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ABSTRACT  
Correcting errors in entered text is a common task but usually 
diffcult to perform on mobile devices due to tedious cursor 
navigation steps. In this paper, we present JustCorrect, an 
intelligent post hoc text correction technique for smartphones. 
To make a correction, the user simply types the correct text at 
the end of their current input, and JustCorrect will automati-
cally detect the error and apply the correction in the form of 
an insertion or a substitution. In this way, manual navigation 
steps are bypassed, and the correction can be committed with 
a single tap. We solved two critical problems to support Just-
Correct: (1) Correction Algorithm: we propose an algorithm 
that infers the user’s correction intention from the last typed 
word. (2) Input Modalities: our study revealed that both tap 
and gesture were suitable input modalities for performing Just-
Correct. Based on our fndings, we integrated JustCorrect into 
a soft keyboard. Our user studies show that using JustCorrect 
reduces the text correction time by 12.8% over the stock An-
droid keyboard and by 9.7% over the "Type, then Correct" text 
correction technique by Zhang et al. (2019). Overall, JustCor-
rect complements existing post hoc text correction techniques, 
making error correction more automatic and intelligent. 

Author  Keywords  
Text entry; error correction; smartphones. 

CCS  Concepts  
•Human-centered computing → Human computer inter-
action (HCI); Interaction techniques;

INTRODUCTION  
Correcting errors in entered text is an inseparable yet diffcult 
part of mobile text entry. The bottleneck lies in the need for 
precise and repetitive manual control. The de facto cursor-
based text correction technique requires accurately positioning 
the cursor at the error text, repeatedly pressing backspace to 

delete errors, and re-positioning the cursor back at its orig-
inal location. The recent "Type, then Correct" technique 
(TTC) [42] eliminated these cursor control operations by (1) 
letting the user "throw" the correction at the error text, or 
(2) pressing a key to locate error candidates and eventually
commit the correction. However, TTC still requires users to
specify the correction location. Our question is whether we
can further simplify this correction process by reducing the
necessary user actions even further. In particular, can we make
text correction as effcient as text entry?

Figure 1. This fgure shows how JustCorrect works. 1. The user enters 
a sentence with an error jimo using tap typing; 2. To correct jimo to 
jumps, they can either tap-type jumps and press the editing button (2a), 
or switch to gesture type jumps(2b). 3. JustCorrect then substitutes jimo 
with jumps. Two alternative correction options are also presented. The 
editing procedure involves no manual operations except entering the cor-
rect text. 
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In this paper, we present JustCorrect, an intelligent post hoc 
text correction technique. To substitute an incorrect word or 
insert a missing word in the current entered sentence, the user 
simply types the correction at the end of their entered text, and 
JustCorrect will automatically commit the correction without 
user’s intervention. Additional options are also provided for 
better correction coverage. In this way, JustCorrect makes 
post hoc text correction on the recently entered sentence as 
straightforward as text entry. 

In creating and evaluating JustCorrect, we make the following 
contributions. (1) We offer a post hoc correction algorithm 
that infers a user’s correction intention in the current entered 
sentence based on the newly entered word. (2) In our user 
study, we found both tap typing and gesture typing are ap-
propriate input modalities for JustCorrect. Based on these 
fndings, we propose two forms of JustCorrect: JustCorrect-
Tap and JustCorrect-Gesture. The former uses tap typing, and 
the latter uses gesture typing for JustCorrect. Finally, (3) we 
integrated both JustCorrect-Tap and JustCorrect-Gesture into 
a soft keyboard. Our evaluation shows that using JustCorrect 
reduces post hoc text correction time by 12.8% over the stock 
Android keyboard, which uses de facto cursor-based text cor-
rection, and by 9.7% over TTC [42]. Overall, our research 
shows JustCorrect complements existing post hoc text cor-
rection techniques and makes text correction more automatic 
and intelligent than prior techniques. It well serves the users 
who type a full sentence ahead before checking mistakes or 
rephrasing the wording. 

RELATED  WORK  
We review previous research on text correction and multi-
modal text input. 

Error  Correction  Techniques  on  Smartphones  
Correcting errors is an inseparable and costly part of the mo-
bile text entry process [19, 29]. Previous work often adopted a 
cursor-based editing approach. For example, previous research 
proposed controlling cursor by using magnifying lens [3], 
pressing hard on the keyboard to turn it into a touchpad [3], or 
adding arrow keys [39]. Gestural operations have also been 
proposed to facilitate positioning cursor. Examples included 
using left and right gestures [11], sliding left or right from 
the space-key [16] to move the cursor, or using a “scroll ring” 
gesture along with swipes in four directions [43]. 

In addition to controlling cursor, a number of techniques have 
also been proposed to facilitate text selection. The default 
operations on a text feld on Apple iOS devices [3] and An-
droid include pressing and sliding the fnger to select a word, 
holding the fnger down on a word to select it, and double-
tapping to select a word. Gestural operations have also been 
explored, such as using two-fnger gestures [11], and clock-
wise gestures [16]. To edit the text after selecting it, modern 
keyboards [3] often adopt a widget- or menu-based approach: 
displaying a widget or pop-up menu flled with possible ac-
tions. Gesture-based command input methods [2, 8, 21] have 
been proposed to operate on the selected text. 

These cursor-based correction methods often involve repet-
itive manual operations challenging for users due to small 

screen sizes and underlying ambiguities in fnger touch lo-
cations [6, 15, 37]. To address these challenges, intelligent 
interaction techniques such as auto-correction was introduced. 
Auto-correction – automatically correcting the word being 
composed – has been a signature feature of modern keyboards 
on smartphones [12, 7, 36]. However, autocorrection is largely 
limited to the immediate word being composed, and not suit-
able for correcting errors in entered text. The smart-restorable 
backspace technique [4] adds intelligence to the backspace 
usage. It determines the number of deleted characters for each 
backspace press based on the predicted correction positions 
and can restore the previously deleted text. It can reduce the 
number of needed backspace presses in error correction. Dif-
ferently, our work aims to completely bypass the backspace 
usage. Relatedly, grammar check has been widely adopted for 
correcting typos in entered text. For example, Gboard [24] 
allows a user to tap on a word and shows alternatives on sug-
gestion bar. But correction is only limited to misspellings. 
Grammarly keyboard [17] continuously tracks entered text 
and provides suggestions on the suggestion bar. However, it 
offers all possible correction suggestions without knowing 
user’s correction intention, which could clutter the suggestion 
bar. In contrast, JustCorrect adopts a more user-guided ap-
proach. The user decides when to trigger the correction and 
indicates which word she will use for correction. 

The "Type, then Correct" technique [42] is a recent effort at 
reducing cursor operations by injecting intelligence into the 
post hoc text correction process. To correcct an error, a user 
types a correction word and either: (1) "throws" the word from 
the suggestion bar towards the error, or (2) drags their fnger 
atop a designated "Magic Key" to navigate among highlighted 
error candidates, pressing the key to commit the correction. 
This technique saves cursor manipulation, but still requires 
manual operations to specify the correction location. JustCor-
rect removes these manual operations. As we demonstrate, our 
study shows that saving these additional manual operations 
signifcantly improves post hoc text correction speed over the 
"Type, then Correct" technique [42]. 

Multi-Modal  Text  Input  
Many soft keyboards (e.g., Gboard [24]) support entering text 
via different modalities, such as tap typing, gesture typing, and 
voice input. Previous research has explored fusing informa-
tion from multiple modalities to reduce text entry ambiguity, 
such as combining speech and gesture typing [28, 32], using 
fnger touch to specify the word boundaries in speech recogni-
tion [31], or using unistrokes together with key landings [18] 
to improve input effciency. In desktop computing, combin-
ing eye gaze with keyboard typing is an effective approach 
to improve text editing [33]. Our research investigated how 
different input modalities performed for JustCorrect. It in-
volved multiple input modalities, but for correcting post hoc 
errors, not for text entry decoding which was the main focus 
of previous research. JustCorrect was particularly inspired by 
ReType [33], which used eye-gaze input to estimate the text 
editing location. We advanced it by inferring the editing in-
tention based on the entered word only, making the technique 
suitable for mobile devices, which typically are not equipped 
with eye-tracking capabilities. 
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A  USAGE  SCENARIO  FOR  JUSTCORRECT  
JustCorrect signifcantly improves text correction effciency by 
allowing the user to enter a correction at the end of their text 
and simply applying it to a previous error. Before explaining 
the technical details, we frst show a usage scenario. 

Sarah was texting a message to her friend Tom when she typed: 
We worked on the project lsst week. She discovered a miss-
spelling: lsst. Instead of moving the cursor fve characters 
back, deleting the wrong characters, and typing the correct 
characters, Sarah simply typed the word last and pressed the 
edit button. JustCorrect automatically replaced lsst with last. 
Sarah also noticed that it might be better to replace worked 
with focused, so she typed focused at the end and pressed the 
edit button again to correct the word. Lastly, she wanted to 
insert the modifer mainly before focused. She gesture typed 
mainly and JustCorrect automatically completed the task for 
her. In this case, JustCorrect was triggered by switching from 
tap typing to gesture typing. The fnal sentence then became 
We mainly focused on the project last week. In this example, 
Sarah successfully corrected a typo, substituted a word, and 
inserted a new word without ever adjusting the cursor position. 

THE  POST  HOC  CORRECTION  ALGORITHM  
The key to JustCorrect lies in successfully inferring a user’s 
editing intention based on the entered word and the prior 
context. To enable this, we developed a post hoc correction 
algorithm, as described below. 

The post hoc correction algorithm takes the current entered 
sentence S and an editing word w ∗ as input, and revises S by 
either substituting a word wi in S with w ∗, or inserting w ∗ at an 
appropriate position. The post hoc correction algorithm offers 
three post hoc correction suggestions, with the top suggestion 
automatically adopted by default and the others easily selected 
with only one additional tap. 

Take the sentence S = a quick fox jimo over a lazy dog. The 
user inputs jumps as the editing word w ∗ . Because the sen-
tence has 8 words, there are 8 substitution and 9 insertion 
possibilities: _a_quick_fox_jimo_over_a_lazy_dog_. The 9 
possible insertion positions are indicated by the underscores. 
The post hoc correction algorithm then generates 8 substitu-
tion candidates (S1 − S8), as shown in Table 1, and 9 insertion 
candidates (I1 − I9) as shown in Table 2. 

Substitution candidates  SubScorei  SSi  ESi  WSi 

S1: jumps quick fox jimo over a lazy dog 
S2: a jumps fox jimo over a lazy dog 
S3: a quick jumps jimo over a lazy dog 
S4: a quick fox jumps over a lazy dog 
S5: a quick fox jimo jumps a lazy dog 
S6: a quick fox jimo over jumps lazy dog 
S7: a quick fox jimo over a jumps dog 
S8: a quick fox jimo over a lazy jumps 

0.56 
0.89 
0.42 
1.71 
0.75 
0.56 
1.11 
0.48 

0 
0.2 
0.42 
1 
0.18 
0 
0.11 
0.18 

0 
0.2 
0 
0.6 
0 
0 
0 
0 

0.56 
0.48 
0 
0.11 
0.57 
0.56 
1 
0.31 

Table 1. An example of 8 substitution candidates. They are generated 
by replacing a word in the sentence “a quick fox jimo over a lazy dog” 
with “jumps”. Si means that ith word in the sentence wi is replaced by 
w ∗ . SubScorei is substitution score for ranking substitution candidates. 
SSi, ESi, and WSi are scores from Edit Distance, Word Embedding, and 
Sentence channels, respectively. 

 Insertion candidates InserScorei 

I1: jumps a quick fox jimo over a lazy dog 0.06 
I2: a jumps quick fox jimo over a lazy dog 0.04 
I3: a quick jumps fox jimo over a lazy dog 0.52 
I4: a quick fox jumps jimo over a lazy dog 1 
I5: a quick fox jimo jumps over a lazy dog 0.91 
I6: a quick fox jimo over jumps a lazy dog 0.24 
I7: a quick fox jimo over a jumps lazy dog 0 
I8: a quick fox jimo over a lazy jumps dog 0 
I9: a quick fox jimo over a lazy dog jumps 0.5 

Table 2. An example of 9 insertion candidates. They are generated by 
inserting “jumps” before or after every word in the sentence “a quick 
fox jimo over a lazy dog”. Ii means w ∗ is inserted at the ith insertion 
location. InserScorei is insertion score for ranking insertion candidates. 

The algorithm then ranks the substitution candidates according 
to the substitution scores, and ranks the insertion candidates 
according to the insertion scores. These scores are later com-
pared to generate ultimate correction suggestions. 

Substitution  Score  
The substitution score refects how likely it is that a substitu-
tion candidate represents the user’s actual editing intention. 
It is calculated based on the assumption that there are two 
main intentions behind word substitutions: (1) correcting ty-
pos, or (2) replacing valid words with new words. We look 
for robust evidence of the substituted word along three dimen-
sions: orthographic (i.e. character) distance, syntactosemantic 
(i.e. meaning) distance, and sequential coherence (i.e. making 
sense in context). More specifcally, for the ith substitution 
candidate Si, its substitution score SubScorei is defned as: 

SubScorei = ESi +WSi + SSi, (1) 

where ESi is editing similarity, WSi is word embedding simi-
larity, and SSi is the sentence score for substitution candidates 
(explained below). The edit distance channel ESi is intended 
to handle spelling corrections. The edit distance between a 
typo and a correct word is usually small [38]. On the other 
hand, when replacing a word with a more preferred choice, 
e.g., replacing ‘great’ with ‘fantastic’, or replacing ‘road’ with 
‘path’, the two words are both valid spellings and usually close 
in meaning. The word embedding channel WSi captures simi-
lar meanings. Finally, the sentence channel SSi ensures overall 
coherence of the word choice or replacement within its con-
text. For example, in “the cost of that dresser is too great," 
replacing ‘great’ with ‘fantastic’ would change the meaning 
of the sentence, whereas inserting ‘fantastic’ before dresser 
would not. 

Edit  Distance  Channel  
The edit distance channel calculates the editing similarity 
for each substitution candidate. The Levenshtein edit dis-
tance [22] between two strings is the minimum number of 
single-character edits including deletions, insertions, or substi-
tutions needed to transform one string into another string. For 
example, the Levenshtein edit distance between “heel” and 
“health” is 3: 1 edit for replacing e with a and 2 edits for insert-
ing t and h. In this channel, we frst calculate the Levenshtein 
edit distance L(wi,w ∗) between the editing word w ∗ and the 
substituted word wi in the ith substitution candidate Si. The 
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editing similarity ESi  is defned as: 

L    (w ∗,wi)ESi  =  ,  ∗ (2)
max(|w  |, |wi|)  

where max(|w∗    |, |w ∗
i|)  denotes the max length of w  and wi. 

Equation 2 normalizes the edit distance score, similar to a 
previously introduced text entry error metric [34]. 

Word  Embedding  Channel  
The word embedding channel estimates the semantic and syn-
tactic similarity W  Si  between the editing word w∗    and the 
substituted word wi  in Si. In an “embedding model”, words 
from the vocabulary are mapped to vector of real numbers 
derived from statistics on the co-occurence of words within 
documents [10]. The distance between two vectors (i.e. word 
embeddings) can then be used as a measure of syntactic and 
semantic difference [1]. 

We learned our word embedding model over the “Text8” 
dataset [25] using the Word2Vec skip-gram approach [26]. 
Then, we calculate the cosine similarity WS   

C(w ∗ ,wi)  between 
w ∗   and each wi  using word vectors [1]. For example, in the sec-
ond row of Table 1, the substituted word wi  =“quick”  is re-
placed by the editing word w ∗   =“jumps”. We then obtain the 
word embedding similarity WS  

i  by normalizing WS  
C(w∗  ,wi)  

in the range [0,1]. 

Sentence  Channel  
The sentence channel estimates the normalized sentence score 
of Si  using a language model – a model that estimates the 
probability of a sequence of words. 

To compute the language model probability for a given sen-
tence, we trained a 3-gram language model using the KenLM 
Language Model Toolkit [14], which is a memory- and time-
effcient implementation of a Kneser-Ney smoothed language  
model  [27]. Based on word frequencies, word pairs, and word 
triples, a 3-gram language  model  takes each substitution can-
didate Si  as the input, and outputs its estimated log probability 
P(Si). By normalizing P(Si)  in the range of 0 to 1, we get the 
normalized sentence score SSi: 

P(Si)  −  min(P(S j))  SSi  =  ,  (  j  =  1, 2, ...,N)  (3)
max(P(S j))  −  min(P(S j))  

where min(P(S j))  and max(P(S j))  are the minimum and max-
imum sentence channel scores among all the N  substitution 
possibilities, assuming the sentence S  has N  words. The lan-
guage model itself was trained over the Corpus of Contem-
porary American English (COCA) [9] (2012 to 2017), which 
contains over 500 million words. The ftted language model 
fle was compiled into a binary fle to accelerate processing. 

Insertion  Score  
For insertion candidates, we only use the sentence  channel  for 
insertion scores, as there are no word-to-word comparisons for 
insertion candidates. Assuming S  has N  words and therefore 
N  +  1 candidates for insertion, the insertion score InserScorei  

4

for the candidaite Ii is calculated as: 

P(Ii) − min(P(I j)) InserScorei = ,( j = 1,2, ...,N + 1)
max(P(I j)) − min(P(I j)) 

(4) 
where min(P(I j)) and max(P(I j)) are the minimum and maxi-
mum sentence channel scores among all the N + 1 insertion 
possibilities (I1, I2, ..., IN+1). As shown, InserScorei is normal-
ized in [0,1]. 

Combining  Substitution  and  Insertion  Candidates  
The post hoc correction algorithm combines the substitution 
and insertion candidates to generate correction suggestions 
according to the pseudocode in Algorithm 1. It outputs three 
correction suggestions, and automatically commits the top 
suggestion to the text (see Figure 1, part 3). The algorithm 
frst compares top suggestions from the substitution candidate 
list and the insertion candidate list, respectively. The one with 
a higher log probability(P(Ii) or P(Si)) in its sentence channel 
is the top correction suggestion of combined candidates, while 
the other is the second suggestion. This operation ensures that 
at least one substitution and one insertion will be provided to 
the user. We compare substitution and insertion candidates by 
their log probabilities in sentence channel because sentence 
channel is the common component between these two types 
of suggestions: insertion score is calculated by sentence chan-
nel only; one of the three channels for substitution scores is 
sentence channel. Using sentence log probability could avoid 
potential bias toward substitution candidates. 

EXPERIMENT  1:  EVALUATING  THE  POST  HOC  CORREC-
TION  ALGORITHM  WITH  DIFFERENT  INPUT  MODALITIES  
To understand whether the post hoc correction algorithm is ef-
fective, especially when combined with different input modal-
ities, we evaluated three forms of JustCorrect: JustCorrect-
Gesture, JustCorrect-Tap, and JustCorrect-Voice. These varia-
tions are different JustCorrect techniques with different input 
modalities, as explained below. 

Participants  
We recruited 16 participants (four females) from 19 to 40 
years old (Mean = 26.4,Std. = 4.4). All were right-handed. 
The self-reported median familiarity with tap typing, gesture 
typing, and voice input (1: not familiar, 5: very familiar) were 
5.0, 3.5, and 2.5 respectively. Seven participants had gesture 
typing experience. The participants were instructed to use 
their preferred hand posture throughout the study. 

Apparatus  
A Google Nexus 5X device (Qualcomm Snapdragon 808 Pro-
cessor, 1.8GHz hexa-core 64-bit Adreno 418 GPU, RAM: 
2GB LPDDR3, Internal storage: 16GB) with a 5.2 inch screen 
(1920×1080 LCD at 423 ppi) was used for the experiment. 

Design  
The study was a within-subjects design. The sole independent 
variable was the text correction method with four levels: 

• Cursor-based Correction. This was identical to the existing 
de facto cursor-based text correction method on the stock 
Android keyboard. 
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Algorithm 1 Post Hoc Correction Algorithm 
1: procedure GET CORRECTION RESULT 
2: input: 
3: w ∗ ← editing word 
4: S ← editing sentence 
5: process: 
6: SC : list of substitution candidates 
7: IC : list of insertion candidates 
8: SC ← creating substitution candidate list (e.g., table 1) 
9: IC ← create insertion candidate list (e.g., table 2) 

10: calculate substitution scores for each Si in SC(eq. (1)) 
11: calculate insertion scores for each Ii in IC(eq. (4)) 
12: SortedSC ← sort SC by descending substitution scores 
13: SortedIC ← sort IC by descending insertion scores 
14: P(SC0) ← Sentence log probability of SortSC(0) 
15: P(IC0) ← Sentence log probability of SortIC(0) 
16: if P(SC0) > P(IC0) then 
17: f irstSuggestion ← SortedSC(0) 
18: secondSuggestion ← SortedIC(0) 
19: else 
20: f irstSuggestion ← SortedIC(0) 
21: secondSuggestion ← SortedSC(0) 
22: P(SC1) ← Sentence log probability of SortedSC(1) 
23: P(IC1) ← Sentence log probability of SortedIC(1) 
24: if P(SC1) > P(IC1) then 
25: thirdSuggestion ← SortSC(1) 
26: else 
27: thirdSuggestion ← SortIC(1) 
28: output: 
29: f irstSuggestion,secondSuggestion, thirdSuggestion 

•  JustCorrect-Tap. After entering a word with tap typing, 
the user presses the editing button to invoke the post hoc 
correction algorithm (see Section 1). 
Taking the sentence “a  quick  fox  jimo  over  a  lazy  
dog”, for example, if the user wants to replace “jimo”  with 
“jumps”, she tap types the editing word “jumps”  and then 
presses the editing button (see Section 1). The post hoc 
correction algorithm takes “jumps”  as the editing word and 
outputs “a  quick  fox  jumps  over  a  lazy  dog”. 

•  JustCorrect-Gesture. A user performed JustCorrect with 
gesture typing [20, 41, 40]. After entering the correction 
word w∗    with a gesture and the fnger lifts off, the system 
applied the post hoc correction algorithm to correct the ex-
isting phrase with the word. The other interactions were the 
same as those in JustCorrect-Tap. The only difference is that 
in JustCorrect-Tap a button was used to trigger JustCorrect 
because tap typing required a signal to indicate the end of 
inputting a word, while this step is omitted in JustCorrect-
Gesture because gesture typing naturally indicates the end 
of entering a word when the fnger lifts. 

•  JustCorrect-Voice. A user performed JustCorrect with voice 
input. The user frst pressed the voice input button on the 
keyboard, and spoke the editing word. The post hoc cor-
rection algorithm took the recognized word from a speech-
to-text recognition engine as the editing word w ∗   to edit 

the phrase. We used the Microsoft Azure speech-to-text en-
gine [5] for speech recognition. The remaining interactions 
were identical to the previous two conditions. 

Procedure  
Each participant was instructed to correct errors in the same 
set of 60 phrases in each condition, and the orders of the sen-
tences were randomized. We randomly chose 60 phrases with 
omission and substitution errors from Palin et al.’s mobile typ-
ing dataset [29]. This dataset included actual input errors from 
37,370 users when typing with smartphones, and their target 
sentences. We focused on omission and substitution errors 
since the post hoc correction algorithm was designed to handle 
these two types of errors. We also fltered out sentences with 
punctuation or number errors because our focus was on word 
correction. Among 60 phrases, 8 contained omission errors, 
and the rest contained substitution errors. The average(SD) 
edit distance between the sentence with errors and target sen-
tences was 1.9(1.2). Each phrase contained an average(SD) of 
1.1(0.3) errors. The average length of a target phrase in this 
experiment was 37± 14 characters. The largest phrase length 
was 68 characters, and the shortest was 16 characters. Table 3 
shows 4 examples of phrases in experiment. 

Sentences with errors Target sentences 

1. Tjank for sending this Thanks for sending this 
2. Should systematic manage 

the migration 
Should systems manage 
the migration 

3. Try ir again and let me know Try it again and let me know 
4. Kind like silent freworks Kind of like silent freworks 

Table 3. Examples of phrases in the experiment. The frst three sentences 
contained substitution errors. The last sentence contained an omission 
error. 

In each trial, participants were instructed to correct errors in 
the “input phrase” so that it matched the “target phrase” using 
the designated editing method. Both the input phrase and 
the target phrase were displayed on the screen. The errors in 
the input phrase were underlined to minimize the cognitive 
effort required to identify errors across conditions, as shown 
in Figure 2. The participants were required to correct errors in 
their current trial before advancing to their next trial. 

Should a participant fail to correct the errors in the current 
trial, they could use the undo button to revert the correction 
and redo it, or use the de facto cursor-based editing method. 
We kept the cursor-based method as fallback in each editing 
condition because our JustCorrect techniques were proposed 
to augment rather than replace it. We recorded the number of 
trials corrected by this fallback mechanism in order to measure 
the effectiveness of each JustCorrect technique. 

Prior to each condition, each participant completed a warm-
up session to familiarize themselves with each method. The 
sentences in the warm-up session were different from those 
in the formal test. After the completion of each condition, 
participants took a three minutes break. The order of the 
four conditions was counterbalanced using a balanced Latin 
Square. 
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Figure 2. A user editing a sentence using JustCorrect-Gesture. The tar-
get sentence is displayed at the top of the screen, and the sentence with 
errors is displayed below. The underlines show two errors in the phrase: 
this –> that, making –> working. The user is shown gesture typing the 
word that  to correct the frst error. 

In total, the experiment included: 16 participants × 4 condi-
tions × 60 trials = 3,840 trials. 

Results  
Text  Correction  Time  
We defned the “text correction time” as the duration from 
when a sentence was displayed on the screen to when it was 
submitted and completely revised. Thus, this metric conveys 
the effciency of each JustCorrect text correction technique. 

Figure 3. Mean (95% CI) text correction times for each method for suc-
cessful trials. 

Figure 3 shows text correction time for trials that were success-
fully corrected using the designated editing method in each 
condition (unsuccessful trials are described below in the next 
subsection). The mean ± 95% CI of text correction time was 
6.21 ± 0.59 seconds for the de facto cursor-based technique, 
6.05 ± 0.83 seconds for JustCorrect-Gesture, 5.62 ± 0.70 
seconds for JustCorrect-Tap, and 10.22 ± 1.14 seconds for 
JustCorrect-Voice. A repeated measures ANOVA showed that 
the text correction technique had a signifcant main effect of on 
overall trial time (F3,45 = 71.96, p < .001). Pairwise compar-
isons with Bonferroni correction showed that differences were 
statistically signifcant between all pairs (p < 0.001) except 
for JustCorrect-Tap vs. JustCorrect-Gesture (p = 0.17) and 
JustCorrect-Gesture vs. the cursor-based technique (p = 0.67). 

To understand the effectiveness of the algorithm under differ-
ent conditions, we analyzed cases which were successfully 
edited in the frst editing attempt. In total, there were 3328 
such trials, among 3840 total trials. We grouped these trials 

by edit distance between the target sentence and the incorrect 
sentence. The average text correction times on different meth-
ods are shown in Figure 4. When the edit distance was 1, the 
correction times in de  facto  cursor-based technique were close 
to those in the gesture-based and tap-based techniques. When 
the edit distance was 2, 3 or 4, the gesture- and tap-based 
techniques were faster than the de  facto  baseline. 

Figure 4. Mean (95% CI) text correction times for the tasks successfully 
completed on the frst attempt. 

Success  Rate  
We defne the success rate as the percentage of correct tri-
als out of all trials for a given correction technique. Figure 5 
shows success rates across conditions. The mean ± 95% CI for 
success rate for each input technique was: 100.0± 0% for the 
de facto cursor-based technique, 96.2 ± 2.2% for JustCorrect-
Gesture, 97.1 ± 0.03% for JustCorrect-Tap, and 95.1± 0.03% 
for JustCorrect-Voice. A repeated measures ANOVA showed 
that text editing technique had a signifcant effect of on the 
overall success rate (F3,45 = 14.31, p < .001). Pairwise com-
parisons with Bonferroni correction showed the difference 
was signifcant between JustCorrect-Tap vs. Cursor-based, 
JustCorrect-Gesture vs. Cursor-based, JustCorrect-Voice vs. 
Cursor-based (p < 0.01). All other pairwise comparisons were 
not statistically signifcant. 

We discovered that there were some cases that were challeng-
ing to correct with our JustCorrect techniques (i.e., JustCorrect-
Tap, JustCorrect-Gesture, and JustCorrect-Voice). In the frst 
example of Table 4, some users found it was diffcult to input 
“John” correctly using JustCorrect-Voice. In the second exam-
ple, users sometimes failed to input contract correctly because 
they often mistyped it as contact. 

Sentences with errors Target Sentences 

phone this message concern me John this message concerns me 
Has Brian had his concert yet Has Brian had his contract yet 

Table 4. Two examples of sentences that were hard to correct with 
JustCorrect (JustCorrect-Tap, JustCorrect-Gesture, and JustCorrect-
Voice). 

Subjective  Feedback  
At the end of the study, we asked the participants to rate 
each method on a scale of 1 to 5 (1: dislike, 5: like). As 
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Figure 5. Success rate by input technique. 

Figure 6. The median rating for cursor-based correction, JustCorrect-
Gesture, JustCorrect-Tap and JustCorrect-Voice. 

shown by Figure 6, the median rating for cursor-based editing, 
JustCorrect-Gesture, JustCorrect-Tap, and JustCorrect-Voice 
was 3.0, 4.0, 5.0, and 2.5, respectively. A non-parametric 
Friedman test of differences among repeated measure was car-
ried out to compare the ratings for the four conditions. There 
was a signifcant difference between the methods (Xr 

2(3) = 
17.29, p < 0.001). 

Participants were also asked which method(s) they would like 
to use during text entry on their phones. Twelve participants 
mentioned they would use JustCorrect-Tap, and eight would 
also like to use JustCorrect-Gesture. Six participants also 
considered the de facto cursor-based method useful, especially 
for revising short words or character-level errors. Only two 
participants liked to use JustCorrect-Voice for text editing, 
while most participants had privacy concerns about using it in 
a public environment. 

Discussion  
Our investigation led to the following fndings. 

First, both JustCorrect-Gesture and JustCorrect-Tap showed 
good potential as correction methods. Both JustCorrect-
Gesture and JustCorrect-Tap successfully corrected more than 
95% of the input phrases. They both saved average correc-
tion time over the de facto cursor-based correction method. 
These two methods were especially benefcial for correcting 
sentences that had large editing distances relative to the tar-
get sentences. As shown in Figure 4, for sentences with an 
editing distance of 4, JustCorrect-Gesture and JustCorrect-Tap 
reduced correction time by nearly 30% over the cursor-based 
method. 

Second, JustCorrect-Gesture and JustCorrect-Tap exhibited 
their own pros and cons. Participants had differing prefer-
ences: users who were familiar with gesture typing liked 
JustCorrect-Gesture because it did not require pressing the edit-
ing button, while other participants preferred JustCorrect-Tap 
because they mostly used tap-typing for text entry. JustCorrect-
Gesture saved the editing button-tap compared to JustCorrect-
Tap because gesture typing naturally signals the end of enter-
ing a word by the lifting of the fnger. On the other had, in 
JustCorrect-Gesture, gesture typing is used to correct text only, 
limiting its scope of usage. We implemented both of the meth-
ods on our keyboard prototype (see below) and investigated 
how users would choose between them. 

Third, the cursor-based text editing method serves as a reliable 
fallback technique. JustCorrect-Gesture and JustCorrect-Tap 
failed to edit 3 - 4 % of input phrases, while the cursor-based 
editing method was successful for all phrases. We suggest 
using JustCorrect-Gesture and JustCorrect-Tap to complement 
the cursor-based editing method, rather than replacing it. 

Fourth, contrary to the promising performance of JustCorrect-
Gesture and JustCorrect-Tap, JustCorrect-Voice under-
performed. The reason was that JustCorrect required a user 
to frst enter the editing word, but the existing speech-to-text 
recognition engine often performed poorly when recognizing 
a single word in isolation, especially for short words. We 
discovered that entering common words such as for, to, and 
are are challenging when using voice, which caused diffculty 
in correcting phrases with errors on these words. 

Overall, our study suggested that JustCorrect nicely aug-
ments a soft keyboard; both tap typing and gesture typing 
are promising modalities for JustCorrect. As a result, we de-
veloped a fully functional keyboard prototype implementing 
both JustCorrect-Tap and JustCorrect-Gesture, called JustCor-
rect Keyboard, and systematically evaluated it against existing 
text editing methods. 

AUGMENTING  A  SOFT  KEYBOARD  WITH  JUSTCORRECT  
Based on the fndings and lessons learned from Experiment 
1, we augmented a soft keyboard with JustCorrect, called 
JustCorrect Keyboard. 

Supporting  JustCorrect-Tap  and  JustCorrect-Gesture  
First, we integrated the two most promising JustCorrect tech-
niques: JustCorrect-Gesture and JustCorrect-Tap, into the 
keyboard. We expected both of them would complement 
the de facto cursor-based correctly method. In other words, 
JustCorrect-Gesture, JustCorrect-Tap, and the cursor-based 
correction method all co-existed together in JustCorrect Key-
board. 

As in Experiment 1, the default setting is that a user triggers 
JustCorrect-Tap by pressing the editing button, and triggers 
JustCorrect-Gesture by switching from tap typing to gesture 
typing. In the case where a user wants to have gesture typing 
available for text entry and not just text editing, the keyboard 
has an option for using the editing button to trigger JustCorrect-
Gesture. If this option is selected, a user needs to press the edit-
ing button after gesture typing to trigger JustCorrect-Gesture, 
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just as with JustCorrect-Tap. This option keeps the gesture 
typing available for regular text entry. 

Double-Tapping  as  a  Fallback  
Second, we introduced double-tapping as a fallback technique 
to address the problem that some errors were hard to correct 
with JustCorrect, as revealed by Experiment 1. It works as 
follows: In the case where JustCorrect cannot provide accurate 
correction suggestions, a user can refne the correction location 
by double-tapping the area. Then the keyboard automatically 
applies the correction to the specifed area. More specifcally, 
if the user double-taps a word, the post hoc text correction 
algorithm will substitute the tapped word wi with the editing 
word w ∗, and insert w ∗ before or after the tapped word as the 
two additional suggestions. If the user double-taps on a space 
between two words, the algorithm will insert w ∗ into the space, 
and substitute the words before and after the space with w ∗ for 
the two additional suggestions. 

JustCorrect Keyboard, was implemented based on the An-
droid AOSP keyboard. It used a commonly known statistical 
decoder [12] for tap typing input, and a commonly known 
gesture typing algorithm [20, 41] to decode gestures. It used a 
trigram language model with a lexicon size of 60K words. 

After the integration, we evaluated JustCorrect Keyboard in a 
controlled experiment. 

EXPERIMENT  2:  EVALUATING  JUSTCORRECT  KEY-
BOARD  
We conducted a controlled experiment to formally evaluate 
JustCorrect Keyboard in a post hoc text correction task. Our 
goal was to understand whether having multiple text correction 
techniques available together would beneft users. In other 
words, we aimed to understand whether JustCorrect comple-
ments existing text correction methods. On JustCorrect Key-
board, users could choose whatever correction method they 
preferred, including JustCorrect-Tap, JustCorrect-Gesture, the 
cursor-based method, or the newly added fallback method of 
double-tapping to indicate the correction position. 

Our experiment included two studies. The frst study com-
pared JustCorrect Keyboard with the stock Android Keyboard 
with cursor-based method, while the second study compared 
JustCorrect Keyboard with the recently published “Type, then 
Correct” (TTC) keyboard [42]. The two studies were almost 
identical except for the levels of independent variable and par-
ticipants. We ran these two separate studies to minimize the 
potential carryover effects from learning across conditions. 

Participants  and  Apparatus  
In the frst study, we recruited 16 participants (4 females) 
between 21 and 30 years old (Mean = 25.4,Std. = 2.3). The 
self-reported median familiarity with tap typing and gesture 
typing (1: not familiar, 5: very familiar) were 4.5 and 4.0, 
respectively. 

In the second study, we recruited an entirely different group 
of 16 participants (4 females) between 19 and 24 years old 
(Mean = 21.1, Std. = 1.3). The self-reported median familiar-
ity with tap typing and gesture typing (1: not familiar, 5: very 

familiar) were 5.0 and 4.0, respectively. A Google Nexus 5X 
smartphone was used in both studies. A 2017 Macbook Pro 
(Processor: 2.9 GHz Quad-Core Intel Core i7, Memory: 16 
GB 2133 MHz LPDDR3) with a 15-inch screen was used as 
the server for “Type, then Correct” (TTC) condition [42]. 

Design  
Both studies 1 and 2 adopted within-subject designs. The 
independent variable was the keyboard with different text cor-
rection methods in both studies. The only difference was that 
this independent variable had different levels in two studies. 

In study 1 the independent variable had two levels : (1) An-
droid stock keyboard with the de facto cursor-based method 
for correction and (2) JustCorrect Keyboard, the keyboard 
augmented by JustCorrect. 

In study 2, the frst level of the independent variable changed. 
Its two levels were: (1) “Type, then Correct” (TTC) keyboard 
[42], and (2) JustCorrect Keyboard. 

Procedure  
We designed a text editing task similar to Experiment 1. We 
frst randomly chose 120 sentences with errors from Palin’s 
dataset [29]. This dataset included both the target sentences 
and the input sentences with errors from users. Palin’s 
dataset [29] was collected on mobile devices, which suited our 
study well. We then evenly divided 120 sentences into “Set 
1” and “Set 2”, and balanced the number of errors in both sets. 
Among the 60 sentences in each set, 8 of them had word omis-
sion errors, and 52 had word substitution errors. The average 
length of sentences was 41 character long for “Set 1” and 42 
character long for “Set 2”. The average(SD) editing distance 
between the input sentences and target sentences were 2.0(1.4) 
for “Set 1” and 2.2(1.6) for “Set 2”. 

In the frst study, each participant was instructed to correct 
phrases containing errors to transform them into target phrases. 
They would not advance to the next trial until all the errors 
were corrected. The two levels of the independent variable 
were counterbalanced across participants. Half of the partici-
pants frst edited “Set 1” with JustCorrect Keyboard and then 
edited “Set 2” with the cursor-based method of the stock An-
droid keyboard. The other half did so in the opposite order. 
A similar experiment design was used in prior work [13, 23, 
30, 35, 36] to avoid potential carryover effects from learning. 
Each participant completed a warm-up session for 3-5 minutes 
using both methods before the study. 

The second study followed exactly the same design as the 
frst. The only difference was that the two keyboards in this 
study were JustCorrect Keyboard and TTC [42]. In the TTC 
condition, users could use either the “Magic Key” or “Throw” 
methods for correction. These were the two best performing 
designs according to the authors’ published report [42]. 

Results  
Error  Rate  
Because participants were required to successfully correct 
errors in a trial to advance to the next one, no error was left. 
In other words, error rate was 0% for all trials. Text correction 
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time became the main quantitative metric for measuring the 
performance. 

Text  Correction  Time  
As in Experiment 1, text correction time was the duration 
from when a sentence was displayed on the screen to when 
it was submitted and completely revised. Figure 7 shows 
mean±95% CI text correction time for all trials for JustCorrect 
Keyboard and the cursor-based methods in the frst study, and 
for JustCorrect Keyboard and TTC methods in the second 
study. 

In the frst study, the mean±95% CI text correction time across 
trials was 6.90±0.67 seconds for the cursor-based method, 
and 6.02±0.58 seconds for JustCorrect Keyboard, as shown in 
Figure 7. A paired-samples t-test indicates that the difference 
was statistically signifcant (t15 = 2.52, p = 0.0237). 

In the second study, the average text correction time for each 
task was 7.30±0.56 seconds for TTC, and 6.59±0.74 seconds 
for JustCorrect Keyboard, as shown in Figure 7. A paired-
samples t-test indicates that this difference was statistically 
signifcant (t15 = 3.37, p = 0.0042). 

Figure 7. Mean (95% CI) text correction time for all trials per condition 
in the frst study (left) and the second study (right). Lower is better. 

To understand how participants performed as they progressed 
in the studies, we grouped the 60 trials evenly into 6 blocks. 
The frst 10 trials formed Block 1 while the last 10 trails 
formed Block 6. Figure 8 shows mean (95% CI) text correction 
time across blocks. As shown, the mean text correction time 
in the JustCorrect Keyboard condition was lower than that 
in cursor-based condition and in the TTC condition for the 
majority of the trial blocks. 

Correction  Behavior  
To further understand users’ behaviors, we analyzed the per-
centage of each method’s feature usage in both studies (Fig-
ure 9). Both JustCorrect Keyboard and TTC have multiple 
text editing methods available, while the cursor-based method 
has only one editing method available. With JustCorrect Key-
board, participants used either JustCorrect-Tap or JustCorrect-
Gesture to edit more than 85% of trials. They occasionally 
used the cursor-based method for trials that were hard to edit 
for JustCorrect-Tap or JustCorrect-Gesture. The mixed usage 
of different editing methods showed that these editing methods 
complemented each other. Participants took advantage of the 
automatic editing method most of the time, but also for 12.3% 
of trials in study 1 and 5.7% of trials in study 2 they reverted 
to the cursor-based method. 

Figure 8. Average (95% CI) text correction time (seconds) by block in (a) 
the cursor-based condition and in the JustCorrect Keyboard condition, 
and in (b) the TTC and JustCorrect Keyboard conditions. Blocks were 
formed according to the testing order of trials. Each block had 10 trials. 
Lower is better. 

The second study comparing TTC to JustCorrect Keyboard 
showed that JustCorrect Keyboard reduced the text correc-
tion time compared to TTC. We particularly broke the text 
correction time for both JustCorrect Keyboard and TTC into 
two parts: (1) target word input time, which represented the 
amount of time for entering the target word, and (2) editing 
time, which represented the time for using the entered word 
to edit a sentence. Figure 10 showed JustCorrect Keyboard 
saves overall text correction time over TTC, probably because 
JustCorrect Keyboard required only minimal user operation to 
edit the sentence after the target word was entered. 

In the second study, we also discovered that on average users 
reverted to the cursor-based method for 11.1 (SD = 3.2) trials 
in TTC, and for 4.6 (SD = 2.2) trials in JustCorrect. The 
average number of TTC (or JustCorrect) usage before reverting 
to cursor-based method among these trials were 1.4 (SD = 
0.3) for TTC and 1.6 (SD = 0.5) for JustCorrect, indicating 
that users quickly switched to the cursor-based method after 
discovering TTC (or JustCorrect) failed to correct the errors. 

Subjective  Feedback  
At the end of the study, subjects were asked to provide a nu-
merical rating (1: least demanding, 10: most demanding) on 
mental and physical demand. Mental demand describes how 
much mental effort is required. Physical demand describes 
how much physical effort is required. Figure 11 showed the 
mean subjective ratings. Subjects’ subjective ratings were 
in favor of JustCorrect Keyboard for physical demand. For 
mental demand, for the cursor-based method and for Just-
Correct Keyboard, the scores were approximately the same. 
In the TTC and JustCorrect Keyboard conditions, subjective 
ratings were in favor of TTC for mental demand. We also 
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Figure 9. The percentage of different text editing features used per con-
dition. Note that JustCorrect Keyboard, JustCorrect-Tap, JustCorrect-
Gesture, and cursor-based editing method were all available together; 
for TTC, the throw, Magic Key, and cursor-based methods were all avail-
able together. 

Figure 10. Mean (95% CI) target word input time and editing time for 
TTC and JustCorrect Keyboard in the second study. 

asked the participants to rate each method on a scale of 1 to 
5 (1: dislike, 5: like). The median rating for cursor-based 
method and JustCorrect Keyboard was 3 and 5 respectively. 
A Wilcoxon Signed-Ranks Test indicated that the subjective 
ratings of JustCorrect Keyboard was signifcantly higher than 
that of Cursor-based method (Z = 3.07, p = 0.002). Indeed, 
median Pain Score rating was 5.0 both pre- and post-treatment. 
For TTC and JustCorrect Keyboard, the median rating was 
3 and 5, respectively. A Wilcoxon Signed-Ranks Test indi-
cated that the subjective ratings of JustCorrect Keyboard was 
signifcantly higher than that of TTC (Z = 2.97, p = 0.003). 

Participants were also asked which methods on JustCorrect 
Keyboard they would like to use for real-world text entry on 
their phones. Twelve participants chose JustCorrect-Gesture, 
and eight chose JustCorrect-Tap. 

Discussion  
First, the study results showed that adopting JustCorrect sub-
stantially improved text correction effciency. JustCorrect 
Keyboard shortened the average text correction time by 12.8% 
over the stock Android keyboard, and by 9.7% over the TTC 
keyboard. The subjective ratings were also overwhelmingly 
in favor of JustCorrect Keyboard. The improved effciency 
was largely attributed to the reduction of user intervention. 
For example, compared with the TTC keyboard, as shown in 
Figure 10, the time saved with JustCorrect Keyboard occurred 
mainly in the manual operation stage when editing. 

Figure 11. Mean (SD) of subjective ratings and median of overall pref-
erence. For measure 1, 2, 4 and 5, a lower rating means lower mental 
and physical demand. For measure 3 and 6 (1: least, 5: most preferred), 
a higher score means the method is more preferred. JustCorrect Key-
board received favorable ratings in categories 2, 5, and 6. 

Second, in the JustCorrect Keyboard conditions, participants 
corrected a majority (87.7% in the frst study and 94.3% in 
the second study) of the sentences using JustCorrect, and 
corrected the rest using the cursor-based method. This result 
showed that participants were able to take advantage of the 
high effciency of JustCorrect, and reverted to cursor-based 
correction when necessary. Our results therefore showed that 
different text correction methods can complement each other. 

Third, participants had split preferences on JustCorrect-Tap 
and JustCorrect-Gesture (Figure 9). In the frst study, 39.6% of 
all trials were corrected by JustCorrect-Tap, and 46.6% were 
corrected by JustCorrect-Gesture; in the second study, 56.1% 
were by JustCorrect-Tap, and 33.8% were by JustCorrect-
Gesture. Among the 32 participants in both studies, 15 used 
only JustCorrect-Tap on JustCorrect Keyboard, and the oth-
ers used a mix of JustCorrect-Tap and JustCorrect-Gesture 
on JustCorrect Keyboard. Some users commented that they 
used JustCorrect-Gesture because it saved the button-pressing 
action compared to JustCorrect-Tap. Some users preferred 
JustCorrect-Tap over JustCorrect-Gesture because they were 
not familiar with gesture typing to begin with. 

Overall, the results show incorporating JustCorrect signif-
cantly improves text correction effciency. Having an auto-
matic and intelligent post-hoc text correction benefts users. 

LIMITATION  AND  FUTURE  WORK  
JustCorrect is designed to facilitate error correction, which is 
only one of the text editing actions. Other editing actions such 
as changing text formats and copying/pasting text are beyond 
the scope of the present work. 

JustCorrect assumes that users type a full sentence and then 
check typing mistakes or rephrase their wording, so it will 
mostly be useful for users who type a sentence ahead. If a user 
corrects mistakes during the middle of entering a sentence, 
the edit distance and word embedding channels will still be 
able to make appropriate corrections, but the sentence channel 
may be affected. The reason is that the edit distance and 
word embedding channels use only word-level information 
for correction which will not be affected by the incomplete 
sentence. In contrast, the sentence channel uses the trigram 
language model to estimate the sentence score. It may be 
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affected by the incomplete sentence because the unseen words 
and missing sentence ending may affect the prediction made 
by the trigrams in the language model. For correcting errors 
in the middle of entering a sentence, one option is to increase 
the weights of edit distance and word embedding channels 
and decrease the weight of sentence channel in the post hoc 
correction algorithm. Future research is needed to investigate 
whether this option is effective. 

JustCorrect is designed based on the assumption that there are 
two main types of word substitutions: 1. replacing a string 
with a word which shares similar characters, or 2. replacing 
a word with a new word which has a similar meaning. The 
type 1 substitution is often observed in correcting typos, simple 
grammatical mistakes, or false autocorrection, because in these 
cases the intended word often shares similar characters with 
the incorrect text. The type 2 substitution is often observed in 
rephrasing the wording. If a user wants to replace one word 
with multiple words such as replacing making with working on, 
JustCorrect should be triggered in two steps: frst substituting 
making with working, and then inserting on. 

The scope of JustCorrect is limited to the most recently entered 
sentence. Because the post hoc correction algorithm adopts an 
exhaustive search algorithm to determine the intended editing 
location, scaling it up to cover more text would be challenging. 
If the search scope is beyond one sentence, the algorithm 
would beneft from additional location information input such 
as using the fnger touch to approximately specify the search 
area (e.g., double-tapping). 

Additionally, because JustCorrect relies on the keyboard to 
decode any input word wi from input signals, the keyboard 
decoding algorithm may affect the entering of the editing 
word (denoted by wt because it is the last entered word). For 
example, the word entered right before entering the editing 
word (denoted by wt−1) may negatively infuence the keyboard 
decoding of the editing word wt , because the editing word wt 
will be eventually placed in the middle of the sentence but the 
word wt−1 is unlikely to be the fnal preceding word for the 
editing word wt . In other words, wt−1 is the wrong preceding 
word for wt . To mitigate this issue, one option is to instruct the 
keyboard to switch to a unigram language model for decoding 
the editing word wt . Because a unigram language model does 
not involve previously entered word wt−1 for decoding, the 
potential negative effect from the previously entered word 
wt−1 on the keyboard decoding of editing word wt would be 
eliminated. Implementing this feature requires the keyboard 
to detect when a user starts entering the editing word. In 
JustCorrect-Gesture or JustCorrect-Voice, the keyboard can 
detect the start of entering the editing word by observing 
the input modality switching. In JustCorrect-Tap, a small 
requirement such as requiring the user to press the editing 
button before entering the editing word would signal the start 
of entering the editing word. 

CONCLUSION  
The key takeaway from this work is that JustCorrect nicely 
complements existing text correction methods and signif-
cantly enhances text editing performance for users. By re-
ducing manual navigation operations through machine intel-

ligence, it makes the post hoc text correction process easier 
for users. We solved two critical problems for enabling Just-
Correct. (1) We devised the post hoc correction algorithm, 
which infers a user’s correction intention based on the entered 
word. (2) We investigated which input modality was suitable 
for JustCorrect and found that both tap and gesture typing 
are appropriate for performing JustCorrect. Based on these 
fndings, we augmented a soft keyboard with JustCorrect. Our 
second experiment, consisting of two studies, showed that 
JustCorrect Keyboard outperformed the de facto cursor-based 
editing method on the stock Android keyboard, and it also 
outperformed the “Type, then Correct” TTC keyboard [42] in 
post hoc text correction tasks. JustCorrect Keyboard reduced 
the correction time by 12.8% over the stock Android keyboard, 
and 9.7% over TTC, and was favored most. Participants were 
able to use JustCorrect to successfully correct errors in more 
than 95% of testing phrases. Overall, the results showed that 
JustCorrect nicely complements existing text correction meth-
ods, making text correction more automatic and intelligent 
than prior techniques. 
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