
Type, Then Correct: Intelligent Text Correction Techniques
for Mobile Text Entry Using Neural Networks

Mingrui “Ray” Zhang
The Information School

DUB Group
University of Washington
Seattle, WA, USA 98195

mingrui@uw.edu

He Wen
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

hew1@andrew.cmu.edu

Jacob O. Wobbrock
The Information School

DUB Group
University of Washington
Seattle, WA, USA 98195

wobbrock@uw.edu

ABSTRACT
Current text correction processes on mobile touch devices
are laborious: users either extensively use backspace, or
navigate the cursor to the error position, make a correction,
and navigate back, usually by employing multiple taps or
drags over small targets. In this paper, we present three novel
text correction techniques to improve the correction process:
Drag-n-Drop, Drag-n-Throw, and Magic Key. All of the
techniques skip error-deletion and cursor-positioning
procedures, and instead allow the user to type the correction
first, and then apply that correction to a previously
committed error. Specifically, Drag-n-Drop allows a user to
drag a correction and drop it on the error position. Drag-n-
Throw lets a user drag a correction from the keyboard
suggestion list and “throw” it to the approximate area of the
error text, with a neural network determining the most likely
error in that area. Magic Key allows a user to type a
correction and tap a designated key to highlight possible
error candidates, which are also determined by a neural
network. The user can navigate among these candidates by
directionally dragging from atop the key, and can apply the
correction by simply tapping the key. We evaluated these
techniques in both text correction and text composition tasks.
Our results show that correction with the new techniques was
faster than de facto cursor and backspace-based correction.
Our techniques apply to any touch-based text entry method.
CCS Concepts
• Human-centered computing~Text input
• Human-centered computing~Touch screens
• Computing methodologies~Natural language processing
• Computing methodologies~Neural networks

Keywords
Text editing; touch; gestures; natural language processing.

Figure 1. Our three correction techniques: (a) Drag-n-Drop lets
the user drag the last word typed and drop it on an erroneous
word or gap between words; (b) Drag-n-Throw lets the user
drag a word from the suggestion list and flick it into the general
area of the erroneous word; (c) Magic Key highlights each
possible error word after the user types a correction.
Directional dragging from atop the magic key navigates among
error words, and tapping the magic key applies the correction.

INTRODUCTION
Text entry techniques on touch-based mobile devices today
are generally well developed. Ranging from tap-based
keyboard typing to swipe-based gesture typing [44], today’s
mobile text entry methods employ a range of sophisticated
algorithms designed to maximize speed and accuracy.
Although the results reported from various papers [32,38]
show that mobile text entry can reach fairly high speeds,
some even as fast as desktop keyboards [38], the daily
experience of mobile text composition is still often lacking.
One bottleneck lies in the text correction process. On mobile
touch-based devices, text correction can involve repetitive
backspacing and moving the text cursor with repeated taps
and drags over very small targets (i.e., the characters and
gaps between them). Owing to the fat finger problem [39],
this process can be slow and tedious indeed.

Correcting text is a consistent and vital activity during text
entry. A study by MacKenzie and Soukoreff showed that
backspace was the second most-common keystroke during
text entry [24] (pp. 164-165). Dhakal et al. [8] found that
during typing, people made 2.29 error corrections per
sentence, and that slow typists made and corrected more
mistakes than the fast typists.

For immediate error corrections, i.e., when an error is noticed
right after it is made, the user can backspace to remove the
error [36]. However, for overlooked errors, the current text
correction process based on text cursor movement on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
UIST '19, October 20–23, 2019, New Orleans, LA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6816-2/19/10…$15.00
https://doi.org/10.1145/3332165.3347924

mailto:Permissions@acm.org
https://doi.org/10.1145/3332165.3347924

smartphones is laborious: one must navigate the cursor to the
error position, backspace the error text, re-enter the correct
text, and finally navigate the cursor back. There are three
ways to position the cursor: (1) by repeatedly pressing the
backspace key [36]; (2) by pressing arrow keys on some
keyboards or making gestures such as swipe-left; (3) by
using direct touch to move the cursor. The first two solutions
are more precise than the last one, which suffers from the fat
finger problem [39], but they require repetitive action. The
third option is error prone when positioning the cursor amidst
small characters, which increases the possibility of cascading
errors [2]; it also increases the cognitive load of the task, and
takes on average 4.5 seconds to perform the tedious position-
edit-reposition sequence [13].

Our three new interaction techniques are based on the
following hypothetical: What if we can skip positioning the
cursor and deleting errors? Given that the de facto method of
correcting errors relies heavily on these actions, such a
question is subtly quite challenging. What if we just type the
correction text, and apply it to the error?

Inspired by this possibility, we developed three text
correction techniques. The first technique, Drag-n-Drop
(Figure 1a), is a baseline technique that allows users to drag
the last-typed word and drop it on the erroneous text to
correct substitution and omission errors [40].

The second technique, Drag-n-Throw (Figure 1b), is the
“intelligent” version of Drag-n-Drop: it allows the user to
flick a word from the keyboard’s suggestion list towards the
approximate area of the erroneous text. A neural network
finds the most likely error within the general target area
based on the thrown correction, and automatically corrects it.
Drag-n-Throw is faster than Drag-n-Drop, because the user
does not need to drop the correction on the error location.

Unlike the above two techniques, the third technique, Magic
Key (Figure 1c), does not require direct interaction with the
text input area at all. After typing a correction, users press a
dedicated Magic Key on the keyboard, and a neural network
is used to highlight possible error words given the typed
correction. The user can then step through the possible error
words by directionally dragging from atop the magic key.
When the desired error word is reached, users simply tap the
magic key to apply their correction.

All three of our interaction techniques require no movement
of the text cursor and no use of backspace. To further bolster
user confidence, we also offer an undo key on our keyboard.

To understand users’ reactions to our techniques, we
evaluated them in two text entry tasks: (1) a text correction
task, and (2) a text composition task. We compared our three
techniques with the de facto cursor-movement and
backspace-based method in use on smartphones today. Our
results reveal that our two “intelligent” techniques, Drag-n-
Throw and Magic Key, result in faster correction times, and
were preferred over the de facto technique. Moreover, our
methods do not conflict with existing gestural interactions,

including gesture typing [44], and therefore can be used on
any touch-based device including smartphones and tablets.
RELATED WORK
Below, we first review research related to text entry
correction behaviors on touch screens. Then, we then present
current text correction techniques for mobile text entry.
Finally, we provide a short introduction to natural language
processing (NLP) algorithms for text correction.

Text Correction Behaviors on Touch Screens
Researchers have found that typing errors are common using
touch-based keyboards, and that current text correction
techniques are left wanting in many ways. For example,
sending error-ridden messages caused by typos and auto-
correction [19] is of greatest concern when it comes to older
adults. Moreover, Komninos et al. [18] observed and
recorded in-the-wild text entry behaviors on Android phones,
finding that users made around two word-level errors per
typing session, which slowed text entry considerably. Also,
participants “predominantly employed backspacing as an
error correction strategy.” Based on their observations,
Komninos et al. recommended that future research needed to
“develop better ways for managing correction,” which is the
very focus of this work.

In most character-level text entry schemes, there are three
types of text entry errors [25,40]: substitutions, where the
user enters different characters than intended; omissions,
where the user fails to enter characters; and insertions, where
the user injects erroneous characters. Substitutions are often
the most frequent errors of these types. In a text entry study
on smartwatches [20], out of 888 phrases, participants made
179 substitution errors, 31 omission errors, and 15 insertion
errors. In a big data study of keyboarding [8], substitution
errors (1.65%) were observed more frequently than omission
(0.80%) and insertion (0.67%) errors. Our correction
techniques address substitution and omission errors; we do
not address insertion errors because users can just delete
insertions without typing any corrections. Moreover,
insertion errors are relatively rare.
Mobile Text Correction Techniques
While much previous work focused on user behaviors during
mobile text entry, there have been a few projects that
improved the text correction process. The smart-restorable
backspace [1] project had the goal most similar to that of our
work—to improve text correction without extensive
backspacing and cursor-positioning. The technique allowed
users to perform a swipe gesture on the backspace key to
delete the typed text back to the position of an error, and
restore that text by swiping again on the backspace key after
correcting the error. To determine error positions, the
technique used Eugene Myers’ algorithm [26] to compare the
edit distance of the text and the word in a dictionary. The
error detection algorithm is the main limitation of that work:
it only detects misspellings. It cannot detect grammar errors
or word misuse. By contrast, our algorithm, which combines
neural networks and string edit distance, can detect a wide
range of errors. (We describe our algorithm in detail, below.)

Commercial products exhibit a variety of text correction
techniques. Gboard1 allows a user to touch on a word and
replace it by tapping on another word in a suggestion list.
However, this technique is only limited to misspellings. The
Grammarly keyboard2 keeps track of the inputted text, and
provides corrections in the suggestion list. Like our work,
Grammarly uses natural language processing algorithms to
provide correction suggestions. In this way, it is able to
detect both spelling and grammar errors. However, because
Grammarly provides correction suggestions without
guidance (e.g., it provides all possible error correction
options without knowing which one the user wants to
correct), the suggestion bar can become cluttered in the
presence of many suggestions. Finally, some keyboards such
as the Apple iOS 9 keyboard support indirect cursor control
by treating the keyboard as a trackpad. Unfortunately, prior
research [34] has shown that this design brings no time or
accuracy benefits compared to direct pointing.

Different from the above techniques, our three correction
techniques have the user enter a correction first, typed at the
end of the current text input stream. Informed by the
correction, our techniques can better understand what text
the user wants to correct. Specifically, Drag-n-Throw and
Magic Key utilize neural networks to detect possible error
candidates based on typed corrections. Thus, they not only
correct mistakes like misspellings or grammar errors, but
also can offer to substitute synonyms or improved phrasings.
NLP Algorithms for Error Correction
Drag-n-Throw and Magic Key use neural networks from
natural language processing (NLP) to find possible errors
based on typed corrections. We therefore provide a brief
introduction to related techniques.

Traditional error correction algorithms utilize N-grams and
string edit distances to provide correction suggestions. For
example, Islam and Inkpen [16] presented an algorithm that
uses the Google 1T 3-gram dataset and a string-matching
algorithm to detect and correct spelling errors. For each word
in the original string, they first search for candidates in the
dictionary, and assign each possible candidate a score
derived from their frequency in the N-gram dataset and the
string matching algorithm. The candidate with the highest
score above a threshold is suggested as a correction.

Recently, deep neural networks have gained popularity in
NLP research because of their generalizability and
significantly better performance than traditional algorithms.
For NLP tasks, convolutional neural networks (CNN) and
recurrent neural networks (RNN) are extensively used, and
they often follow a structure called encoder-decoder, where
part of the model encodes the input text into a feature vector,
then decodes the vector into the result. In this work, we do
not invent novel neural network algorithms; rather, we utilize
an RNN in this known encoder-decoder pattern. To the best
of our knowledge, we are the first to employ an RNN in this

1 https://en.wikipedia.org/wiki/Gboard

way to support interactive text correction. Readers interested
in neural networks for NLP are directed elsewhere [3,37,42].

Most deep learning NLP research treats the error correction
task as a language translation task: for error correction, the
input is a sentence with errors, and the output is an error-free
sentence; for language translation, the input is a sentence in
one language, and the output is a sentence in another
language. For example, Xie et al. [41] presented an encoder-
decoder RNN correction model that operates input and
output at the character level. Their model was built upon a
sequence-to-sequence model for translation [3], which was
also used in our algorithm for error detection.

As stated, current deep learning models for text correction
accept a sentence as input and produce its error free version
as output. The difference for our model is that along with the
input sentence, we must somehow provide the model with
the correction word typed by user. In addition, our model
does not need to output the whole corrected sentence because
we already know what the correction is. Instead, it can just
output a position indicating where the error is. Then we can
apply the correction to the error position. In the next section,
we describe our three correction techniques in more detail.

OUR THREE TEXT CORRECTION TECHNIQUES
We present the design and implementation of three new
interaction techniques for text correction on touch-based
devices like smartphones and tablets. The common features
of these interactions are: (1) the first step is always to type
the correction text at the current cursor position, which is
usually at the end of the input stream; (2) all correction
interactions can be undone by tapping the undo key (Figure 2,
top right); (3) after a correction is applied, the text cursor
remains at the last character of the text input stream, allowing
the user to continue typing without having to move the cursor.
A current, but not theoretical, limitation is that we only allow
the correction text to be contiguous alphanumeric text
without special characters or spaces.

Figure 2. Our customized keyboard interface. The undo key is
located in the top-right corner. The Magic Key is the circular
key immediately to the left of the space bar.

Drag-n-Drop
Drag-n-Drop is our baseline interaction technique. With
Drag-n-Drop, after typing the correction, the user then drags
the correction text and drops it on the error location, either
another word or a gap between words. As shown in

2 https://en.wikipedia.org/wiki/Grammarly

https://en.wikipedia.org/wiki/Gboard
https://en.wikipedia.org/wiki/Grammarly

Figure 3a.1, if the finger’s touchdown point is within the area
of the last word, the correction procedure will be initiated.
The user can then move the correction and drop it either on
another word to substitute it, or on a space to insert it.

While moving the correction, a magnifier appears above the
finger to provide an enlarged image of the touched text,
which is highlighted in yellow (Figure 3a.2). When the
finger drags over an alphanumeric character, the highlight
extends to its surrounding text bounded by special characters
or spaces. When the finger drags over a space, only the space
is highlighted. While dragging, the correction itself shows
above the magnifier to remind the user of what it is.

Figure 4. Perceived input point: (a) the user views the top of the
fingernail as the input point [15]; (b) but today’s hardware
regards the center of the contact area as the touch input point,
which is not the same. Figure adapted from [39].

Similar to Shift by Vogel and Baudisch [39], we adjusted the
input point to be 30 px above the finger’s contact point to
reflect the user’s perceived input point [15] (Figure 4). As
Benko et al. observed, and Vogel and Baudisch reiterated,

“users perceive the selection point of their finger as being
located near the top of the finger tip” [4,39], while the actual
touch point was at the center of the finger contact area [35].

After the correction is dropped on a space (for insertion) or
on a word (for substitution), there is an animated color
change from orange to black confirming the successful
application of the correction text.

Drag-n-Throw
Similar to Drag-n-Drop, Drag-n-Throw also requires the
user to drag the correction. But unlike Drag-n-Drop, with
Drag-n-Throw, the user flicks the correction from the word
suggestion list atop the keyboard, not from the text area,
allowing the user’s fingers to stay near the keyboard area. As
before, the correction text shows above the touch point as a
reminder (Figure 3b.1). Instead of dropping the correction on
the error position, the user flicks the correction to the general
area of the text to be corrected. Once the correction is thrown,
a neural network determines the error position, and corrects
the error either by substituting the correction for a word, or
by inserting the correction on a space. Color animation is
displayed to confirm the correction. The procedure is shown
in Figures 3b.1-3.

We enable the user to drag the correction from the suggestion
list because it is quicker and more accurate than directly
interacting with the text, which has smaller targets. Moreover,
our approach provides more options and saves time because
of word completion. For example, if the user wants to type

Figure 3. Our three interaction techniques. Drag-n-Drop: (a.1) Type a word and then touch it to initiate correction; (a.2) Drag the
correction to the error position. Touched words are highlighted and magnified, and the correction shows above the magnifier; (a.3)
Drop the correction on the error to finish. Drag-n-Throw: (b.1) Dwell on a word from the suggestion list to initiate correction. The
word will display above the finger; (b.2) Flick the finger towards the area of the error: here, the flick ended on “the”, not the error
text “technical”; (b.3) The algorithm determines the error successfully, and confirming animation appears. Magic Key: (c.1) Tap the
magic key (the circular button) to trigger correction. Here, “error” is shown as the nearest potential error. (c.2) Drag left from atop
the magic key to highlight the next possible error in that direction. Now, “magical” is highlighted. (c.3) Tap the magic key again to
commit the correction “magic”.

“dictionary”, she can just type “dic” and “dictionary”
appears in the list. Or, if the user misspells “dictonary”,
omitting an “i”, the correct word still appears in the list
because of the keyboard’s decoding algorithm.

Flicking the text speeds up the interaction beyond precise
drag-and-dropping. The user does not have to carefully move
the finger to drop the correction. Our neural network will
output positions for possible substitutions or insertions
within the general finger-up area. In our implementation, if
the candidate is within 250 px of the finger-lift point in any
direction, the error will be corrected and confirmed by color
animation. Otherwise, there will be no effect. The 250 px
threshold was derived empirically from iterative trial-and-
error. Larger thresholds allow corrections to occur too distant
from the finger-lift point, which can cause unexpected results.
Smaller thresholds reduce the benefits of flicking and
eventually start to feel like dragging-and-dropping.

Magic Key
Drag-n-Drop required interaction within the text input area,
while Drag-n-Throw kept the fingers closer to the keyboard
but still required some interaction in the text input area. With
Magic Key, the progression “inward” toward the keyboard is
fulfilled, as the fingers do not interact with the text input area
at all, never leaving the keyboard. Thus, round-trips [10]
between the keyboard and text input area are eliminated.

With Magic Key, after typing the correction, the user taps the
magic key on the keyboard (Figure 3c.1), and the nearest
possible error text is highlighted. If a space is highlighted, an
insertion is suggested; if a word is highlighted, a substitution
is suggested. The nearest possible error to the just-typed
correction will be highlighted first; if it is not the desired
correction, the user can directionally drag from atop the
magic key to show the next possible error. The user can drag
left or right from atop the magic key to rapidly navigate
among different error candidates. Finally, the user can tap the
magic key to commit the correction. The procedure is shown
in Figures 3c.1-3. To cancel the operation, the user can
simply tap any key (other than undo or the magic key itself).

THE CORRECTION ALGORITHM
In this section, we present our neural network algorithm for
text correction and its natural language processing (NLP)
model, our data collection and processing procedures, and
our training process and validation results. We first list error
types that our model can correct.

Error Types for Correction
Typos. A typographical error (“typo”) happens when
characters of a word are mistyped. For example, “fliwer”
(“flower”) or “feetball” (“football”). Among typos,
misspellings can usually be auto-corrected by current
keyboards; however, auto-correction might yield another
wrong word. For example, “best” (“bear”) or “right”
(“tight”). Our model handles different types of typo errors.

3 We provide our model and data processing code at
https://github.com/DrustZ/CorrectionRNN.

Grammar Errors. Our system can correct grammar errors
caused by one mistaken word, such as misuse of verb tense,
lack of articles or pronouns, subject-verb disagreement, etc.

Semantic Substitution. Our model can also substitute words
that are semantically related to the correction, such as
synonyms and antonyms. For example, “what a nice day”
can be corrected to “what a beautiful day”. Semantic
substitution is not necessarily correcting an error, but is
useful when the user wants to change an expression.
The Deep Neural Network Structure
Inspired by Xie et al. [41], our Drag-n-Throw and Magic Key
interaction techniques utilize a recurrent neural network
(RNN) encoder-decoder model similar to those used in
language translation. The encoder contains a character-level
convolutional neural network (CNN) [17] and two bi-
directional gated recurrent unit (GRU) layers [7]. The
decoder contains a word-embedding layer and two GRU
layers. The overall architecture of the model is shown in
Figure 5, and the encoder-decoder is shown in Figure 6.3

Figure 5. The encoder-decoder model for text correction. The
model outputs five words in which the middle word is the
correction. In this way, we get the correction’s location.

Traditional RNNs cannot output position information. Our
key insight is that instead of outputting the whole error-free
sentence, we make the decoder output only five words in
which the correction word is the middle one. We use the
surrounding words to locate the correction position. To
locate the correction position, we compare the output with
the input sentence word-by-word, and choose the position
that aligns with most words. If there are not enough words,
the decoder will output the flags <bos> or <eos> for
beginning-of-sentence and end-of-sentence, respectively.
For the example in Figure 5, we first tokenize the input and
add two <bos> and two <eos> flags to the start and end of
the tokens. Then we compare the output with the input:

Input: <bos> <bos> thanks the reply <eos> <eos>
CS: <bos> thanks for the reply
CI: <bos> thanks the reply

https://github.com/DrustZ/CorrectionRNN

Above, “CS” means “compare for substitution,” which finds
the best alignment for substitution; “CI” means “compare for
insertion,” which finds the best alignment for insertion. In
the example, CI has the best alignment of four tokens; thus,
“for” will be inserted between “thanks” and “the”. If the
number of aligned tokens is the same in CS and CI, we
default to insertion. If there are multiple aligned positions,
we choose the last position.

We now explain the details of the encoder and the decoder
(Figure 6). For the encoder, because there might be typos and
rare words in the input, operating on the character level is
more robust and generalizable than operating on the word
level. We first apply the character-level CNN [17] composed
of Character Embedding, Multiple Conv. Layers, and Max-
over-time Pool layers (Figure 6, left). Our character-level
CNN generates an embedding for each word at the character
level. The character embedding layer converts the characters
of a word into a vector of 𝑳𝑳 × 𝑬𝑬𝒄𝒄 dimensions. We set 𝑬𝑬𝒄𝒄 to
15, and fixed 𝑳𝑳 to 18 in our implementation, which means
the longest word can contain 18 characters (and longer words
are discarded). Words with fewer than 18 characters are
appended with zeroes in the input vector. We then apply
multiple convolution layers on the vector. After convolution,
we apply max-pooling to obtain a fixed-dimensional
representation of the word (𝑬𝑬𝒘𝒘). In our implementation, we
used convolution filters with width [1, 2, 3, 4, 5] of size [15,
30, 50, 50, 55], yielding a fixed vector with a size of 200. 𝑬𝑬𝒄𝒄
was set to 200 in the decoder.

Figure 6. Illustration of the encoder and decoder, which is
every vertical blue box in Figure 5. L is the length of characters
in a word; 𝑬𝑬 𝒄𝒄 is the character embedding size; H is the
hidden size; 𝑬𝑬 𝒘𝒘 is the word embedding size; 𝑵𝑵 𝒘𝒘 is the
word dictionary size.

We also needed to provide the correction word to the
encoder. We achieved this by feeding the correction into the
same character-level CNN, and concatenated the correction
embedding with the embedding of the current word. This
yielded a vector of size 2𝑬𝑬 𝒘𝒘 , which was then fed into
two bi-directional GRU layers. The hidden size H of GRU
was set to 300 in the encoder and decoder.

The decoder first embedded the word in a vector of size
𝑬𝒘𝒘 , which was set to 200. Then it was concatenated
with the attention output. We used the same attention
mechanism as

Bahdanau et al. [3]. Two GRU layers and a log-softmax layer
then followed to output the predicted word.

Data Collection and Processing
We used the CoNLL 2014 Shared Task [27] and its extension
dataset [6] as a part of the training data. The data contained
sentences from essays written by English learners with
correction and error annotations. We extracted the errors that
were either insertion or substitution errors. In all, we
gathered over 33,000 sentences for training.

Given there was no existing dataset of mobile text entry error
correction, we had to create more training data ourselves.
Therefore, we artificially perturbed several large text
datasets. We used Yelp reviews (containing 2,000,000
samples) and part of the Amazon reviews dataset (containing
130,000 samples) generated by Zhang et al. [45]. We treated
these reviews as if they were error-free texts, and applied
artificial perturbation to them. Specifically, we applied four
perturbation methods:

1. Typo Simulation. In order to simulate a real typo, we
applied the simulation method similar to Fowler et al. [11].
The simulation treated the touch point distribution on a
QWERTY layout as a 2-D Gaussian spatial model, and
selected a character based on the sampling coordinates.
We used the empirical parameters of the spatial model
from Zhu et al. [46]. For each sentence in the review
dataset, we randomly chose a word from the sentence, and
simulated the typing procedure for each character of the
word until the simulated word was different from the
original word. We then applied a spellchecker to “recover”
the typo. This maneuver was to simulate the error of auto-
correction functions, where the “corrected” word actually
becomes a different word. We then used the “recovered”
word as a typo if it was different from the original word,
or used the typing simulation result if the spellchecker
successfully recovered the typo.

2. Dropping Words. To enable the model to learn about
insertion corrections, we randomly dropped a word from a
sentence, and labelled the dropped word as the correction.
We prioritized dropping common stop words first if any of
them appeared in the sentence, because people were most
likely to omit words like “a”, “the”, “my”, “in”, and “very”.

3. Word Deformation. We randomly changed or removed a
few characters from a word. If the word was a verb, we
would replace it with a word sharing the same lexeme. For
example, we would pick one of “broken”, “breaking”,
“breaks”, or “broke” to replace “break”. If the word was a
noun, we would use a different singular or plural word. For
example, we would replace “star” with “stars”. Otherwise
we would just remove a few characters from the word.

4. Semantic Word Substitution. This perturbation enabled
the model to learn semantic information. For a given word
in the sentence, we looked for words that were
semantically similar to it and made a substitution. We used

the GloVe [30] Twitter-100 model from Gensim4 [31] to
represent similarity. Synonyms and antonyms were
generated using this method.

For each sentence in the review data set, we randomly
applied a perturbation method. We then combined the
perturbed data with the CoNLL data, and filtered out
sentences containing less than three words or more than 20
words. The final training set contained 5.6 million phrases.

For testing, we used two datasets: CoNLL 2013 Shared Task
[28], which was also a grammatical error-correction dataset,
and the Wikipedia revision dataset [43], which contains real-
word spelling errors mined from Wikipedia’s revision
history. We generated 1665 phrases from the CoNLL 2013
dataset, and 1595 phrases from the Wikipedia dataset.

Training Process
We implemented our model in PyTorch [29]. We included
lowercase alphabetical letters (“a”-“z”) and 10 numerals
(“0”-“9”) in the character vocabulary of the encoder. We
used the Adam optimizer with a learning rate of .0001 (1e-4)
for the encoder and .0005 (5e-4) for the decoder, and a batch
size of 128. We applied weight clipping of [-10, +10], and a
teacher forcing ratio of 0.5. We also used dropout with
probability 0.2 in all GRU layers. For the word embedding
layer in the decoder, we labeled words with frequencies less
than two in the training set as <unk> for “unknown.”

Results
Table 1 shows the evaluation results on the two testing
datasets. The recall is 1.00 because all of our testing data
contained errors. We regarded a prediction as correct if the
error position predicted was correct using the comparison
algorithm described above. In the original paper by Xie et al.
[41], precision on the CoNLL dataset was 44.04%. We
achieved better results because our model aimed to find only
the error position. Also, note that these numbers are not the
same as the accuracy of text correction during interactive use
of our techniques, which was 87.9% and 97.0% for text
composition with Drag-n-Throw and Magic Key, respectively.

Dataset Accuracy

CoNLL 2013 75.68%

Wikipedia Revisions 81.88%

Table 1. The performance of our correction model on the two
test data sets.

OTHER IMPLEMENTATION DETAILS
We developed a custom Android keyboard and a notebook
application to implement our three text correction interaction
techniques. Our keyboard was based on the Android Open
Source Project (AOSP) keyboard5 from Google. In building
on top of this keyboard, we added the long-press interaction
on suggested words for Drag-n-Throw.

4 https://radimrehurek.com/gensim/
5 https://bit.ly/2JAmQMJ

The notebook application was built on an open-source
project called Notepad6, and most of the interactions were
implemented as part of this notebook application. For Drag-
n-Drop, when a user touched within the last word area
(within 100 px of the (x, y) coordinate of the last character),
the interaction was initiated. We used the default magnifier
on the Android system and added a transparent view showing
the correction word above the user’s finger as it moves.

For Drag-n-Drop and Magic Key, the keyboard needed to
communicate with the notebook application. The keyboard
used the Android Broadcast mechanism to send the
correction and endpoint of the flick gesture of Drag-n-Throw.
When the information was received, the notebook searched
within three lines near the release point. For each line, the
notebook extracted up to 60 surrounding characters near the
release point, and sent them to a server running the NLP
model. The server then replied with possible corrections and
corresponding probabilities. The notebook then selected the
most likely option to update the correction. To avoid the
correction happening too far away from the flick endpoint,
we constrained the x-coordinate of the correction to be within
250 px of the finger-lift point.

For the Magic Key technique, the keyboard notified the
notebook when the magic key was pressed or dragged. The
notebook treated the last word typed as the correction, and
sent the last 1000 characters to the server. The server then
split the text into groups of 60 characters with overlaps of 30
characters, and predicted a correction for each group. When
the notebook received the prediction results, it first
highlighted the nearest option, and then switched to further
error options when the key was dragged left. For substitution
corrections, it would highlight the whole word to be
substituted; for insertion corrections, it would highlight the
space where the correction was to be inserted.

We found that string edit distance could be used to further
increase the accuracy of the model for typos, since typos are
often only minor alterations of text. We first calculated a
match score between each token of the input text and the
correction word using Levenshtein’s algorithm [21]. The
score equaled the number of matches divided by the total
character number of the two words. If the score of a word
was above 0.75, we treated the word as the error to be
corrected. Otherwise, we fed the text and correction into the
aforementioned neural network.
USER STUDY
To gain feedback from our participants and understand how
our correction techniques perform relative to the de facto
cursor-positioning and backspacing technique, we conducted
a user study comprising both text correction and composition
tasks. The correction task isolated performance time while
the composition task captured the success rate of Drag-n-
Throw and Magic Key, and users’ subjective preferences.

6 https://github.com/farmerbb/Notepad

https://radimrehurek.com/gensim/
https://bit.ly/2JAmQMJ
https://github.com/farmerbb/Notepad

Participants
We recruited 20 participants (8 male, 12 female, aged 23-52)
for the study. We used emails, social media and word-of-
mouth for recruitment. All participants were familiar with
entering and correcting text on smartphones and tablets.
Study sessions lasted one hour, and participants were
compensated $20 USD for their time.

Apparatus
A Google Pixel 2 XL was used for the study. The phone had
a 6.0" screen with 1440×2880 resolution. We added logging
functions from the notebook application to record correction
time. The server running the correction model had a single
GTX 1080. It handled responses via HTTP requests.
Phrases Used in the Correction Task
Both tasks utilized a within-subjects study design. For the
correction task, we chose 30 phrases from the test dataset on
which the correction model had been 100% correct because
we wanted purely to evaluate the performance of the
interaction technique, not of the predictive model. We split
the phrases evenly into three categories: typos, word changes,
and insertions. Typos required replacement of a few
characters in a word; word changes required replacing a
whole word in a phrase; and insertions required inserting a
correction. We wished to see whether error positions would
affect correction efficiency, so for each category, we had five
near-error phrases where the error positions were within the
last three words; we also had five far-error phrases where
the error positions were farther away. Examples of phrases
in each category are provided in the Appendix.

Correction Task Procedure
Participants were introduced to our different interaction
techniques, including the categories of errors that Drag-n-
Throw and Magic Key could correct. Then participants
practiced the three techniques with three practice phrases
each. After practicing, the 30 test phrases as well as their
corresponding corrections were presented to the participants.
Then they began to correct the phrases using four techniques:
(1) the de facto cursor-positioning and backspacing method,
(2) Drag-n-Drop, (3) Drag-n-Throw, and (4) Magic Key.
Counterbalancing was achieved with a balanced Latin Square.

Figure 7. (a) The notebook application showing the test phrase.
(b) The intended correction displayed on the computer screen.
(c) After each correction, a dialog box appeared.

During the correction task, the participant would be shown
the next phrase to be corrected on a desktop computer screen,
as well as how to correct it (Figure 7b). The notebook

application would then display that phrase with its error
(Figure 7a). After the participant corrected the error, a
confirmation dialog box appeared (Figure 7c). Timing was
calculated from when the participant pressed “OK” on the
dialog box until the test phrase matched the corrected phrase.
The rationale for showing the participant how to correct the
test phrase was to reduce any learning effect and visual
search time, thereby isolating just the interaction time.

Composition Task Procedure
After the correction task, participants began the free
composition task. They were told to type whatever they liked
for three minutes. Suggested examples were to write
informal messages, write in a diary, or write as if having a
casual conversation. The task was deliberately
uncontrolled—some participants took time to think while
others started typing right away. Regardless, they were told
not to correct any errors during typing. After finishing their
compositions, they corrected all errors with the four
correction techniques. This composition task endeavored to
evaluate usability, the “feel” of the techniques, and the
correction rate of Drag-n-Throw and Magic Key. The
researcher recorded when any correction failures happened
in order to calculate the success rate.

When the two tasks were finished, participants filled out a
NASA-TLX survey [33] and a usability survey adapted from
the SUS questionnaire [5] for each interaction technique.

RESULTS
Our two study tasks were designed for different purposes,
with the correction task highly controlled but artificial,
attempting to isolate interaction time, and the composition
task uncontrolled but more realistic, attempting to measure
correction accuracy and gather user feedback. Thus, for the
correction task, we focus on task completion times; for the
composition task, we focus on the success rate of the two
neural network-based techniques and on users’ preferences.

Correction Time
Figure 8 shows correction times for the four techniques over
2400 total collected phrases. In addition to overall times, the
correction times for near-error and far-error phrases are
shown. We log-transformed correction times to comply with
the assumption of conditional normality, as is common
practice with time measures [22]. We used linear mixed
model analyses of variance [12,23], finding that there was no
order effect on correction time (F3, 57=1.48, n.s.), confirming
that our counterbalancing worked. Furthermore, Technique
had a significant main effect on time for all phrases
(F3, 57=26.49, p<.01), near-error phrases (F3, 57=29.02,
p<.01), and far-error phrases (F3, 57=17.04, p<.01), allowing
post hoc comparisons.

We performed six paired-samples t-tests corrected with
Holm’s sequential Bonferroni procedure [14], finding that
for all phrases, the de facto cursor-based method was slower
than Drag-n-Throw (t19=6.66, p<.01) and Magic Key
(t19=4.79, p<.01); Drag-n-Drop was also slower than Drag-
n-Throw (t19=7.49, p<.01) and Magic Key (t19=5.62, p<.01).

Figure 8. Average correction times in seconds for different
interaction techniques (lower is better). Drag-n-Throw was the
fastest for all phrases and far-error phrases, while Magic Key
was the fastest for near-error phrases. Error bars are +1 SD.

For near-error phrases, the de facto method was slower than
Drag-n-Throw (t19=5.58, p<.01) and Magic Key (t19=7.02,
p<.01); Drag-n-Drop was also slower than Drag-n-Throw
(t19=5.00, p<.01) and Magic Key (t19=7.44, p<.01).

For far-error phrases, Drag-n-Throw was faster than all
other techniques: the de facto method (t19=-5.65, p<.01),
Drag-n-Drop (t19=-6.60, p<.01), and Magic Key (t19=-3.68,
p<.01). Also, Magic Key was faster than Drag-n-Drop
(t19=-2.92, p<.05).

We then examined different correction types. Figure 9 shows
the average correction times for typos, word changes, and
insertions. Again, we used linear mixed model analyses of
variance [12,23] on log correction time [22]. Technique had
a significant main effect on time for all correction types: typo
(F3, 57=5.11, p<.01), word change (F3,57=10.87, p<.01) and
insertion (F3,57=55.55, p<.01), allowing post hoc comparisons.

We performed six paired-samples t-tests corrected with
Holm’s sequential Bonferroni procedure [14], finding that
for typos, the de facto cursor-based method was slower than
Drag-n-Throw (t19=3.80, p<.01); Drag-n-Drop was also
slower than Drag-n-Throw (t19=2.70, p<.05).

For word changes, the de facto cursor-based method was
slower than all other techniques: Drag-n-Drop (t19=3.54,
p<.01), Drag-n-Throw (t19=5.58, p<.01), and Magic Key
(t19=3.74, p<.01).

For insertions, Drag-n-Drop was slower than all other
interactions: the de facto cursor-based method (t19=5.72,
p<.01), Drag-n-Throw (t19=11.17, p<.01), and Magic Key
(t19=10.92, p<.01). Also, the de facto method was slower
than Drag-n-Throw (t19=5.45, p<.01) and Magic Key
(t19=5.20, p<.01).

Correction Success Rate for Drag-n-Throw and Magic Key
In the uncontrolled text composition task, we recorded errors
when participants were using Drag-n-Throw and Magic Key.
With Drag-n-Throw, participants made 108 errors in all, and
95 of them were successfully corrected, a success rate of
87.9%. Among the successfully corrected errors, nine were

Figure 9. Average correction times in seconds for different
correction types (lower is better). Drag-n-Throw was the fastest
for all three types. Error bars are +1 SD.

attempted more than once because the corrections were not
applied to expected error positions. With Magic Key,
participants made 101 errors in all, and 98 of them were
successfully corrected, a success rate of 97.0%.

Subjective Preferences
The composite scores of the SUS usability [5] and TLX [33]
surveys for different interaction techniques are shown in
Figure 10. Participants generally enjoyed using Drag-n-
Throw and Magic Key more than the de facto cursor-based
method and Drag-n-Drop. Also, the two neural network-
based techniques were perceived to have lower workload
than the other two techniques.

Figure 10. Composite usability (higher is better) and NASA
TLX (lower is better) scores for different techniques. Magic
Key was rated as the most usable and having the lowest
workload.

DISCUSSION
In this work, we administered text correction and
composition tasks to evaluate three new text correction
techniques, two of which are based on neural networks.
Although initially unfamiliar with the correction techniques,
participants learned them quickly with only three practice
phrases for each technique. The concept of “type the
correction where you are, and then apply it to the error” was
easily grasped. As P6 commented, “People always
think about a complex procedure to decide how to
correct the error [when using cursor-based methods], like
‘do I change some characters or delete the whole word to
fix a typo?’ But the three interactions provide an alternative
way of thinking: just type the correction and apply it.”

Drag-n-Throw performed fastest over all phrases and among
different correction types. Moreover, its performance was
unaffected by whether the error was near or far (Figure 8).
Magic Key also achieved good speeds across different
correction types. For near-errors within the last three words,
it surpassed Drag-n-Throw, because errors could be
corrected with just two taps. For far-errors, participants had
to drag from atop the magic key a few times to highlight the
desired error, leading to longer correction times.

Drag-n-Drop performed the slowest over all phrases, which
was mainly caused by insertions. As Figure 9 shows, it was
faster than the de facto cursor-based method for typos and
word changes, but much slower for insertions. To insert a
correction between two words, a user had to highlight the
narrow space between those words. Many participants spent
time adjusting their finger position in order to highlight the
desired space. They also had to redo the correction if they
accidentally made a substitution instead of an insertion. Our
undo key proved to be vital in such cases.

The correction task was artificial, but managed to isolate the
time performance of the techniques. Conversely, the
composition ask was uncontrolled, amounting to more of a
usability test than an experiment. In that task, Drag-n-Throw
achieved a success rate of 87.9%. A failure case was when
two possible error candidates were too close together. For
example, if the user wanted to insert “the” in the phrase “I
left keys in room,” there were two possible positions (before
“keys” and before “room”). Magic Key achieved a higher
success rate of 97.0%, because it clearly highlighted the
word to be corrected before applying the correction.

As for participants’ preferences, 12 of 20 participants liked
Magic Key the most. The major reason was convenience: all
actions took place on the keyboard. P1 commented, “Just one
button handles everything. I don’t need to touch the text
anymore. It was also super intelligent. I am lazy, and that’s
why I enjoyed it so much.” Another benefit was that Magic
Key provided feedback before committing a correction,
making users confident about the outcome of their actions.
As P4 pointed out, “It provides multiple choices, and the
uncertain feeling is gone.” The main critique of Magic Key
was about the dragging interaction required to navigate
among error candidates. P5 commented: “If the text is too
long and the error is far away, I have to drag [from atop the
magic key] a lot to highlight the error. Also, the button is
kinda small, and hard to drag.”

Although Drag-n-Throw was the fastest interaction, and the
concept of “flicking the correction” was appealing to
participants, many felt confused about how to control the
direction and finger-lift position. As P6 said, “I’m not very
confident in performing it because I do not know what will
be corrected after my throw. There is not feedback during the
procedure.”

Despite the slow insertion time, Drag-n-Drop was perceived
as the most intuitive, and was considered easiest to learn
because it “follows [the] current style of correction” (P5, P6,

P8, P9, P10). P10 also commented on the concept of the
interaction: “I definitely like the type-correction-then-apply-
it concept, and I even did this in the cursor-based condition.
Every time I move the cursor to fix the error, my typing flow
is broken. This is even more annoying if I get emotional and
type very fast with a lot of errors.” There were also three
users who preferred the cursor-based method due to familiarity.

Interestingly, all three participants above age 40 liked the
two intelligent correction techniques, and disliked the de
facto cursor-based method. P14, age 52, said, “I dislike the
cursor-based method most. I have a big finger, and it is hard
to tap the text precisely. Throw is easy and works great. I
also like Magic Key, because I don’t need to interact with the
text.” Older adults are known to perform touch screen
interactions more slowly and with less precision than
younger adults [9], and the intelligent correction techniques
might benefit them by removing the requirement of precise
touch. Moreover, people walking on the street or holding the
phone with one hand might also benefit from the interactions,
because touching precisely is difficult in such situations.

FUTURE WORK
We propose four possible future directions: (1) Punctuation
handling: Our current correction algorithm does not handle
punctuation, so errors like “lets” (“let’s”) currently cannot be
corrected. (2) Feedback for Drag-n-Throw: Participants felt
unconfident when flicking corrections because there was a
lack of feedback where corrections would land. Adding
visual feedback such as highlighting around the text of the
flicking position could provide cues as to where the
correction will land. (3) Better error navigation for Magic
Key: The magic key itself was small and hard to drag. Better
interactions to navigate through different error candidates
should be explored, such as a swipe gesture on the keyboard.
(4) Multilingual support: Our interaction techniques could
be applied to other languages, such as Chinese.

CONCLUSION
We presented three novel text correction techniques, Drag-
n-Drop, Drag-n-Throw, and Magic Key. The common
concept in these three techniques was to type the correction
and apply it to the error, without needing to reposition the
text cursor or use backspace—maneuvers that together break
the typing flow and slow touch-based text entry. Drag-n-
Throw and Magic Key used recurrent neural networks (RNNs)
to identify correction positions. Our user study showed that
Drag-n-Throw and Magic Key were faster than de facto
cursor-based correction methods and garnered more positive
user feedback. This work provides an example of how, by
breaking from the desktop paradigm of arrow keys,
backspacing, and mouse-based cursor positioning, we can
rethink text entry on mobile touch devices and develop novel
methods better suited to this paradigm.

ACKNOWLEDGEMENTS
This work was supported in part by Baidu. Any opinions,
findings, conclusions or recommendations expressed in our
work are those of the authors and do not necessarily reflect
those of any supporter.

REFERENCES
[1] Ahmed Sabbir Arif, Sunjun Kim, Wolfgang

Stuerzlinger, Geehyuk Lee and Ali Mazalek. 2016.
Evaluation of a smart-restorable backspace technique
to facilitate text entry error correction. Proceedings of
CHI 2016. New York: ACM Press, 5151–5162. DOI:
10.1145/2858036.2858407

[2] Ahmed Sabbir Arif and Wolfgang Stuerzlinger. 2013.
Pseudo-pressure detection and its use in predictive text
entry on touchscreens. Proceedings of OzCHI 2013.
New York: ACM Press, 383–392. DOI:
10.1145/2541016.2541024

[3] Dzmitry Bahdanau, Kyunghyun Cho and Yoshua
Bengio. 2015. Neural machine translation by jointly
learning to align and translate. Proceedings of
International Conference on Learning Representations
(ICLR ’15). https://arxiv.org/abs/1409.0473

[4] Hrvoje Benko, Andrew D Wilson and Patrick
Baudisch. 2006. Precise selection techniques for multi-
touch screens. Proceedings of CHI 2006. New York:
ACM Press, 1263–1272. DOI:
10.1145/1124772.1124963

[5] John Brooke. 1996. SUS: A "quick and dirty" usability
scale. In P.W. Jordan, B. Thomas, B.A. Weerdmeester,
& A.L. McClelland (eds.), Usability Evaluation in
Industry. London: Taylor and Francis.

[6] Christopher Bryant and Hwee Tou Ng. 2015. How far
are we from fully automatic high quality grammatical
error correction? Proceedings of the 53rd Annual
Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Vol. 1). Stroudsburg,
PA: Association for Computational Linguistics, 697–
707. DOI: 10.3115/v1/P15-1068

[7] Kyunghyun Cho, Bart van Merrienboer, Caglar
Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for
statistical machine translation. Proceedings of the 2014
Conference on Empirical Methods in Natural
Language Processing (EMNLP ’14). Stroudsburg, PA:
Association for Computational Linguistics, 1724–1734.
DOI: 10.3115/v1/D14-1179

[8] Vivek Dhakal, Anna Maria Feit, Per Ola Kristensson
and Antti Oulasvirta. 2018. Observations on typing
from 136 million keystrokes. Proceedings of CHI
2018. New York: ACM Press. Paper No. 646. DOI:
10.1145/3173574.3174220

[9] Leah Findlater, Jon E. Froehlich, Kays Fattal, Jacob O.
Wobbrock and Tanya Dastyar. 2013. Age-related
differences in performance with touchscreens
compared to traditional mouse input. Proceedings of
CHI 2013. New York: ACM Press, 343–346. DOI:
10.1145/2470654.2470703

[10] George Fitzmaurice, Azam Khan, Robert Pieké, Bill
Buxton and Gordon Kurtenbach. 2003. Tracking
menus. Proceedings of UIST 2003. New York: ACM
Press, 71–79. DOI: 10.1145/964696.964704

[11] Andrew Fowler, Kurt Partridge, Ciprian Chelba,
Xiaojun Bi, Tom Ouyang and Shumin Zhai. 2015.
Effects of language modeling and its personalization on
touchscreen typing performance. Proceedings of CHI
2015. New York: ACM Press, 649–658. DOI:
10.1145/2702123.2702503

[12] B.N. Frederick. 1999. Fixed-, random-, and mixed-
effects ANOVA models: A user-friendly guide for
increasing the generalizability of ANOVA results. In
B. Thompson (ed.), Advances in Social Science
Methodology. Stamford, CT: JAI Press, 111–122.
http://eric.ed.gov/?id=ED426098

[13] Vittorio Fuccella, Poika Isokoski and Benoit Martin.
2013. Gestures and widgets: Performance in text
editing on multi-touch capable mobile devices.
Proceedings of CHI 2013. New York: ACM Press,
2785–2794. DOI: 10.1145/2470654.2481385

[14] Sture Holm. 1979. A simple sequentially rejective
multiple test procedure. Scandinavian Journal of
Statistics 6 (2), 65–70.
http://www.jstor.org/stable/4615733

[15] Christian Holz and Patrick Baudisch. 2011.
Understanding touch. Proceedings of CHI 2011. New
York: ACM Press, 2501–2510. DOI:
10.1145/1978942.1979308

[16] Aminul Islam and Diana Inkpen. 2009. Real-word
spelling correction using Google Web IT 3-grams.
Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing, Vol. 3
(EMNLP ’09). Stroudsburg, PA: Association for
Computational Linguistics, 1241–1249.
https://dl.acm.org/citation.cfm?id=1699670

[17] Yoon Kim, Yacine Jernite, David Sontag and
Alexander M. Rush. 2016. Character-aware neural
language models. Proceedings of the 30th AAAI
Conference on Artificial Intelligence (AAAI ’16).
Menlo Park, CA: AAAI Press, 2741–2749.
https://arxiv.org/abs/1508.06615

[18] Andreas Komninos, Mark Dunlop, Kyriakos Katsaris
and John Garofalakis. 2018. A glimpse of mobile text
entry errors and corrective behaviour in the wild. In
Proceedings of MobileHCI 2018. New York: ACM
Press, 221–228. DOI: 10.1145/3236112.3236143

[19] Andreas Komninos, Emma Nicol and Mark D. Dunlop.
2015. Designed with older adults to support better error
correction in smartphone text entry: The
MaxieKeyboard. Adjunct Proceedings of MobileHCI
2015. New York: ACM Press, 797–802. DOI:
10.1145/2786567.2793703

[20] Luis A. Leiva, Alireza Sahami, Alejandro Catala, Niels
Henze and Albrecht Schmidt. 2015. Text entry on tiny
QWERTY soft keyboards. Proceedings of CHI 2015.
New York: ACM Press, 669–678. DOI:
10.1145/2702123.2702388

[21] Vladimir I. Levenshtein. 1966. Binary codes capable of
correcting deletions, insertions, and reversals. Soviet
Physics Doklady 10 (8), 707–710.

[22] Eckhard Limpert, Werner A. Stahel and Markus Abbt.
2001. Log-normal distributions across the sciences:
Keys and clues. BioScience 51 (5), 341–352.
https://bit.ly/2JLVdir

[23] R.C. Littell, P.R. Henry and C.B. Ammerman. 1998.
Statistical analysis of repeated measures data using
SAS procedures. Journal of Animal Science 76 (4),
1216–1231. DOI: 10.2527/1998.7641216x

[24] I. Scott MacKenzie and R. William Soukoreff. 2002.
Text entry for mobile computing: Models and methods,
theory and practice. Human-Computer Interaction 17
(2-3), 147–198. http://www.yorku.ca/mack/hci3.html

[25] I. Scott MacKenzie and R. William Soukoreff. 2002. A
character-level error analysis technique for evaluating
text entry methods. Proceedings of NordiCHI 2002.
New York: ACM Press, 243–246. DOI:
10.1145/572020.572056

[26] Eugene W. Myers. 1986. An O(ND) difference
algorithm and its variations. Algorithmica 1 (1-4), 251–
266. DOI: 10.1007/BF01840446

[27] Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto and Christopher
Bryant. 2014. The CoNLL-2014 Shared Task on
grammatical error correction. Proceedings of the 18th
Conference on Computational Natural Language
Learning: Shared Task, 1–14.

[28] 28. Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu,
Christian Hadiwinoto, and Joel Tetreault. 2013. The
CoNLL-2013 Shared Task on Grammatical Error
Correction. In Proceedings of the Seventeenth
Conference on Computational Natural Language
Learning: Shared Task. Stroudsburg, PA: Association
for Computational Linguistics, 1–12. DOI:
10.3115/v1/W14-1701

[29] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga and Adam Lerer. 2017.
Automatic differentiation in PyTorch. Proceedings of
NIPS 2017 Autodiff Workshop.
https://openreview.net/forum?id=BJJsrmfCZ

[30] Jeffrey Pennington, Richard Socher and Christopher
Manning. 2014. Glove: Global vectors for word
representation. Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP ’14). Stroudsburg, PA: Association for

Computational Linguistics, 1532–1543. DOI:
10.3115/v1/D14-1162

[31] Radim Rehurek and Petr Sojka. 2010. Software
framework for topic modelling with large corpora.
Proceedings of LREC 2010 Workshop on New
Challenges for NLP Frameworks. Valletta, Malta:
University of Malta, 46–50.

[32] Sherry Ruan, Jacob O. Wobbrock, Kenny Liou,
Andrew Ng and James A. Landay. 2017. Comparing
speech and keyboard text entry for short messages in
two languages on touchscreen phones. Proceedings of
the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 1 (4), Article No. 159. DOI:
10.1145/3161187

[33] Susana Rubio, Eva Díaz, Jesús Martín and José M.
Puente. 2004. Evaluation of subjective mental
workload: A comparison of SWAT, NASA-TLX, and
workload profile methods. Applied Psychology: An
International Review 53 (1), 61–86. DOI:
10.1111/j.1464-0597.2004.00161.x

[34] Dominik Schmidt, Florian Block and Hans Gellersen.
2009. A comparison of direct and indirect multi-touch
input for large surfaces. Proceedings of INTERACT
2009. Berlin: Springer-Verlag, 582–594. DOI:
10.1007/978-3-642-03655-2_65

[35] Andrew Sears and Ben Shneiderman. 1991. High
precision touchscreens: Design strategies and
comparisons with a mouse. International Journal of
Man-Machine Studies 34 (4), 593–613. DOI:
10.1016/0020-7373(91)90037-8

[36] R. William Soukoreff and I. Scott MacKenzie. 2004.
Recent developments in text-entry error rate
measurement. Extended Abstracts of CHI 2004. New
York: ACM Press, 1425–1428. DOI:
10.1145/985921.986081

[37] Ilya Sutskever, Oriol Vinyals and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
Advances in Neural Information Processing Systems 27
(NIPS ’14). Red Hook, NY: Curran Associates, Inc.,
3104–3112. https://arxiv.org/abs/1409.3215

[38] Keith Vertanen, Haythem Memmi, Justin Emge,
Shyam Reyal and Per-Ola Kristensson. 2015.
VelociTap: Investigating fast mobile text entry using
sentence-based decoding of touchscreen keyboard
input. Proceedings of CHI 2015. New York: ACM
Press, 659–668. DOI: 10.1145/2702123.2702135

[39] Daniel Vogel and Patrick Baudisch. 2007. Shift: A
technique for operating pen-based interfaces using
touch. Proceedings of CHI 2007. New York: ACM
Press, 657–666. DOI: 10.1145/1240624.1240727

[40] Jacob O. Wobbrock and Brad A Myers. 2006.
Analyzing the input stream for character-level errors in
unconstrained text entry evaluations. ACM

Transactions on Computer-Human Interaction 13 (4),
458–489. DOI: 10.1145/1188816.1188819

[41] Ziang Xie, Anand Avati, Naveen Arivazhagan, Dan
Jurafsky and Andrew Y. Ng. 2016. Neural language
correction with character-based attention.
https://arxiv.org/abs/1603.09727

[42] Tom Young, Devamanyu Hazarika, Soujanya Poria
and Erik Cambria. 2018. Recent trends in deep learning
based natural language processing. IEEE
Computational Intelligence Magazine 13 (3), 55–75.
DOI: 10.1109/MCI.2018.2840738

[43] Torsten Zesch. 2012. Measuring contextual fitness
using error contexts extracted from the Wikipedia
revision history. Proceedings of the 13th Conference of
the European Chapter of the Association for
Computational Linguistics (EACL ’12). Stroudsburg,

PA: Association for Computational Linguistics, 529–
538. https://www.aclweb.org/anthology/E12-1054

[44] Shumin Zhai and Per-Ola Kristensson. 2012. The
word-gesture keyboard: Reimagining keyboard
interaction. Communications of the ACM 55 (9), 91–
101. DOI: 10.1145/2330667.2330689

[45] Xiang Zhang, Junbo Zhao and Yann LeCun. 2015.
Character-level convolutional networks for text
classification. Proceedings of the 28th International
Conference on Neural Information Processing Systems
(NIPS ’15). Cambridge, MA: MIT Press, 649–657.
https://arxiv.org/abs/1509.01626

[46] Suwen Zhu, Tianyao Luo, Xiaojun Bi and Shumin
Zhai. 2018. Typing on an invisible keyboard.
Proceedings of CHI 2018. New York: ACM Press.
Paper No. 439. DOI: 10.1145/3173574.3174013

APPENDIX

Near-error Far-error
Typos The season would end the net week. //next Untreated septicemic plague is universally fatal, but early

treatment with antibiotics reduces the morality rate to between 4
and 15 percent. //mortality

Word
change

I suggest you get facts after judging anyone.
//before

This book is very touching. It tells Dorie's story of all the
unbelievably horrible things while growing up. //quite

Insertion Where do you want to meet to walk () there? //over If you're just waiting for Vol. 2, why () you buy this in the first
place? //did

Examples of different error types from our user study. Error text is highlighted in bold; insertion errors are represented by
parentheses. The correction is shown at the end of each phrase.

	Type, Then Correct: Intelligent Text Correction Techniques for Mobile Text Entry Using Neural Networks
	Abstract
	CCS Concepts
	Keywords

	Introduction
	Related work
	Text Correction Behaviors on Touch Screens
	Mobile Text Correction Techniques
	NLP Algorithms for Error Correction

	Our Three Text Correction Techniques
	Drag-n-Drop
	Drag-n-Throw
	Magic Key

	The Correction Algorithm
	Error Types for Correction
	The Deep Neural Network Structure
	Data Collection and Processing
	Training Process
	Results

	Other Implementation Details
	User Study
	Participants
	Apparatus
	Phrases Used in the Correction Task
	Correction Task Procedure
	Composition Task Procedure

	Results
	Correction Time
	Correction Success Rate for Drag-n-Throw and Magic Key
	Subjective Preferences

	Discussion
	Future Work
	Conclusion
	Acknowledgements
	References
	Appendix
	Untitled

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /All
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions false
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create high quality Adobe PDF documents suitable for a delightful viewing experience and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 7.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

