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ABSTRACT 
We introduce GripSense, a system that leverages mobile 
device touchscreens and their built-in inertial sensors and 
vibration motor to infer hand postures including one- or 
two-handed interaction, use of thumb or index finger, or 
use on a table. GripSense also senses the amount of pres-
sure a user exerts on the touchscreen despite a lack of direct 
pressure sensors by observing diminished gyroscope read-
ings when the vibration motor is “pulsed.” In a controlled 
study with 10 participants, GripSense accurately differenti-
ated device usage on a table vs. in hand with 99.7% accura-
cy; when in hand, it inferred hand postures with 84.3% 
accuracy. In addition, GripSense distinguished three levels 
of pressure with 95.1% accuracy. A usability analysis of 
GripSense was conducted in three custom applications and 
showed that pressure input and hand-posture sensing can be 
useful in a number of scenarios.  
ACM Classification: H5.2 [Information interfaces and 
presentation]: User Interfaces—graphical user interfaces. 
General terms: Design, Human Factors, Experimentation.  
Keywords: Touchscreen; situational impairments; mobile; 
inertial sensors; gyroscope; hand posture; posture 
 
INTRODUCTION 
A typical computer user is no longer confined to a desk in a 
relatively consistent and comfortable environment. The 
world’s typical computer user is now holding a mobile de-
vice smaller than his or her hand, is perhaps outdoors, per-
haps in motion, and perhaps carrying more things than just 
a mobile device. A host of assumptions about a user’s envi-
ronment and capabilities that were tenable in comfortable 
desktop environments no longer applies to mobile users. 
This dynamic state of a user’s environment can lead to sit-
uational impairments [28], which pose a significant chal-
lenge to effective interaction because our current mobile 

 

  
Figure 1. (left) It is difficult for a user to perform interactions 
like pinch-to-zoom with one hand. (right) GripSense senses 
user’s hand posture and infers pressure exerted on the screen 
to facilitate new interactions like zoom-in and zoom-out. 

devices do not have much awareness of our environments 
or how those environments affect users’ abilities [33].  
One of the most significant contextual factors affecting 
mobile device use may be a user’s hand posture with which 
he or she manipulates a mobile device. Research has shown 
that hand postures including grip, one or two hands, hand 
pose, the number of fingers used, and so on significantly 
affect performance and usage of mobile devices [34]. For 
example, the pointing performance of index fingers is sig-
nificantly better than thumbs, as is pointing performance 
when using two hands versus one hand. Similarly, the per-
formance of a user’s dominant hand is better than that of 
his or her non-dominant hand. Research has found distinct 
touch patterns for different hand postures while typing on 
on-screen keyboards [1]. And yet our devices, for the most 
part, have no clue how they are being held or manipulated, 
and therefore cannot respond appropriately with adapted 
user interfaces better suited to different hand postures. 
Researchers have explored various techniques to accom-
modate some of these interaction challenges, like the 
change in device orientation due to hand movement [2,15]. 
But despite prior explorations, there remains a need to de-
velop new techniques for sensing the hand postures with 
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which people use mobile devices in order to adapt to pos-
tural and grip changes during use. 
In this paper, we present GripSense (Figure 1), a system 
that uses a combination of the touchscreen and the built-in 
inertial sensors (gyroscope, accelerometer) and built-in 
actuators (vibration motors) already present on most com-
modity mobile phones to infer hand postures and pressure. 
GripSense detects hand postures over the course of a small 
number of interaction steps (e.g., tapping, swiping the 
screen). It infers postures like the use of an index finger, 
left thumb, right thumb, which hand is holding the device, 
or whether the phone is lying on a flat surface. GripSense 
performs this sensing by measuring a device’s rotation, tap 
sizes, and the arc of swiping motions. GripSense addition-
ally leverages the built-in vibration motors in a new way to 
help infer the amount of pressure being applied to the 
screen when interacting with the phone, which can be used 
to enable alternate interaction techniques with mobile de-
vices that have no additional hardware for pressure sensing. 
As an example, GripSense allows users to zoom-in and 
zoom-out of maps using pressure input. In addition, 
GripSense is able to detect when the phone is being 
squeezed, which could be used to quickly silence a phone 
while in a pocket.  Previous work on hand-posture detec-
tion has leveraged accelerometers for detecting whether a 
device is used in a stationary environment, in a hand, on a 
table, or in motion [27], and researchers have also used 
external sensors for grip detection [9,22,30]. Leveraging 
the built-in inertial sensors, vibration motors, and 
touchscreen for grip and pressure detection has not, until 
now, been explored.  
We evaluated GripSense in a controlled study with 10 par-
ticipants. Our findings show that GripSense differentiates 
between device usage in hand or on a flat surface with 
99.7% accuracy and various hand postures with 84.3% ac-
curacy and, on an average, makes a decision within 5 “in-
teraction steps”—actions taken by the user that give 
GripSense information. Based on data collected in our con-
trolled study, we built a three-level pressure detection mod-
el for inferring pressure input. GripSense differentiates 
between three levels of pressure with 95.1% accuracy. 
Lastly, we also developed three applications that 10 partic-
ipants used in different settings to qualitatively evaluate the 
usefulness and usability of GripSense. 
The main contributions of this paper are: (1) a new artifact 
called GripSense embodying multiple approaches to sens-
ing mobile device hand-postures using only the built-in 
sensors present in commodity touchscreen devices; (2) em-
pirical results from an evaluation of GripSense showing 
that it robustly detects four postures i.e., single-handed op-
eration with left thumb, with right thumb, two-handed op-
eration with either index finger, and operation on a flat sur-
face; and (3) the accurate sensing of three levels of pressure 
applied to the touchscreen using those hand postures.  

RELATED WORK 
Our work draws motivation from prior research on explor-
ing solutions for making mobile device interactions easier 
in different situations and contexts as well as technologies 
that understand a user’s interaction behavior to add new 
input capabilities to the device. 
Situational Impairments and Hand Postures 
It has been emphasized by a number of researchers that the 
devices need to have knowledge of a user’s context or situ-
ation to provide better support to the user by making inter-
faces intelligent and invisible (e.g., [18,27]). Recent design 
approaches have also emphasized this; for example, proac-
tively sensing context is a design principle of ability-based 
design [33], which seeks a better match between interfaces 
and the abilities of the people who use them. There also has 
been extensive research in the domain of activity recogni-
tion to have a better understanding of the context of a user-
in-motion. Choudhury et al. [3] developed a small wearable 
device with number of sensors for activity recognition. 
Laerhoven and Cakmakci [23] leveraged an accelerometer 
attached to a phone for recognizing different user motions 
like walking, climbing stairs, etc. Schmidt et al. [27] lever-
aged accelerometers to detect, in addition to user move-
ment, whether a device is held in the hand, is on a table, or 
is in a suitcase. GripSense contributes to this research area 
by detecting in which hand and in which hand-posture a 
device is being used.  
Prior to GripSense, others have also proposed techniques 
for detecting hand postures. Kim et al. [22] and Harrison et 
al. [9] used capacitive touch sensors to differentiate be-
tween numerous grips. Taylor and Bove [30] additionally 
leveraged accelerometers to dynamically detect changes in 
a user’s grip for improved interactions. Our system, in con-
trast, requires no additional instrumentation of a modern 
smartphone to robustly detect handling grips. The main 
trade-off for this capability is that the user needs to be in-
teracting with the device for GripSense to make inferences.  
Understanding hand posture is important for making devic-
es more intelligent to situational impairments caused by 
them. Holz et al. [16] have evaluated systematic error in 
target selection due to change in finger posture. Wobbrock 
et al. [34] studied a number of hand postures and evaluated 
front- and back-of-device finger performance with mobile 
devices. A number of researchers [14,21,31] suggest that 
although users prefer single-handed operation while using 
smartphones, traditional mobile interfaces are designed for 
two-handed operation. Karlson et al. [20] studied such in-
terfaces and evaluated how they impede thumb-based us-
age. Azenkot and Zhai [1] found that different hand pos-
tures induced different touch patterns and affected overall 
performance while typing on a mobile touchscreen key-
board. AppLens and LaunchTiles [21] attempted to design 
interfaces mindful of the limited precision and range-of-
motion of the thumb. GripSense, using only on-device sen-
sors, robustly detects whether a user is using his left thumb, 
right thumb, or either index finger to interact with a device.  
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Inertial Sensors and Force Input 
Inertial sensors like accelerometers and gyroscopes have 
become ubiquitous. Numerous researchers have leveraged 
these sensors to improve device performance. Joshi et al. 
[19] used them to reduce image blurring due to touch-
induced vibrations while using a camera. WalkType [7] 
used on-device accelerometers to adapt smartphones’ key-
boards to users’ walking movements to reduce text entry 
errors. Phielipp et al. [25] used accelerometers and the se-
quence of button presses to detect remote control user iden-
tity. GripSense derives motivation from such work and uses 
similar sensors to improve mobile device interaction.  
There has been long and consistent interest in augmenting 
mobile devices with pressure input. Iwasaki et al. [17] 
measured typing pressure on laptop keyboards using on-
device accelerometers. Pressure Widgets [26] used a pres-
sure-sensitive stylus for adding pressure-based interactions 
to PDAs. Clarkson et al. [4] instrumented a flip-phone with 
force sensitive resistors (FSR) to infer continuous pressure 
applied by the user. Essl et al. [5] combined FSR with ac-
celerometers and touch size, inferred from the touchscreen, 
as a proxy for pressure applied on phone. Force Gestures 
[12] added detection of tangential forces in a similar setup 
for richer interactions. Unlike GripSense, most of these 
efforts required additional device instrumentation.  
As with GripSense, there is significant previous work that 
does not require custom instrumentation. Hinckley et al. 
[14] and Heo and Lee [13] used smartphone accelerometers 
to leverage touch-induced vibrations as a proxy for pres-
sure. In contrast with our work, these approaches do not get 
a continuous measure of pressure applied by the user. They 
provide a coarse proxy of the pressure and only infer the 
initial velocity with which a user’s finger strikes the screen. 
Although useful in a number of situations, the granularity 
and frequency of these inferences is limited. Heo and Lee 
[13] also found that the requirement of increased speed-of-
contact results in higher target selection error. We believe 
this limitation does not impede GripSense.  
Grasping and Squeezable Interfaces 
Fitzmaurice et al. [6] coined the term “graspable user inter-
faces.” Such interfaces allow devices to become more con-
text-sensitive and thereby improve “expressiveness or the 
communication capacity” of the computer. SqueezeBlock 
[8] embodies this idea and demonstrates a device that pro-
vides feedback by varying its “squishiness.” Wimmer et al. 
[32] leveraged computer vision and optical fibers to detect 
grasping pressure on mobile device surfaces. Harrison et al. 
[9] leveraged FSRs to detect squeezing pressure. These 
projects required additional device instrumentation to infer 
grip pressure. GripSense requires no additional hardware 
for its graspable user interfaces and is a completely soft-
ware-enabled solution provided one has a commodity 
smartphone. Another software-only solution, one by Stra-
chan and Murray-Smith [29], used muscle tremor as a 
proxy for pressure sensing  in a squeezable interface. 
GripSense uses similar phenomenon and combines it with 

motor-induced vibrations to achieve more fine-grained es-
timation of pressure. 
DESIGN OF GRIPSENSE 
GripSense uses multiple sources of information to detect a 
user’s hand posture and the amount of pressure exerted in a 
variety of these postures. Among these sources is the data 
from device’s built-in gyroscope. In case of hand posture 
detection, the gyroscope is used to measure the direction 
and amount of rotation of the device in all three axes. For 
the detection of exerted pressure, the gyroscope is used to 
measure specific damping characteristics of touch- and 
motor-induced vibrations. Another source of information is 
touchscreen interaction data. In this section, we outline the 
concept and theory behind GripSense. 

Inference Features Used Sensor 
Event 

Latency  

Table vs. 
Hand 

Gyroscope (Low frequency in 
all axes) 

Touch Down 1 

Thumb 
vs. Index 
Finger 

Gyroscope (Low frequency in 
x- and y axis 

Touch Down 3 

Swipe Shape Touch Up 

Touch Size Touch Down 

Left 
Thumb 
vs. Right 
Thumb 

Gyroscope (Low frequency in 
y-axis 

Touch Down 5 

Swipe Shape Touch Up 

Touch Size Touch Down 

Pressure 
in hand 

Gyroscope (Low Frequency) Touch Down 1 

Gyroscope (High Frequency) 
+ Motor 

Pressure 
on table 

Gyroscope (High frequency) 
+ Motor 

Touch Down 1 

Squeeze Gyroscope (High frequency) 
+ Motor 

Held in Hand 0 

Table 1. Summary of all inferences made by GripSense and 
when and which features were used for each of them.  

Inferring Hand Posture 
GripSense uses touchscreen interaction and device rotation 
information to infer whether the phone is (a) in a user’s left 
hand and operated with left thumb, (b) in a user’s right 
hand and operated with right thumb, (c) in either hand and 
operated with the index finger of the other hand, (d) on a 
flat surface, or (e) being only grasped by the user and not 
operated. Karlson et al. [21] discussed how limited preci-
sion and extent of the human thumb impedes one-handed 
mobile touchscreen interaction. We use this information in 
GripSense to detect hand postures. We use a combination 
of three features: (1) relative variance in rotation, (2) 
change in touch size, and (3) direction of arc for finger 
swipes. These features were extracted on a Samsung Nexus 
S smartphone running Android OS 2.3.  
Rotation of the Device. The first feature is the rotational 
movement of the device as the user touches the screen. In a 
one-handed interaction, the phone rotates in response to 
touches at the top of the screen more than it does to touches 
at the bottom of the screen (Figure 2). This is to compen-
sate for the limited range of the thumb; fingers move the 
device as the thumb extends to reach the top of the screen. 
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In contrast, touches at the bottom of the screen result in less 
angular motion because that area is usually within the 
thumb’s range. When the user interacts using their index 
finger, there is no difference in the angular motion from 
touches at the top or the bottom of the screen. If the device 
is on a table then there is no change in any of these parame-
ters before the touch event is registered. 

   
Figure 2. (left) Minimal device rotation in x- and y-axis, and 
smaller touch size when the user touches nearby with the 
thumb. (center) Significantly more rotation in x- and y- axis and 
larger touch size when the far quadrant of the screen is 
touched. (right) The shape of the swipe arc in the case of right 
thumb. (All of these phenomena are mirror-imaged for the left 
thumb.) 
To leverage these insights, we store the angular velocities 
around the x-axis sampled at 1 kHz from the gyroscope in a 
quarter-second buffer. The data in the buffer is passed 
through a low-pass filter to isolate the low frequency angu-
lar velocities. We record the last two angular velocities 
observed for touches in the top third of the screen and the 
bottom third of the screen (determined from a pilot with 
four users). If the difference in variance of angular veloci-
ties for touches in the top is five times greater than for 
touches in the bottom of the screen, we assumed that it was 
thumb-based interaction.  
If the difference in the variances does not exceed the 
threshold for three consecutive touches, then we bias our 
final decision towards selecting “index finger.” 
Similarly, when a user holds the phone in their left hand 
and interacts with their thumb, touches on the right of the 
screen cause more angular motion than touches nearer to 
the palm, again because of the compensation for the limited 
motion range of the thumb (Figure 2). In the case of the 
right hand, more motion is seen from touches on the left of 
the screen. If a thumb-based interaction is inferred, we use 
a similar approach as before, except now we log the vari-
ance in the y-axis of the gyroscope for touches on the left 
third of the screen and the right third of the screen. If the 
variance in angular velocity of the last two touches on the 
left side is greater than that on the right side, then we as-
sume the phone is in the right hand (left hand if the vari-
ance on the right is greater). Moreover, if the difference in 
angular velocities is more than ten times greater in con-
secutive touches, we set a “high confidence flag” which is 
used to bias our final decision towards using this feature 
(discussed later).  

Touch Size. The second feature is based on the change of 
size of touch in different regions of the touch screen. We 
hypothesize that in one-handed interaction when the user 
interacts with the left and right sides of the screen, the size 
of the touch changes because of the shape of the thumb and 
rotation of the device in the user’s hand. The touch size on 
the same side as the thumb will be smaller than the touch 
size on the far side away from the thumb (Figure 2).  
For this feature, we divide the screen into six (2×3) parts 
and keep track of last two touch sizes. Note that the An-
droid platform provides a method to get the touch size on 
the screen. This method is supported by most Android 
smartphones available in the market. We compare touch 
sizes in the left third and right  third of the screen for the 
same third of the screen height. If the difference in the 
mean of the touch sizes is more than 25%, we bias the sys-
tem towards a thumb-based interaction. If the larger tap 
size is on the left side, then the system believes it is right 
thumb, and vice versa. Moreover, if the difference in touch 
sizes is more than 40% for consecutive touches, the heuris-
tic sets a “high confidence flag.” If the difference is less 
than 25%, it biases toward index finger-based interaction. 
Shape of the Swipe Arc. This feature is only applicable 
when the user swipes on the screen. Because of the shape 
and position of the thumb, users often draw an exaggerated 
arc instead of a relatively straight line. Karlson et al. [21] 
observed similar arcs and analyzed how an interface can be 
more effective by limiting interaction within this arc. We 
use this arc as our “signal” to detect the user’s hand pos-
ture. While using the phone with the index finger there is 
no consistent arc. However, with the thumb there is a con-
sistent, exaggerated arc to the right or left depending on 
which thumb is being used. Figure 2 shows the arc formed 
by the right thumb while performing a bottom-to-top swipe. 
A mirror image of this arc will form in the case of the left 
thumb. 
If the difference in coordinates of the start and end position 
of a vertical swipe are more than 5% of the screen resolu-
tion, GripSense biases itself towards one of the two thumb 
postures. Even so, we observed that sometimes a thumb-
based swipe does not result in an arc. Instead, the phone 
experiences angular motion in the hand. For example, a 
right-handed swipe from bottom to top results in a counter-
clockwise rotation. These two phenomena combine to form 
a robust heuristic for handling posture detection in the case 
of swipes. As with the other two heuristics, the final intra-
heuristic decision is made when the system biases toward 
the same posture twice in a row.  
Making the Final Decision. If swipes are present, we use 
majority voting on the output of each heuristic to decide the 
posture. If all three votes disagree, the posture is marked as 
“unknown.” In the absence of swipe, a final decision is 
made only if both touch size and rotation heuristics agree or 
if the “high confidence flag” in one of the heuristics is set. 
If both heuristics come up with different decisions, then the 
system chooses the heuristic with a “high confidence flag.” 
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If both confidence flags are set or no confidence flags are 
set with disagreement, the posture is set to “unknown.”  
Detecting Pressure Applied to the Touchscreen 
GripSense uses the gyroscope and vibration motor to clas-
sify the user’s touchscreen touches into three pressure cate-
gories: Light, Medium and Heavy. We hypothesize that if 
we trigger the built-in vibration motor when a user touches 
the screen (similar to what is already done in a number of 
smartphones to provide haptic feedback), the user’s hand 
absorbs a portion of these vibrations. Our experiments 
show that this vibration absorption is proportional to the 
amount of pressure being applied to the screen (see Figure 
3). This damping effect is measured using the on-device 
gyroscope. We primarily look for the damping of vibrations 
induced by the vibration motor. We also observed that as 
the amount of force exerted by the user on the touchscreen 
increases, there is a subtle oscillating motion between the 
user’s thumb and the four fingers that rest on the back of 
the device (see the low pass signal in Figure 3). Strachan 
and Murray-Smith also observed and leveraged this phe-
nomenon [29]. We hypothesize that this oscillation occurs 
because the user’s thumb and fingers try to compensate 
continually for pressure exerted and this oscillation has 
much lower frequency compared to that induced by the 
vibration motor.  This subtle motion is not dependent on 
the vibration motor. In order to make a robust classification 
of a user’s touch intensity, we use both of these features. 

 
Figure 3. (top) Gyroscope signal when user presses light, then 
hard, then waits for a second and presses hard and soft again. 
(middle) The lower frequencies generated from touch-induced 
vibrations increase with increase in pressure. (bottom) Motor-
induced vibrations are diminished as the amount of pressure 
exerted increases.  
The touch-induced vibrations observed in GripSense are 
different from those used by prior work [13,14]. This prior 
work used exaggerated vibrations observed when a user 
“whacks” the phone with higher than usual velocity, mov-
ing the phone backward with respect to the finger stroke. 
This backward motion is proportional to the force with 
which finger strikes the screen. This technique provides an 
effective but coarse proxy of the pressure exerted. In con-
trast, GripSense leverages the subtle shaking of the phone 
as a user’s thumb or finger (depending on the posture) and 
hand in which the phone is held try to compensate for pres-

sure exerted by each other. An effective combination of 
these touch-induced vibrations with damped motor-induced 
vibrations give a much more authentic fine-grained and 
continuous proxy of pressure exerted on the screen.  
We built a custom application on an Android Nexus-S 
smartphone, wherein any touch triggered the phone’s built-
in vibration motor. We then gathered angular velocities 
around the three axes through the built-in gyroscope with a 
1 kHz sampling rate (Figure 3, top). Touch-induced vibra-
tions were obtained by passing the signal through a low 
pass filter (Figure 3, middle). The motor-induced vibrations 
were obtained by passing the original signal through a high 
pass filter (Figure 3, bottom).  
It is clear from the bottom plot in Figure 3 that in the case 
of a hard press (blue background), there is an exaggerated 
damping effect due to vibrations absorbed by the user’s 
hand. We quantify this damping using the 90th percentile of 
the high-frequency component of the observed signal. For 
the low frequency signal, we quantify the movement of the 
phone using the signal variance.  
Essl et al. [5] have earlier used the size of touch on the 
screen as a proxy for pressure exerted, and we also use this 
as a feature in our system. Our analysis shows that this fea-
ture alone is a poor measure of pressure (only about 60% 
accurate in our pilot study), but when combined with vibra-
tion analysis it can marginally improve performance by 
1.4%, on average. Our pilot study also showed that amount 
of motor-induced vibrations absorbed by the hand and 
thumb or finger was also dependent on the location of 
touch on the screen. Hence, we divided screen into a 4×6 
matrix in portrait mode and added “touch zone” as another 
feature for pressure level classification. 
We buffer the gyroscope data at 1 kHz in a 500 ms buffer 
and analyze it every 250 ms (Figure 4). The data then pass-
es through low pass and high pass filters and appropriate 
variances and 90th-percentiles are calculated. These fea-
tures, along with touchscreen features (zone and size), were 
used to classify to pressure level using the Weka machine 
learning toolkit. Weka was used to generate J48 Decision 
Trees with pruning confidence set to Weka’s default (0.25).  

 
Figure 4. Block diagram of the major components of 
GripSense’s pressure detection module. Low frequency vari-
ance, 90th percentile of higher frequencies, touch size and loca-
tion are the features used for classification. 
Squeeze and Grasp GesturesUsing similar techniques as for 
quantifying pressure exerted on a touchscreen, we imple-
mented a method to detect squeeze or grasp gestures. For 
example, imagine quickly silencing a phone while it is still 
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in a pocket or in a purse by squeezing it and without the 
need for fully retrieving the phone. Although grasping pro-
vides a significant amount of damping to the motor-
induced vibrations, there was no significant variance in low 
frequency component of the gyroscope data; therefore, only 
higher frequencies were analyzed and their 90th percentiles 
were used as features for Weka’s J48 decision trees.  
EVALUATION 
Participants 
The performance of GripSense was evaluated in a con-
trolled study. Ten participants (6 males, 4 females) ranging 
in age from 21 to 32 years (M=26.9, SD=3.6) were recruit-
ed. All participants had more than 10 years of experience 
with computers and self-rated as intermediate to expert 
computer and smartphone users.  
Apparatus 
Participants used separate custom Android applications for 
posture and pressure detection. These applications were 
deployed on a Samsung Nexus S. The device’s angular 
velocities were recorded at 1 kHz using the built-in gyro-
scope. The ground truth for pressure detection was obtained 
using thin-film force sensitive resistors (FSR), affixed to 
the touchscreen. This was only used to train users to exert 
different pressures while receiving feedback from the FSR; 
it was not used to train any of the algorithms. 
Pressure Detection Procedure 
Pressure Detection. The machine learning system for pres-
sure detection was modeled and evaluated on data collected 
from participants in a 45-minute study each. Participants 
were asked to tap the screen using three different and dis-
cernible pressure levels with different hand postures detect-
able by GripSense: (1) thumb-based operation, (2) index-
finger operation, (3) on a table, (4) only held by the user 
but not operated. Twenty taps for each pressure level using 
each posture were recorded for all participants. Apart from 
the taps, the participants were also asked to perform seven 
longer, continuous touches lasting 10 seconds each for each 
pressure level. These longer touches were recorded because 
in our pilot study we realized that low frequency touch-
induced vibrations lasted for nearly 3 seconds and started 
attenuating thereafter as the hand became used to the pres-
sure level. Hence we added these gestures in our data col-
lection mode to make for more robust models. 
The three different pressure levels were explained to partic-
ipants and they were asked to practice them. The ground 
truth from the FSRs was visualized on the screen for feed-
back during training. Once participants were comfortable 
entering three distinct levels of pressure, they were intro-
duced to the data collection interface and procedure. Alt-
hough all participants were comfortable distinguishing for 
themselves three pressure levels, absolute pressure values 
were not uniform and varied across participants. The order 
of postures in which data was collected was randomized to 
prevent unwanted effects from fatigue.  
The procedure for collecting data to evaluate grip pressure 
was the same as that for collecting touchscreen pressure. 

Participants were asked to grip the device with three vary-
ing intensities. The least pressure was slightly less than 
what participants would apply while using their phone in 
general. The middle grip pressure was meant to approxi-
mate how participants would normally hold their phones. In 
the highest-pressure level, participants were asked to grip 
their phones tightly. 
The participants were asked to press a button to trigger the 
vibration motor. The motor went off 5 seconds after the 
button was pressed. This gave user ample time to get the 
phone into the correct grip. Then the device vibrated for 10 
seconds. Five such tasks were run for each pressure level 
and for each participant. Although we collected pressure-
based interaction data for our postures separately, using our 
posture-detection heuristics, applications can seamlessly 
switch between models for different postures at runtime.  
Posture Detection Procedure and Applications 
Our heuristics look at different touchscreen interactions 
like taps and swipes to infer grip; hence, we developed two 
separate custom Android applications to evaluate perfor-
mance. One application, Contact Selection App, used more 
swipes than taps; the other, Text Entry App, used only taps. 
The 10 participants recruited for pressure detection data 
collection also participated in evaluation of these two ap-
plications. These applications were evaluated in a separate 
30-minute session.  

     
Figure 5. (left) Contact Selection App. Swipe-intensive applica-
tion that helps to quantify swipe heuristic performance. (right) 
Text Entry App. Tap-intensive app helped in evaluating perfor-
mance in absence of swipes. The left area of the screen just 
below the text field prompts the user with current hand posture. 
The Contact Selection App presented participants with a 
list of 100 random names. The investigator asked each par-
ticipant to select 50 of these names in a random order. Par-
ticipants were asked to randomly invite some of the names 
to a fictitious party through a dialog box (Figure 5, left). 
After every 5 name selections, the app prompted the partic-
ipant to switch postures. The order of postures was ran-
domly generated. The list and dialog box ensured that par-
ticipants performed a good combination of swipes and taps. 
The dialog box also ensured participants had a mixture of 
taps on both the left and right sides of the screen. 
The Text Entry App required only tapping. Participants 
were presented with 15 short English language phrases 
randomly selected from MacKenzie and Soukoreff’s phrase 
set [24]. At the end of each phrase, the application instruct-
ed participants to switch to a new randomly selected pos-
ture (Figure 5, right). The performance analyses for both of 
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these applications and also for pressure detection models 
are presented in the next section. 
RESULTS 
Posture Detection 
Accuracy results for posture detection are shown in Figure 
6, left. This figure shows the confusion matrix for the three 
hand postures while using the Text Entry App. The y-axis 
has the actual posture and x-axis has the prediction made by 
GripSense. We do not show the performance of detection 
of the device being on a table or grasped because it was 
relatively straightforward and the accuracy for that detec-
tion was 99.42%.  

 
Figure 6. (left) Confusion matrix for classification of hand pos-
tures using Text Entry App. The x-axis shows the classification 
and the y-axis shows the actual posture. (right) Confusion ma-
trix while using the Contact Selection App. 
When evaluated using our Text Entry App, GripSense was 
able to detect correct posture in 81.11% cases. It made a 
decision after about 5 interaction steps. The number of in-
teractions required to make a decision could be decreased 
but only at the cost of accuracy. With 5 required interaction 
steps, GripSense was able to make a decision often when 
the user completed the first word of a phrase.  
The performance of GripSense, expectedly, improved fur-
ther while using the Contact Selection App, as it permits 
the use of our third heuristic, the shape of the swipe arc. 
The accuracy improved to 87.4%. The confusion matrix for 
the three hand postures is shown in Figure 6, right. In this 
case, GripSense was able to make a decision on hand pos-
ture after about 4 interaction steps.  
Pressure Detection 
Figure 7 shows the accuracy of GripSense in detecting 
pressure exerted on phone in different postures. The partic-
ipants were asked to use three levels of pressure and the 
overall accuracy across all postures was 95.05%.  

 
Figure 7. Squeeze gestures performed the best. Reducing the 
number of pressure levels to two improved accuracy further. 
Errorbars are standard error. 

As discussed earlier, inclusion of Android’s built-in touch-
size method as a feature provided marginal improvement in 
performance. We performed an analysis to see how much 
effect this feature had on the performance of GripSense. 
The accuracy of GripSense without touch size was found to 
be 93.46%.  
It may be that for many applications, two levels of pressure 
are adequate so we evaluated performance for two levels of 
pressure. As expected, the performance of GripSense’s 
pressure detection improved significantly to 97.91%.  
We discussed earlier how the touch-induced vibrations at-
tenuate over the duration of the touch. So we collected data 
for both taps (momentary touch) and long 10 second touch-
es as well. The long touches facilitate functions like zoom-
ing-in and out of pictures, maps, etc. During our pilot study 
we realized that different users have different ways of hold-
ing the phone and have different types of hands. Hence, we 
developed personalized pressure classification models for 
all participants. This meant that participants had to take part 
in a relatively long data collection study. So we investigat-
ed how much data was enough to train the system for ac-
ceptable levels of accuracy.  
Figure 8 shows the progression of improvement in the av-
erage accuracy of GripSense to sense three distinct levels 
of pressure as we increase the amount of data used for de-
velopment of models. The investigation has been divided 
into different accuracies for different tap and continuous 
gestures in variety of postures. The x-axis shows the per-
centage split in training and test data. Larger values on the 
x-axis signify more training data. It is clear from the figure 
that in the case of long continuous touches, GripSense does 
not require a lot of training data. Even for momentary taps, 
in total, only 20 taps were recorded for each pressure level. 
In most cases, the classification accuracy reaches above 
80% by the 30% split mark, meaning that only six taps for 
each pressure level are required to train a device per user. 

 
Figure 8. Improvement in average accuracy of pressure level 
detection for different gestures and touch-types with increasing 
size of training data. Continuous touches reached maximum 
performance with significantly less training data. 
APPLICATIONS FOR PRESSURE DETECTION 
To put GripSense through its paces, we implemented sepa-
rate Android applications to take advantage of GripSense’s 
posture- and pressure-sensing techniques. Our applications 
were motivated from the challenges associated with situa-
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tional impairments [28] and the question of how interfaces 
may accommodate using only one hand, having one’s de-
vice in a bag or purse, having limited screen space, etc. 
The Maps Application 
There are circumstances where it is difficult to use multiple 
fingers on a mobile device. Users often do not have both 
hands available for interaction. To explore these circum-
stances, we developed a map application in which user 
could zoom in by pressing harder on the screen, and could 
lightly press to zoom out. Hinckley et al. [14] have devel-
oped a similar application where they used hard and soft 
onset of taps for similar interactions. As noted previously, 
our approach differs because we do continuous pressure 
monitoring, not just detection of pressure at touch-onset, 
and therefore, our users do not have to impact the screen 
with increased velocity.  
In order to assess the usability of our Maps app, we pre-
sented participants with a fully zoomed-out view of a world 
map and asked them to zoom-in to a set location (e.g., 
Mexico). The participants needed to zoom in until they 
could see street names, and then they had to zoom-out until 
they could see the entire country again. To mimic a situa-
tional impairment, we required participants to hold a coffee 
mug in one hand and operate the device in their other hand. 
We also asked participants to perform same task on an app 
that did not have pressure-based input capabilities, and they 
had to use pinch-to-zoom to interact with the map using 
only one hand. After completion of a task on each system, 
we asked participants to make Likert-scale ratings based on 
the NASA TLX perceived workload index [10,11]. All 10 
participants preferred using GripSense’s pressure-sensitive 
maps, as it was much easier to navigate the map with one 
hand using pressure input to zoom in and out than to use 
one hand with pinch-to-zoom. On average, the GripSense-
based app did better than traditional maps app on all counts 
on the Likert scale (Figure 9). A number of participants 
also liked the fact that the focal point of the zoom did not 
move while using pressure-based input, which is usually 
not the case with pinch-to-zoom implementations. 

 
Figure 9. Perceived workload ratings show the GripSense-
based applications resulted in relatively low workload. Lower 
ratings are better. Error bars are standard error. 

The Keyboard Application 
One obvious utility of having pressure-based input is alter-
native input. Researchers have used similar input modali-
ties for mimicking right-clicks [14], changing keyboard 
modes [4], and so on. We use pressure input information to 
change letter case on a touchscreen keyboard. Users can 
press harder to enter uppercase letters and press lighter to 
enter lowercase letters. Participants were presented with 5 
phrases randomly selected from the MacKenzie and Souko-
reff phrase set [24]. Forty percent of characters in each of 
these phrases were randomly converted to upper case. We 
also presented participants with a parallel app having the 
same interface and task, with the only difference being an 
absence of pressure-based input. Instead, the app had a sep-
arate shift key for uppercasing letters.  
The keyboards in both apps were modified to not show any 
typing errors if participants pressed within three keys of the 
intended key. We made this choice because the aim of this 
application was not to measure the user’s typing accuracy, 
but to measure GripSense’s pressure-detection accuracy. 
Participants were asked to use this app while holding the 
device in one hand and interacting with the index finger of 
the other hand. 
After the completion of tasks on each of the two keyboards, 
we asked participants to fill out the same Likert scales as 
for the Maps app. The difference in performance of the two 
keyboards was not as dramatic as it was in case of the Maps 
app. Nonparametric Wilcoxon signed-rank tests indicate 
that our Keyboard application required significantly less 
perceived workload on the temporal and frustration Likert 
scales (p<.05). Responses for effort showed a trend in favor 
of our Keyboard application (p=.07). Responses for the 
mental, physical, and performance scales were not signifi-
cantly different.  
The participants were divided on which keyboard they 
thought allowed them to type faster. For example, P4 said, 
“[GripSense] felt like it took a lot less time to enter the text 
because I did not have to keep switching modes.” Whereas, 
P7 said, “While using the pressure one I felt that typing 
was slower. I had to think more.” A Shapiro-Wilk W test of 
normality indicates the Time measure differs significantly 
from normal (W=0.95, p<.01). However, a Kolmogorov’s 
D test indicates the Time data does not depart significantly 
from lognormal (D=0.07, p=.15). Therefore, we log-
transformed our Time measure before running a repeated 
measures ANOVA. Although the mean time taken for 
GripSense was a little less on average than the traditional 
Shift-based keyboard (14.98 s, SD=5.29 vs. 16.31 s, 
SD=4.55), the difference was not statistically significant 
(F1,6=2.69, p=.15). 
Squeeze Application 
We developed a fake phone ringer app to check the utility 
of our squeeze gesture. This application plays a ringtone 
and goes into silent mode when user squeezes the device. 
This application was tested by asking participants to keep 
the phone in their pocket or bag and once the app starts 
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ringing, to reach inside the bag or pocket and squeeze the 
device. This squeeze action sends the device into silent 
mode and mimics the behavior of sending the caller to 
voicemail. 
As is evident from the Likert-scale measures, participants 
frankly loved this application. Many wanted it on their per-
sonal phones immediately. P7 said, “There was something 
satisfying about squeezing the phone and having the vibra-
tion stop instantly.” P1 said, “When can I get this? This is a 
really cool feature that I think would be very useful in all 
kinds of contexts.” 
DISCUSSION 
GripSense successfully infers a user’s hand postures and 
pressure exerted on device in these postures with high ac-
curacy. But, there is slight degradation in the performance 
of GripSense when deciding between left-handed thumb-
based operation and index finger-based operation. We be-
lieve this degradation is due to the system confusing one-
handed and two-handed operation. This problem is mitigat-
ed to a large extent in the swipe-heavy application, Contact 
Selection App. In the case of the keyboard application, the 
user’s interaction was largely limited to the bottom half of 
the screen and our current heuristics depend on analyzing 
differences in device movement when interacting with dif-
ferent parts of the screen. We believe this degradation 
would not be felt in real world applications that require 
users to interact with various parts of screen and hence pro-
vide much richer data for the algorithms presented in this 
paper. However, the keyboard app provides ample interac-
tion switching between the left and right sides of the 
screen, so GripSense’s performance is not dramatically 
affected.  
Extended use of the touchscreen, gyroscope, and vibration 
motor can have significant power implications. But 
GripSense only leverages these sensors when the device is 
interacted with. We did not do a direct analysis of energy 
use, but anecdotally we did not observe any significant 
reduction in battery life during our user studies. If needed, 
future iterations of such system could employ a multistage 
approach by sampling at a low frequency first and then 
higher rates, as needed.  
Because GripSense uses the vibration motor to sense the 
pressure exerted, the motor is triggered only when the user 
interacts with the touchscreen or in case of an infrequent 
event (e.g. incoming voice call). We explicitly asked partic-
ipants about the effects of vibration on their experience 
with the system. The majority of participants did not feel 
that their experience deteriorated due to this vibration. Sig-
nificantly lower levels of frustration in our exit survey after 
using GripSense-based applications also support this find-
ing.  
We implemented our algorithms on a Samsung Nexus S 
running the Android OS. Although the basic premise would 
remain the same, our pressure detection algorithms might 
need to be adjusted somewhat for different phones because 
of different physical characteristics. The variability of the 

sampling rate and resolution of different devices may also 
require algorithmic adjustments on some phones. Current 
inertial sensors present on commodity mobile devices are 
not high resolution and the techniques presented in this 
paper can benefit a great deal from improved resolution. 
The high performance exhibited by GripSense, particularly 
in the case of pressure detection, could be even better with 
improved sensor hardware in the future. 
Our use of the built-in motor to produce vibration means 
that almost half of our features are coming from a relatively 
high-frequency source. Hence, techniques presented here 
for pressure detection do not suffer from the usual limita-
tions of inertial sensor-based techniques like the presence 
of external sources of vibration, etc. Although no formal 
study was conducted to measure the effects due to external 
vibrations, an informal test was conducted to estimate the 
efficacy of pressure sensing while sitting as well as walk-
ing; results were comparable for both postures. In the case 
of posture detection, the combination of inertial (gyro-
scope) and non-inertial (touchscreen) sensors should help 
mitigate this issue.  
As demonstrated by our results, the combination of touch-
induced and motor-induced vibrations means that these 
techniques can be reliably implemented when the device is 
on a flat surface. Hence these algorithms can be ported to 
tablets as well, which are used relatively more on a desk 
when compared to a smart phone. Modern game controller 
manufacturers can also leverage these techniques with a 
simple software upgrade to add pressure sensitivity to their 
devices, as game controllers already have vibration motors 
and inertial sensors.  
In our evaluation of pressure sensing in a variety of pos-
tures, we only had three levels of pressure. Three levels 
were chosen to make it easy for users to discern different 
pressure levels with acceptable levels of accuracy. We be-
lieve our algorithms actually can infer more than three lev-
els of pressure, amply demonstrated by the fact that even 
though the range of pressure applied by different partici-
pants was different, the system maintained high levels of 
accuracy. That said, a more continuous regression to pres-
sure is possible and algorithms can be built on top of this 
work that have more than just quantized levels of pressure.  
CONCLUSION 
The dynamic usage environments of mobile devices can 
lead to situational impairments that may be overcome with 
better device awareness and enhanced interaction tech-
niques. In this paper, we presented GripSense, a system that 
leverages various capabilities of mobile devices like the 
touchscreen, inertial sensors, and the vibration motor to 
infer users’ hand postures and the amount of pressure ex-
erted on device in these postures. GripSense differentiates 
between device usage in-hand or on a flat surface with 
99.7% accuracy and various hand postures with 84.3% ac-
curacy and, on average, makes a decision within 5 “interac-
tion steps”. GripSense differentiates between three levels of 
pressure on different areas of the device with 95.1% accu-
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racy. A controlled study with 10 participants qualitatively 
evaluated the desirability of GripSense with the help of 
three custom applications. Users reported lower perceived 
workload ratings for GripSense-based applications than for 
conventional alternatives. GripSense represents an im-
portant step in extending the capabilities of our mobile de-
vices to be more aware, responsive, and useful. 
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