using both methods before the study.

The second study followed exactly the same design as the
frst. The only difference was that the two keyboards in this
study were JustCorrect Keyboard and TTC [42]. In the TTC
condition, users could use either the “Magic Key” or “Throw”
methods for correction. These were the two best performing
designs according to the authors’ published report [42].

Results
Error Rate
Because participants were required to successfully correct
errors in a trial to advance to the next one, no error was left.
In other words, error rate was 0% for all trials. Text correction

Session 7A: Responsive/Adaptive Input:
State Changes and Correction

 UIST '20, October 20–23, 2020, Virtual Event, USA

494

9

time became the main quantitative metric for measuring the
performance.

Text Correction Time
As in Experiment 1, text correction time was the duration
from when a sentence was displayed on the screen to when
it was submitted and completely revised. Figure 7 shows
mean±95% CI text correction time for all trials for JustCorrect
Keyboard and the cursor-based methods in the frst study, and
for JustCorrect Keyboard and TTC methods in the second
study.

In the frst study, the mean±95% CI text correction time across
trials was 6.90±0.67 seconds for the cursor-based method,
and 6.02±0.58 seconds for JustCorrect Keyboard, as shown in
Figure 7. A paired-samples t-test indicates that the difference
was statistically signifcant (t15 = 2.52, p = 0.0237).

In the second study, the average text correction time for each
task was 7.30±0.56 seconds for TTC, and 6.59±0.74 seconds
for JustCorrect Keyboard, as shown in Figure 7. A paired-
samples t-test indicates that this difference was statistically
signifcant (t15 = 3.37, p = 0.0042).

Figure 7. Mean (95% CI) text correction time for all trials per condition
in the frst study (left) and the second study (right). Lower is better.

To understand how participants performed as they progressed
in the studies, we grouped the 60 trials evenly into 6 blocks.
The frst 10 trials formed Block 1 while the last 10 trails
formed Block 6. Figure 8 shows mean (95% CI) text correction
time across blocks. As shown, the mean text correction time
in the JustCorrect Keyboard condition was lower than that
in cursor-based condition and in the TTC condition for the
majority of the trial blocks.

Correction Behavior
To further understand users’ behaviors, we analyzed the per-
centage of each method’s feature usage in both studies (Fig-
ure 9). Both JustCorrect Keyboard and TTC have multiple
text editing methods available, while the cursor-based method
has only one editing method available. With JustCorrect Key-
board, participants used either JustCorrect-Tap or JustCorrect-
Gesture to edit more than 85% of trials. They occasionally
used the cursor-based method for trials that were hard to edit
for JustCorrect-Tap or JustCorrect-Gesture. The mixed usage
of different editing methods showed that these editing methods
complemented each other. Participants took advantage of the
automatic editing method most of the time, but also for 12.3%
of trials in study 1 and 5.7% of trials in study 2 they reverted
to the cursor-based method.

Figure 8. Average (95% CI) text correction time (seconds) by block in (a)
the cursor-based condition and in the JustCorrect Keyboard condition,
and in (b) the TTC and JustCorrect Keyboard conditions. Blocks were
formed according to the testing order of trials. Each block had 10 trials.
Lower is better.

The second study comparing TTC to JustCorrect Keyboard
showed that JustCorrect Keyboard reduced the text correc-
tion time compared to TTC. We particularly broke the text
correction time for both JustCorrect Keyboard and TTC into
two parts: (1) target word input time, which represented the
amount of time for entering the target word, and (2) editing
time, which represented the time for using the entered word
to edit a sentence. Figure 10 showed JustCorrect Keyboard
saves overall text correction time over TTC, probably because
JustCorrect Keyboard required only minimal user operation to
edit the sentence after the target word was entered.

In the second study, we also discovered that on average users
reverted to the cursor-based method for 11.1 (SD = 3.2) trials
in TTC, and for 4.6 (SD = 2.2) trials in JustCorrect. The
average number of TTC (or JustCorrect) usage before reverting
to cursor-based method among these trials were 1.4 (SD =
0.3) for TTC and 1.6 (SD = 0.5) for JustCorrect, indicating
that users quickly switched to the cursor-based method after
discovering TTC (or JustCorrect) failed to correct the errors.

Subjective Feedback
At the end of the study, subjects were asked to provide a nu-
merical rating (1: least demanding, 10: most demanding) on
mental and physical demand. Mental demand describes how
much mental effort is required. Physical demand describes
how much physical effort is required. Figure 11 showed the
mean subjective ratings. Subjects’ subjective ratings were
in favor of JustCorrect Keyboard for physical demand. For
mental demand, for the cursor-based method and for Just-
Correct Keyboard, the scores were approximately the same.
In the TTC and JustCorrect Keyboard conditions, subjective
ratings were in favor of TTC for mental demand. We also

Session 7A: Responsive/Adaptive Input:
State Changes and Correction

 UIST '20, October 20–23, 2020, Virtual Event, USA

495

https://6.59�0.74
https://7.30�0.56
https://6.02�0.58
https://6.90�0.67

10

Figure 9. The percentage of different text editing features used per con-
dition. Note that JustCorrect Keyboard, JustCorrect-Tap, JustCorrect-
Gesture, and cursor-based editing method were all available together;
for TTC, the throw, Magic Key, and cursor-based methods were all avail-
able together.

Figure 10. Mean (95% CI) target word input time and editing time for
TTC and JustCorrect Keyboard in the second study.

asked the participants to rate each method on a scale of 1 to
5 (1: dislike, 5: like). The median rating for cursor-based
method and JustCorrect Keyboard was 3 and 5 respectively.
A Wilcoxon Signed-Ranks Test indicated that the subjective
ratings of JustCorrect Keyboard was signifcantly higher than
that of Cursor-based method (Z = 3.07, p = 0.002). Indeed,
median Pain Score rating was 5.0 both pre- and post-treatment.
For TTC and JustCorrect Keyboard, the median rating was
3 and 5, respectively. A Wilcoxon Signed-Ranks Test indi-
cated that the subjective ratings of JustCorrect Keyboard was
signifcantly higher than that of TTC (Z = 2.97, p = 0.003).

Participants were also asked which methods on JustCorrect
Keyboard they would like to use for real-world text entry on
their phones. Twelve participants chose JustCorrect-Gesture,
and eight chose JustCorrect-Tap.

Discussion
First, the study results showed that adopting JustCorrect sub-
stantially improved text correction effciency. JustCorrect
Keyboard shortened the average text correction time by 12.8%
over the stock Android keyboard, and by 9.7% over the TTC
keyboard. The subjective ratings were also overwhelmingly
in favor of JustCorrect Keyboard. The improved effciency
was largely attributed to the reduction of user intervention.
For example, compared with the TTC keyboard, as shown in
Figure 10, the time saved with JustCorrect Keyboard occurred
mainly in the manual operation stage when editing.

Figure 11. Mean (SD) of subjective ratings and median of overall pref-
erence. For measure 1, 2, 4 and 5, a lower rating means lower mental
and physical demand. For measure 3 and 6 (1: least, 5: most preferred),
a higher score means the method is more preferred. JustCorrect Key-
board received favorable ratings in categories 2, 5, and 6.

Second, in the JustCorrect Keyboard conditions, participants
corrected a majority (87.7% in the frst study and 94.3% in
the second study) of the sentences using JustCorrect, and
corrected the rest using the cursor-based method. This result
showed that participants were able to take advantage of the
high effciency of JustCorrect, and reverted to cursor-based
correction when necessary. Our results therefore showed that
different text correction methods can complement each other.

Third, participants had split preferences on JustCorrect-Tap
and JustCorrect-Gesture (Figure 9). In the frst study, 39.6% of
all trials were corrected by JustCorrect-Tap, and 46.6% were
corrected by JustCorrect-Gesture; in the second study, 56.1%
were by JustCorrect-Tap, and 33.8% were by JustCorrect-
Gesture. Among the 32 participants in both studies, 15 used
only JustCorrect-Tap on JustCorrect Keyboard, and the oth-
ers used a mix of JustCorrect-Tap and JustCorrect-Gesture
on JustCorrect Keyboard. Some users commented that they
used JustCorrect-Gesture because it saved the button-pressing
action compared to JustCorrect-Tap. Some users preferred
JustCorrect-Tap over JustCorrect-Gesture because they were
not familiar with gesture typing to begin with.

Overall, the results show incorporating JustCorrect signif-
cantly improves text correction effciency. Having an auto-
matic and intelligent post-hoc text correction benefts users.

LIMITATION AND FUTURE WORK
JustCorrect is designed to facilitate error correction, which is
only one of the text editing actions. Other editing actions such
as changing text formats and copying/pasting text are beyond
the scope of the present work.

JustCorrect assumes that users type a full sentence and then
check typing mistakes or rephrase their wording, so it will
mostly be useful for users who type a sentence ahead. If a user
corrects mistakes during the middle of entering a sentence,
the edit distance and word embedding channels will still be
able to make appropriate corrections, but the sentence channel
may be affected. The reason is that the edit distance and
word embedding channels use only word-level information
for correction which will not be affected by the incomplete
sentence. In contrast, the sentence channel uses the trigram
language model to estimate the sentence score. It may be

Session 7A: Responsive/Adaptive Input:
State Changes and Correction

 UIST '20, October 20–23, 2020, Virtual Event, USA

496

11

affected by the incomplete sentence because the unseen words
and missing sentence ending may affect the prediction made
by the trigrams in the language model. For correcting errors
in the middle of entering a sentence, one option is to increase
the weights of edit distance and word embedding channels
and decrease the weight of sentence channel in the post hoc
correction algorithm. Future research is needed to investigate
whether this option is effective.

JustCorrect is designed based on the assumption that there are
two main types of word substitutions: 1. replacing a string
with a word which shares similar characters, or 2. replacing
a word with a new word which has a similar meaning. The
type 1 substitution is often observed in correcting typos, simple
grammatical mistakes, or false autocorrection, because in these
cases the intended word often shares similar characters with
the incorrect text. The type 2 substitution is often observed in
rephrasing the wording. If a user wants to replace one word
with multiple words such as replacing making with working on,
JustCorrect should be triggered in two steps: frst substituting
making with working, and then inserting on.

The scope of JustCorrect is limited to the most recently entered
sentence. Because the post hoc correction algorithm adopts an
exhaustive search algorithm to determine the intended editing
location, scaling it up to cover more text would be challenging.
If the search scope is beyond one sentence, the algorithm
would beneft from additional location information input such
as using the fnger touch to approximately specify the search
area (e.g., double-tapping).

Additionally, because JustCorrect relies on the keyboard to
decode any input word wi from input signals, the keyboard
decoding algorithm may affect the entering of the editing
word (denoted by wt because it is the last entered word). For
example, the word entered right before entering the editing
word (denoted by wt−1) may negatively infuence the keyboard
decoding of the editing word wt , because the editing word wt
will be eventually placed in the middle of the sentence but the
word wt−1 is unlikely to be the fnal preceding word for the
editing word wt . In other words, wt−1 is the wrong preceding
word for wt . To mitigate this issue, one option is to instruct the
keyboard to switch to a unigram language model for decoding
the editing word wt . Because a unigram language model does
not involve previously entered word wt−1 for decoding, the
potential negative effect from the previously entered word
wt−1 on the keyboard decoding of editing word wt would be
eliminated. Implementing this feature requires the keyboard
to detect when a user starts entering the editing word. In
JustCorrect-Gesture or JustCorrect-Voice, the keyboard can
detect the start of entering the editing word by observing
the input modality switching. In JustCorrect-Tap, a small
requirement such as requiring the user to press the editing
button before entering the editing word would signal the start
of entering the editing word.

CONCLUSION
The key takeaway from this work is that JustCorrect nicely
complements existing text correction methods and signif-
cantly enhances text editing performance for users. By re-
ducing manual navigation operations through machine intel-

ligence, it makes the post hoc text correction process easier
for users. We solved two critical problems for enabling Just-
Correct. (1) We devised the post hoc correction algorithm,
which infers a user’s correction intention based on the entered
word. (2) We investigated which input modality was suitable
for JustCorrect and found that both tap and gesture typing
are appropriate for performing JustCorrect. Based on these
fndings, we augmented a soft keyboard with JustCorrect. Our
second experiment, consisting of two studies, showed that
JustCorrect Keyboard outperformed the de facto cursor-based
editing method on the stock Android keyboard, and it also
outperformed the “Type, then Correct” TTC keyboard [42] in
post hoc text correction tasks. JustCorrect Keyboard reduced
the correction time by 12.8% over the stock Android keyboard,
and 9.7% over TTC, and was favored most. Participants were
able to use JustCorrect to successfully correct errors in more
than 95% of testing phrases. Overall, the results showed that
JustCorrect nicely complements existing text correction meth-
ods, making text correction more automatic and intelligent
than prior techniques.

ACKNOWLEDGEMENT
We thank anonymous reviewers for their insightful comments,
and our user studies participants. This work was supported by
NSF CHS-1815514, and NIH R01EY030085. This work was
done as part of the Ph.D. dissertation of Wenzhe Cui, a Stony
Brook Ph.D. student supervised by Dr. Xiaojun Bi.

REFERENCES
[1] Eneko Agirre, Daniel Cer, Mona Diab, Aitor

Gonzalez-Agirre, and Weiwei Guo. 2013. *SEM 2013
shared task: Semantic Textual Similarity. In Second
Joint Conference on Lexical and Computational
Semantics (*SEM), Volume 1: Proceedings of the Main
Conference and the Shared Task: Semantic Textual
Similarity. Association for Computational Linguistics,
Atlanta, Georgia, USA, 32–43.
https://www.aclweb.org/anthology/S13-1004

[2] Jessalyn Alvina, Carla F. Griggio, Xiaojun Bi, and
Wendy E. Mackay. 2017. CommandBoard: Creating a
General-Purpose Command Gesture Input Space for
Soft Keyboard. In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’17). ACM, New York, NY, USA, 17–28. DOI:
http://dx.doi.org/10.1145/3126594.3126639

[3] Apple. 2018. About the keyboards settings on your
iPhone, iPad, and iPod touch.
https://support.apple.com/en-us/HT202178. (2018).
[Online; accessed 22-August-2019].

[4] Ahmed Sabbir Arif, Sunjun Kim, Wolfgang Stuerzlinger,
Geehyuk Lee, and Ali Mazalek. 2016. Evaluation of a
Smart-Restorable Backspace Technique to Facilitate
Text Entry Error Correction. In Proceedings of the 2016
CHI Conference on Human Factors in Computing
Systems (CHI ’16). Association for Computing
Machinery, New York, NY, USA, 5151–5162. DOI:
http://dx.doi.org/10.1145/2858036.2858407

Session 7A: Responsive/Adaptive Input:
State Changes and Correction

 UIST '20, October 20–23, 2020, Virtual Event, USA

497

https://www.aclweb.org/anthology/S13-1004
http://dx.doi.org/10.1145/3126594.3126639
https://support.apple.com/en-us/HT202178
http://dx.doi.org/10.1145/2858036.2858407

12

[5] Microsoft Azure. 2019. Text to Speech API. (2019).
https://azure.microsoft.com/en-us/services/
cognitive-services/text-to-speech/ [Online; accessed
25-August-2019].

[6] Xiaojun Bi, Yang Li, and Shumin Zhai. 2013. FFitts
Law: Modeling Finger Touch with Fitts’ Law. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’13). Association
for Computing Machinery, New York, NY, USA,
1363–1372. DOI:
http://dx.doi.org/10.1145/2470654.2466180

[7] Xiaojun Bi, Tom Ouyang, and Shumin Zhai. 2014. Both
Complete and Correct?: Multi-objective Optimization of
Touchscreen Keyboard. In Proceedings of the 32Nd
Annual ACM Conference on Human Factors in
Computing Systems (CHI ’14). ACM, New York, NY,
USA, 2297–2306. DOI:
http://dx.doi.org/10.1145/2556288.2557414

[8] Wenzhe Cui, Jingjie Zheng, Blaine Lewis, Daniel Vogel,
and Xiaojun Bi. 2019. HotStrokes: Word-Gesture
Shortcuts on a Trackpad. In Proceedings of the 2019
CHI Conference on Human Factors in Computing
Systems (CHI ’19). ACM, New York, NY, USA, Article
165, 13 pages. DOI:
http://dx.doi.org/10.1145/3290605.3300395

[9] Mark Davies. 2018. The corpus of contemporary
American English: 1990-present. (2018).

[10] Katrin Erk. 2012. Vector space models of word meaning
and phrase meaning: A survey. Language and
Linguistics Compass 6, 10 (2012), 635–653.

[11] Vittorio Fuccella, Poika Isokoski, and Benoit Martin.
2013. Gestures and Widgets: Performance in Text
Editing on Multi-touch Capable Mobile Devices. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’13). ACM, New
York, NY, USA, 2785–2794. DOI:
http://dx.doi.org/10.1145/2470654.2481385

[12] Joshua Goodman, Gina Venolia, Keith Steury, and
Chauncey Parker. 2002. Language Modeling for Soft
Keyboards. In Proceedings of the 7th International
Conference on Intelligent User Interfaces (IUI ’02).
ACM, New York, NY, USA, 194–195. DOI:
http://dx.doi.org/10.1145/502716.502753

[13] Tovi Grossman, Pierre Dragicevic, and Ravin
Balakrishnan. 2007. Strategies for Accelerating On-line
Learning of Hotkeys. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’07). ACM, New York, NY, USA, 1591–1600.
DOI:http://dx.doi.org/10.1145/1240624.1240865

[14] Kenneth Heafeld. 2011. KenLM: Faster and Smaller
Language Model Queries. In Proceedings of the EMNLP
2011 Sixth Workshop on Statistical Machine Translation.
Edinburgh, Scotland, United Kingdom, 187–197.
https://kheafield.com/papers/avenue/kenlm.pdf

[15] Christian Holz and Patrick Baudisch. 2011.
Understanding Touch. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems
(CHI ’11). Association for Computing Machinery, New
York, NY, USA, 2501–2510. DOI:
http://dx.doi.org/10.1145/1978942.1979308

[16] ExIdeas Inc. 2018. MessagEase - The Smartest Touch
Screen keyboard. https://www.exideas.com/ME/index.php.
(2018). [Online; accessed 22-August-2019].

[17] Grammarly Inc. 2020. Grammarly Keyboard. (2020).
https://en.wikipedia.org/wiki/Grammarly [Online;
accessed May-2020].

[18] Poika Isokoski, Benoît Martin, Paul Gandouly, and
Thomas Stephanov. 2010. Motor Effciency of Text
Entry in a Combination of a Soft Keyboard and
Unistrokes. In Proceedings of the 6th Nordic Conference
on Human-Computer Interaction: Extending Boundaries
(NordiCHI ’10). ACM, New York, NY, USA, 683–686.
DOI:http://dx.doi.org/10.1145/1868914.1869004

[19] Andreas Komninos, Mark Dunlop, Kyriakos Katsaris,
and John Garofalakis. 2018. A Glimpse of Mobile Text
Entry Errors and Corrective Behaviour in the Wild. In
Proceedings of the 20th International Conference on
Human-Computer Interaction with Mobile Devices and
Services Adjunct (MobileHCI ’18). ACM, New York,
NY, USA, 221–228. DOI:
http://dx.doi.org/10.1145/3236112.3236143

[20] Per-Ola Kristensson and Shumin Zhai. 2004. SHARK2:
A Large Vocabulary Shorthand Writing System for
Pen-based Computers. In Proceedings of the 17th
Annual ACM Symposium on User Interface Software
and Technology (UIST ’04). ACM, New York, NY, USA,
43–52. DOI:http://dx.doi.org/10.1145/1029632.1029640

[21] Per Ola Kristensson and Shumin Zhai. 2007. Command
Strokes with and Without Preview: Using Pen Gestures
on Keyboard for Command Selection. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’07). ACM, New York, NY,
USA, 1137–1146. DOI:
http://dx.doi.org/10.1145/1240624.1240797

[22] Vladimir Iosifovich Levenshtein. 1966. Binary codes
capable of correcting deletions, insertions and reversals.
Soviet Physics Doklady 10, 8 (feb 1966), 707–710.
Doklady Akademii Nauk SSSR, V163 No4 845-848
1965.

[23] Frank Chun Yat Li, Richard T. Guy, Koji Yatani, and
Khai N. Truong. 2011. The 1Line Keyboard: A
QWERTY Layout in a Single Line. In Proceedings of
the 24th Annual ACM Symposium on User Interface
Software and Technology (UIST ’11). ACM, New York,
NY, USA, 461–470. DOI:
http://dx.doi.org/10.1145/2047196.2047257

[24] Google LLC. 2020. Gboard. (2020).
https://en.wikipedia.org/wiki/Gboard [Online;
accessed May-2020].

Session 7A: Responsive/Adaptive Input:
State Changes and Correction

 UIST '20, October 20–23, 2020, Virtual Event, USA

498

https://azure.microsoft.com/en-us/services/cognitive-services/text-to-speech/
https://azure.microsoft.com/en-us/services/cognitive-services/text-to-speech/
http://dx.doi.org/10.1145/2470654.2466180
http://dx.doi.org/10.1145/2556288.2557414
http://dx.doi.org/10.1145/3290605.3300395
http://dx.doi.org/10.1145/2470654.2481385
http://dx.doi.org/10.1145/502716.502753
http://dx.doi.org/10.1145/1240624.1240865
https://kheafield.com/papers/avenue/kenlm.pdf
http://dx.doi.org/10.1145/1978942.1979308
https://www.exideas.com/ME/index.php
https://en.wikipedia.org/wiki/Grammarly
http://dx.doi.org/10.1145/1868914.1869004
http://dx.doi.org/10.1145/3236112.3236143
http://dx.doi.org/10.1145/1029632.1029640
http://dx.doi.org/10.1145/1240624.1240797
http://dx.doi.org/10.1145/2047196.2047257
https://en.wikipedia.org/wiki/Gboard

13

[25] Matt Mahoney. 2011. About Text8 fle.
http://mattmahoney.net/dc/textdata.html. (2011).
[Online; accessed May-2020].

[26] Tomas Mikolov, Kai Chen, Greg S. Corrado, and Jeffrey
Dean. 2013. Effcient Estimation of Word
Representations in Vector Space. (2013).
http://arxiv.org/abs/1301.3781

[27] Hermann Ney, Ute Essen, and Reinhard Kneser. 1994.
On structuring probabilistic dependences in stochastic
language modelling. Computer Speech & Language 8, 1
(1994), 1 – 38. DOI:http://dx.doi.org/https:
//doi.org/10.1006/csla.1994.1001

[28] Per Ola Kristensson and Keith Vertanen. 2011.
Asynchronous Multimodal Text Entry Using Speech and
Gesture Keyboards.. In Proceedings of the International
Conference on Spoken Language Processing. 581–584.

[29] Kseniia Palin, Anna Feit, Sunjun Kim, Per Ola
Kristensson, and Antti Oulasvirta. 2019. How do People
Type on Mobile Devices? Observations from a Study
with 37,000 Volunteers.. In Proceedings of 21st
International Conference on Human-Computer
Interaction with Mobile Devices and Services
(MobileHCI’19). ACM.

[30] Sherry Ruan, Jacob O. Wobbrock, Kenny Liou, Andrew
Ng, and James A. Landay. 2018. Comparing Speech and
Keyboard Text Entry for Short Messages in Two
Languages on Touchscreen Phones. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol. 1, 4, Article 159
(Jan. 2018), 23 pages. DOI:
http://dx.doi.org/10.1145/3161187

[31] Khe Chai Sim. 2010. Haptic Voice Recognition:
Augmenting speech modality with touch events for
effcient speech recognition. In 2010 IEEE Spoken
Language Technology Workshop. 73–78. DOI:
http://dx.doi.org/10.1109/SLT.2010.5700825

[32] Khe Chai Sim. 2012. Speak-as-you-swipe (SAYS): A
Multimodal Interface Combining Speech and Gesture
Keyboard Synchronously for Continuous Mobile Text
Entry. In Proceedings of the 14th ACM International
Conference on Multimodal Interaction (ICMI ’12).
ACM, New York, NY, USA, 555–560. DOI:
http://dx.doi.org/10.1145/2388676.2388793

[33] Shyamli Sindhwani, Christof Lutteroth, and Gerald
Weber. 2019. ReType: Quick Text Editing with
Keyboard and Gaze. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems
(CHI ’19). ACM, New York, NY, USA, Article 203, 13
pages. DOI:http://dx.doi.org/10.1145/3290605.3300433

[34] R. William Soukoreff and I. Scott MacKenzie. 2001.
Measuring Errors in Text Entry Tasks: An Application
of the Levenshtein String Distance Statistic. In CHI ’01
Extended Abstracts on Human Factors in Computing

Systems (CHI EA ’01). Association for Computing
Machinery, New York, NY, USA, 319–320. DOI:
http://dx.doi.org/10.1145/634067.634256

[35] Desney S. Tan, Darren Gergle, Peter Scupelli, and
Randy Pausch. 2006. Physically Large Displays Improve
Performance on Spatial Tasks. ACM Trans.
Comput.-Hum. Interact. 13, 1 (March 2006), 71–99.
DOI:http://dx.doi.org/10.1145/1143518.1143521

[36] Keith Vertanen, Haythem Memmi, Justin Emge, Shyam
Reyal, and Per Ola Kristensson. 2015. VelociTap:
Investigating Fast Mobile Text Entry Using
Sentence-Based Decoding of Touchscreen Keyboard
Input. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems
(CHI ’15). ACM, New York, NY, USA, 659–668. DOI:
http://dx.doi.org/10.1145/2702123.2702135

[37] Daniel Vogel and Patrick Baudisch. 2007. Shift: A
Technique for Operating Pen-Based Interfaces Using
Touch. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’07).
Association for Computing Machinery, New York, NY,
USA, 657–666. DOI:
http://dx.doi.org/10.1145/1240624.1240727

[38] Robert A Wagner and Michael J Fischer. 1974. The
string-to-string correction problem. Journal of the ACM
(JACM) 21, 1 (1974), 168–173.

[39] Klaus Weidner. 2018. Hackers Keyboard. (2018).
http://code.google.com/p/hackerskeyboard/ [Online;
accessed 22-August-2019].

[40] Shumin Zhai and Per-Ola Kristensson. 2003. Shorthand
Writing on Stylus Keyboard. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’03). Association for Computing
Machinery, New York, NY, USA, 97–104. DOI:
http://dx.doi.org/10.1145/642611.642630

[41] Shumin Zhai and Per Ola Kristensson. 2012. The
Word-Gesture Keyboard: Reimagining Keyboard
Interaction. Commun. ACM 55, 9 (Sept. 2012), 91–101.
DOI:http://dx.doi.org/10.1145/2330667.2330689

[42] Mingrui Ray Zhang, He Wen, and Jacob O. Wobbrock.
2019. Type, Then Correct: Intelligent Text Correction
Techniques for Mobile Text Entry Using Neural
Networks. In Proceedings of the 32nd Annual ACM
Symposium on User Interface Software and Technology
(UIST ’19). Association for Computing Machinery, New
York, NY, USA, 843–855. DOI:
http://dx.doi.org/10.1145/3332165.3347924

[43] Mingrui Ray Zhang and O. Jacob Wobbrock. 2020.
Gedit: Keyboard gestures for mobile text editing. In
Proceedings of Graphics Interface (GI ’20) (GI ’20).
Canadian Information Processing Society, Toronto,
Ontario, 97–104.

Session 7A: Responsive/Adaptive Input:
State Changes and Correction

 UIST '20, October 20–23, 2020, Virtual Event, USA

499

http://mattmahoney.net/dc/textdata.html
http://arxiv.org/abs/1301.3781
http://dx.doi.org/https://doi.org/10.1006/csla.1994.1001
http://dx.doi.org/https://doi.org/10.1006/csla.1994.1001
http://dx.doi.org/10.1145/3161187
http://dx.doi.org/10.1109/SLT.2010.5700825
http://dx.doi.org/10.1145/2388676.2388793
http://dx.doi.org/10.1145/3290605.3300433
http://dx.doi.org/10.1145/634067.634256
http://dx.doi.org/10.1145/1143518.1143521
http://dx.doi.org/10.1145/2702123.2702135
http://dx.doi.org/10.1145/1240624.1240727
http://code.google.com/p/hackerskeyboard/
http://dx.doi.org/10.1145/642611.642630
http://dx.doi.org/10.1145/2330667.2330689
http://dx.doi.org/10.1145/3332165.3347924

	Introduction
	Related Work
	Error Correction Techniques on Smartphones
	Multi-Modal Text Input

	A Usage Scenario for JustCorrect
	The Post Hoc Correction Algorithm
	Substitution Score
	Edit Distance Channel
	Word Embedding Channel
	Sentence Channel

	Insertion Score
	Combining Substitution and Insertion Candidates

	Experiment 1: Evaluating the Post Hoc Correction Algorithm with Different Input Modalities
	Participants
	Apparatus
	Design
	Procedure
	Results
	Text Correction Time
	Success Rate
	Subjective Feedback

	Discussion

	Augmenting a Soft Keyboard with JustCorrect
	Supporting JustCorrect-Tap and JustCorrect-Gesture
	Double-Tapping as a Fallback

	Experiment 2: Evaluating JustCorrect Keyboard
	Participants and Apparatus
	Design
	Procedure
	Results
	Error Rate
	Text Correction Time
	Correction Behavior
	Subjective Feedback

	Discussion

	Limitation and Future Work
	Conclusion
	Acknowledgement
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 2 to page 20
 Mask co-ordinates: Horizontal, vertical offset 291.15, 32.06 Width 43.33 Height 31.19 points
 Origin: bottom left

 1
 0
 BL

 2
 SubDoc
 20

 CurrentAVDoc

 291.1517 32.0594 43.3262 31.1948

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 12
 13
 12
 12

 1

 HistoryList_V1
 qi2base

