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surface computers for many users. 
The majority of tabletop research and development has 
focused on the use of surface computing to support co-
located groups, a natural outcome of existing tabletop 
computers resembling everyday tables. However, tangible 
interaction for personal or individual use is not yet 
widespread, largely due to the size and cost of today’s 
tabletop computers. As presented by Beckwith et al. [ 3], 
affordable personal tangible interaction may have particular 
promise for education. Recent products such as Apple’s 
iPad have started a convergence of portable tablet 
computers with tabletop computing through the 
introduction of multi-touch technology to tablets. Tablet 
computers, being portable and flat and supporting touch 
input, are prime candidates for enabling personal tangible 
interaction. However, with the exception of ThinSight [ 8], 
which, through the use of sensors embedded in the back of 
the display is able to recognize hands and objects placed on 
the screen, current tablet computers lack support for 
interaction with physical objects. A key challenge is 
overcoming the constraints imposed by the boundaries of 
the tablet screen, since, for many tangible applications, 
small screen real-estate proves prohibitive. 
Portico overcomes the challenge of a limited interaction 
space by using two cameras on small foldable arms that 
provide a large field-of-view. Portico is thus able to 
recognize and react to objects manipulated not only on the 
tablet screen, but also on the surface beyond the tablet 
screen. In our prototype, Portico provides an interactive 

ABSTRACT 
We present Portico, a portable system for enabling tangible 
interaction on and around tablet computers. Two cameras 
on small foldable arms are positioned above the display to 
recognize a variety of physical objects placed on or around 
the tablet. These cameras have a larger field-of-view than 
the screen, allowing Portico to extend interaction 
significantly beyond the tablet itself. Our prototype, which 
uses a 12" tablet, delivers an interaction space six times the 
size of the tablet screen. Portico thus allows tablets to 
extend both their sensing capabilities and interaction space 
without sacrificing portability. We describe the design of 
our system and present a number of applications that 
demonstrate Portico’s unique capability to track objects. 
We focus on a number of fun applications that demonstrate 
how such a device can be used as a low-cost way to create 
personal surface computing experiences. Finally, we 
discuss the challenges in supporting tangible interaction 
beyond the screen and describe possible mechanisms for 
overcoming them. 
ACM Classification: H5.2 [Information interfaces and 
presentation]: User Interfaces—graphical user interfaces. 
General terms: Design, Human Factors.  
Keywords: Tangible, TUI, surface, tablet, portable. 
INTRODUCTION 
Surface and tabletop computing has been an important area 
in HCI research for over two decades. Interacting with 
surface computers allows users to directly manipulate 
digital elements through touch, and often allows interaction 
with and through physical objects set directly on the 
display. Surface computers, however, are typically large, 
expensive, and neither personal nor portable. In this 
paper we present Portico, a system that enables tangible 
interaction in a new inexpensive portable form-factor, 
while still delivering a large interaction space to support 
physical interaction with objects, touch, and gesture. 
Portico presents a possibility of enabling low-cost personal 
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Figure 1. The Portico system in use. Two cameras track 
objects on the screen and surrounding surface. In this 
application, a toy zebra is tracked. 
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space six times the size of a 12" tablet screen, equivalent to 
the surface area of a 28" screen—a considerable interaction 
space for a small, lightweight, low-cost device. Designed to 
be portable rather than mobile, we envision that Portico 
will be carried around like a regular tablet but used for 
tangible interaction when it is on a tabletop, countertop, 
classroom desk, or the even the living room floor. 
In the remainder of this paper, we describe related work, 
our system’s hardware and software, and a number of 
example applications that take advantage of Portico’s 
capabilities. We then discuss the benefits and limitations of 
Portico’s design. 
RELATED WORK 
Connecting the physical and virtual has been a long sought-
after goal in computing research. The earliest major work 
in this area was the DigitalDesk by Wellner in 1993 [ 23]. 
Ulmer and Ishii [ 10, 22] carried this vision forward, 
inspiring a long and creative line of research. Much of the 
work on tangible interaction focused on the manipulation of 
tangible objects as controls for digital elements, often 
referred to as Tangible User Interfaces, or TUIs. A nice 
review of work on TUIs is provided in the literature [ 18]. 
With its strong link to the physical world, tangible 
interaction is typically done in the context of a tabletop or 
other surface computer that is large, often expensive, and 
fixed in its environment.  
With Portico, we demonstrate how tangible computing can 
be supported in an affordable and portable form-factor 
without severely limiting the space available for physical 
interaction. This vision of a simple, portable device that can 
be carried around and that can quickly turn into a surface 
computer is similar to PlayAnywhere [ 24] and Bonfire 
[ 12], both of which create portable tabletop systems with 
the use of standalone projectors and embedded projectors. 
While Bonfire allows the laptop to ―spill over‖ to the 
tabletop through the use of a projector, Portico achieves 
much of the same benefits but without requiring a 
projector, making it substantially cheaper, and requiring 
significantly less power. Portico can also use the tablet’s 
touch-screen for touch and gesture, which is more robust 
than vision.  Also, with Portico, the primary display is 
horizontal in the same plane as the tangible objects, 
whereas Bonfire’s primary display was vertical and above 
its peripheral interactive surfaces. This difference allows 
Portico to take advantage of physical objects interacting 
with high-resolution output for the user’s primary tasks. 
While the key characteristic of Portico—a large interaction 
space in a portable form-factor—is a novel contribution of 
our work, the basic use of a tablet as a horizontal display 
for interaction with objects on top of the screen has been 
demonstrated by prior work. Edge and Blackwell [ 5], for 
example, used a tablet computer on which users could 
interact with objects as a fixed peripheral display to a 
workstation. As they point out, however, in their case, the 
tablet easily could have been replaced with a screen 
embedded in the desk on which the workstation is located.  

The Collaborative Slate (C-Slate) from Izadi et al. [ 11] was 
designed to support remote collaboration. Not designed to 
be portable, C-slate uses a horizontally mounted 21" tablet 
combined with a down-facing stereo camera, a vertical 
display and webcam, and supports tangible and multi-touch 
interaction on the tablet screen. C-Slate does, however, 
include abilities to view a collaborator’s face on the vertical 
display, and to view the collaborator’s hands on the tablet 
screen.  
Finally, Hodges et al.’s ThinSight [ 8] uses optical IR 
sensors embedded behind an LCD to detect fingers and 
hands on the surface. Although the authors mention it 
primarily as a future possibility, their system can also 
detect the base of objects placed on the screen, with 
potential uses for tangible interaction. Although ThinSight 
does not go beyond the confines of its screen and sees 
objects only from underneath, our work was nonetheless 
inspired by ThinSight and its exploration of tangible 
interaction on small form-factor screens.  
Interacting Beyond the Screen 
A primary goal of Portico is to provide a large interaction 
space despite the limited screen area provided by a tablet 
computer. The physical design of our system with two 
cameras enables it to view and respond to users’ 
interactions with objects on the surface surrounding the 
tablet. Thus, our system’s input space (what the system 
sees) is significantly larger than its output space (limited to 
the screen boundaries). Prior work on mobile interaction 
explored the ability to manipulate on-screen (digital) 
content by interacting in the space around the screen. With 
mobile devices, screen real-estate often makes it impossible 
to accommodate a user’s hands or even fingers without 
obstructing the digital content on the screen. SideSight [ 4] 
was designed for mobile devices and uses infrared (IR) 
proximity sensors embedded on each side of a mobile 
device that detect the position of fingers on the surface 
around the device. Abracadabra [ 7] was designed to allow 
finger interaction with graphical interfaces on very small 
displays using a combination of a magnetometer in the 
device and a magnet on a ring worn by the user to detect 
the finger’s position. Portico relates to these prior efforts 
and uses vision to track objects and users’ hands outside 
the device screen area.  
THE DESIGN OF PORTICO 
Our system comprises both hardware and software 
components: a custom designed hardware attachment, a 
vision system used for object detection, and an output 
system allowing Portico to visualize objects that are on the 
screen or on the table around it. 
Hardware Design 
Portico comprises a tablet computer and a pair of standard 
cameras that are attached to the tablet via custom designed 
fixtures. These cameras look down at the tablet screen and 
its surrounding surface. We modeled the fixtures in CAD 
such that they clasp the sides of the tablet screen (rather 
than the base, so they do not block any ports). For our 
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prototype, we printed the fixtures out of plastic using a 
Dimension Elite 3D printer. While printed plastic was 
satisfactory for prototyping the fixtures, we believe that 
stronger plastic or even aluminum is preferred. To provide 
additional robustness to breaking, flexible hinges similar to 
those used in eye glasses could allow Portico’s arms to be 
bent outwards. Such a design is particularly important 
when Portico is used on the floor, or used by children 
playing a game, e.g., our Penalty Shootout application 
(described below). For our prototype, we used a 12" Dell 
Latitude XT convertible tablet that supports both pen and 
finger multi-touch input. We also used a pair of Logitech 
Webcam Pro 9000 cameras extracted from their original 
housings. As shown in Figure 1, each camera is mounted at 
the end of a foldable arm attached to each side of the 
screen. We designed our system such that when folded 
down, the arms and cameras are flush against the tablet and 
do not interfere with normal use.  
When the arms are raised, the cameras are bent down using 
a single rotation hinge to allow them to see the tablet screen 
and the tabletop. Figure 2a shows an illustration of the 
unified area viewable by the two cameras. Figure 2b 
illustrates the system reacting to objects on and around the 
screen. Finally, to avoid the system confusing digital 
elements drawn on the screen with physical objects, we 
applied linear polarizing filters to the screen and cameras. 
(Note that while LCDs are linearly polarized, in many 
tablets the touch-sensitive element diffuses the light, 
requiring another polarizing layer.)  
Computer Vision System 
We implemented a computer vision system to allow 
applications to support interactions with objects on the 
tablet and the surface around it. The vision system was 
written predominantly in Python and uses Intel’s OpenCV 
library. We now describe the vision system in some detail 
to enable readers to replicate our system. 
As shown in Figure 3 (next page), the vision system was 
implemented in a threaded, hierarchical structure. At the 
core of the vision system is the Camera Module, which is 
responsible for retrieving frames from a single camera, 

performing an optional background subtraction step, and 
gathering detected objects from different View Modules. 
Each View Module is responsible for manipulating raw 
camera frames to produce a specific simulated view, and 
contains a set of object recognition classifiers that operate 
on the simulated view. These views are useful since, as can 
be seen in Figure 4a, in order for the camera to see the 
tablet screen and the surrounding surface (and still be 
folded down when not in use), the cameras must view the 
world from a very oblique angle. Our system uses two 
Camera Modules, one for each camera. Both Camera 
Modules and all View Modules are threaded to allow the 
vision system elements to operate concurrently. 
A single pass of the vision system consists of these steps: 
1. Grabbing camera frames. Each Camera Module is 
connected to a single camera device. Upon request from the 
Perception Manager, a Camera Module retrieves a new 
frame from the camera and passes it to each of its View 
Modules. 
2. Optional background-subtraction. Portico provides a 
background subtraction capability and offers it as an 
optional step in the perception process prior to view 
generation and object recognition. We use a Gaussian 
Mixture Models approach for background subtraction [ 20], 
with a dedicated model for each camera. When applied, a 
background/foreground mask is produced and is passed to 
each View Module along with the raw camera frame. 
3. Producing simulated camera views. Using calibration 
homography computed during system setup, a View 
Module can produce one of a set of simulated views to be 
used for object detection. Each Camera Module also 
contains a Raw View Module responsible for object 
recognition done on the raw camera view (see Figure 4a-b). 
We have implemented support for a number of simulated 
views. Our proof-of-concept applications, described below, 
make use of the following two simulated views. The Screen 
and Bezel View (Figure 4c) produces a rectified view of the 
tablet screen and bezel and is useful for performing more 
precise detection of objects placed on the tablet. The Table 
View (Figure 4d-e) produces a rectified view of the tablet 

  
Figure 2. Portico system illustrations: The unified area viewable by the two cameras (left), and the system reacting to object on and 
around the tablet (right). 
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screen and surrounding surface and is computed such that 
the tablet screen occupies one of the top quadrants of the 
rectified view depending on whether the left or right 
camera is used. Finally, a Screen View is also available, 
producing a rectified view of the tablet screen only. If 
background subtraction is used, a View Module will distort 
the background/foreground mask received with the raw 
camera frame such that it matches the simulated view.  
We implemented the View Module class such that the 
resolution of each of the views (Raw, Screen and Bezel, 
Table, and Screen) is independent and can be changed 
depending primarily on the details of objects that need to be 
detected. Note that while the resolution of a rectified view 
has performance implications in our prototype (rectification 
is a pixel-wise multiplication operation), such operations 
can be accelerated in hardware to reduce this performance 
hit.  
4. Object classification. Each View Module contains a list 
of classifiers responsible for vision-based object 
recognition. After its view is produced, a View Module 
gives its simulated view to each of these classifiers. Since 
some classifiers (e.g., Color-Histogram) make use of 
foreground/background segmentation, while other 
classifiers do not (e.g., HaarCascade or Template 
Matching), our implementation allows each classifier to 
request that images are returned as-is, or that background 
subtraction operations take place first. Each classifier then 
returns a list of detected objects, which can be empty.  
Our system supports an extensible set of classifiers. Each 
classifier must implement a set of basic functions, 
including classify(), trainNegative(), 
trainPositive(), and reset(). Our system already 
includes a small set of implemented classifiers such as 
Template Matching, Compound Template Matching, 
HaarCascade, and a Color-Histogram. We plan to add a 2D 
marker classifier as well as a SIFT-based classifier, which 
is robust to rotation and scaling, in the future.  
5. Aligning object coordinates. Since different views have 
different resolutions and coordinate systems in relation to 
the tablet screen, the coordinates of each object must be 

transformed into a uniform coordinate system prior to 
passing the objects to the Camera Module. We chose to 
transform the coordinates of each detected object to 
conform to the tablets’ coordinate system, such that an 
object placed at the top-left of the tablet screen will have a 
coordinate of (0,0), and an object placed at the bottom-right 
corner of the tablet screen will have a coordinate of 
(1280, 800) in our prototype. At the end of this step, 
objects to the left of the tablet have negative x-coordinates, 
objects in front of the tablet have y-coordinates greater than 
800, and objects to the right of the tablet have x-coordinates 
greater than 1280. Converging on this single coordinate 
system allows our output system to easily tell whether an 
object is on or off the screen, and choose one or more 
visualizations appropriately. The list of objects with 
updated coordinates is passed to the Camera Module. 
6. Removing redundant objects across views. When 
entering this step, a Camera Module may hold more than 
one set of objects classified on different views with 
potential redundancies. However, each object must be 
reported at most once to the output system. We thus iterate 
over the lists returned from the different views and remove 
duplicates of objects that occur in multiple lists. We 
consider two objects with the same name and an overlap 
greater than 75% to be duplicates. The single list of objects 
is then passed from each Camera Module to the Perception 
Manager for processing. 
7. Unifying objects across cameras. Similar to the previous 
step, the final step in the process is to merge objects 
returned from the two cameras, which is a step relevant to 
objects within the overlapping area between the two 
cameras. Unlike merging objects from different views of 
the same camera, however, we cannot assume that a single 
object detected by both cameras will have perfect overlap 
between the views. In fact, for any 3D object, we can 
assume that this will not be the case. Our system uses the 
overlapping area for an object seen by both cameras as the 
possible base of the object. For overlapping objects, only 
the intersecting area is thus reported to the output 
subsystem to approximate an object’s touch point with the 

 
Figure 3. System diagram. Vision system with two camera feeds communicates detected objects to the output system over UDP 
sockets. Digital representations for each object are created and passed to subscribed applications. 
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surface and provide feedback at the appropriate position.  
8. Passing Objects to the Output System. Finally, the 
unified list of objects from both cameras is passed over 
UDP sockets to the output system. 
System Calibration 
Prior to first use (―in the factory‖), the system is calibrated 
to generate the different camera views and to deliver 
correct object positions. System calibration consists of 
three steps. Note that because the camera and screen are 
orthogonally polarized, these steps cannot use virtual on-
screen markers. In the first step, the four corners of the 
screens are located, once per camera. The transformation 
homographies are stored on file and are loaded whenever 
the system starts. In our prototype, the corners are manually 
selected with the stylus; however, in the future, this step 
should be performed automatically, e.g., by embedding 
permanent physical markers at the screen corners. 
At this point, an object placed on the screen will correctly 
receive the same coordinates from both cameras. However, 
because the plane of the tablet screen is elevated above the 
plane of the table, an object placed on the table surface will 
receive different coordinates from each camera. Thus, to 
correct for the difference in planes between the screen and 
tabletop, in the second calibration step, a single physical 
marker is placed on the table at the overlap between the 
two cameras (at this point, the system will report seeing 
two markers on the table). The system computes an offset 
that aligns the marker’s coordinates, stores it, and later 

applies it to the coordinates of all off-screen objects. Since 
the thickness of the tablet is fixed, this step needs to be 
performed only once. 
Finally, in order for physical objects to correspond to 
meaningful coordinates in application space, the calibration 
marker is placed at the four corners of a calibration 
application and a transformation is computed based on the 
coordinates returned by the vision system. This transform is 
stored, and later used by our various applications. 
Output System 
Our output system is responsible for listening for objects 
delivered over UDP from the vision system, and for 
providing mechanisms to allow an application to visualize 
and represent physical objects. By using sockets for the 
communication between the vision system and output 
system, we were able to support applications written in 
different languages. Currently we have implemented two 
versions of the output system, one for writing applications 
in C# using .NET 2.0 and the other for Java. 
As shown in Figure 3 (right side), the output system 
contains a UDP client that parses incoming messages for 
physical objects. Our system contains a basic representation 
of a physical object (the VisionObject class) which can be 
subclassed to support specific objects. Each VisionObject 
(or subclass) possesses the knowledge of how to draw itself 
when it represents an object on the tablet or when that 
object lies beyond the tablet’s boundaries. The output 
system uses an object’s coordinates to determine whether 

   
(a) (b) (c) 

  
(d) (e) 

Figure 4. Multiple camera views: The raw camera view of (a) the right, and (b) the left cameras. (c) A rectified view of the screen 
and bezel (from the left camera), and the rectified view of screen and tabletop surface from (d) the right and (e) the left cameras.  
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the object is on- or off-screen, and objects know how to 
draw themselves based on where they are found in relation 
to the screen. An Output Manager then passes the parsed 
objects to any subscribed application, which allows more 
than one running application to interact with physical 
objects simultaneously. 
For easier application development, we created a Vision 
Simulator in C# that allows for using simple drag-and-drop 
operations to send simulated on-screen and off-screen 
objects to any application. It has been our experience that 
this decoupling of an application’s computer vision 
requirements and output capabilities greatly increases the 
ability to iterate and debug applications. 
Optional Feedback for Off-Screen Objects 
With an input area larger than the screen, conveying to 
users the system’s perception of objects outside its output 
space could be useful. For example, in Bonfire [ 12], 
information about coffee consumption is presented next to 
the user’s coffee cup. However, a user is unlikely to want 
to place a beverage on their tablet. Similarly, in Classmate 
Assist [ 3], a student is guided through a sequence of actions 
with math manipulatives. Because of the screen size, in 
Portico, many of the objects will necessarily be off the 
tablet. In Halo [ 2], Baudisch and Rosenholtz presented a 
technique for visualizing off-screen objects using contorted 
partial ellipses. Originally designed for PDAs and phones, 
Halo demonstrated the ability to convey the location of 
landmarks on a large virtual map that are off the current 
display. In Wedge [ 6], Gustafson et al. modified Halo to 
convey distance and direction, while reducing screen 
clutter. Inspired by this work, Portico enables application 
developers to provide users with optional feedback about 
objects that are off the screen using a library of 
visualizations that can be easily modified and extended. 
Figure 5 shows a number of the off-screen visualizations in 
action. This library includes visualizations for reflecting the 
presence of an off-screen object and manipulators that can 
be applied for conveying the distance of the object from the 
tablet. The following visualizations are implemented: 
Line. A line, or ray, is drawn from the center of the tablet 
screen in the direction of the object that is on the table. The 

line can be used with thickness or an alpha-blend to 
indicate an object’s distance from the tablet.  
Icon. An icon representing the object is drawn at the edge 
of the screen. The position of the icon is computed such 
that the icon is placed at the edge of the screen on the 
imaginary line connecting the object’s and screen’s centers. 
Arrow. Similar to the icon, an arrow is drawn at the edge of 
the screen pointing in the direction of the object. Arrows 
have stems by default, but those can be turned off. In our 
prototype, thinner, longer arrows are used for objects that 
are farther away from the tablet screen. 
Callout. A callout looks similar to a speech bubble with the 
tail pointing towards the off-screen object. A callout 
includes a label and an optional icon. It can be sized and 
alpha-blended to reflect an object’s distance. 
Halo. Inspired by Baudisch and Rosenholtz’s [ 2] technique 
for visualizing virtual off-screen elements, we support 
halos to visualize physical elements off the tablet screen. 
Halos are arcs at the screen edge that are part of a virtual 
circle centered at the physical object. Thus, a halo with a 
larger radius conveys that an object is further away from 
the screen.  
Alpha Blend. This visualization manipulator changes the 
alpha value of a visualization based on the object’s distance 
from the screen. When the object is touching the screen, the 
alpha value is 100%. We set the alpha value for an object at 
the edge of the outer interaction space to 20%. 
Size. This manipulator changes the size of the visualization. 
By default, greater size indicates that objects are further 
away; however, this can be easily reversed by altering 
options in a settings file. 
Length. For some elements, a longer representation can be 
useful to conveying that the object is further away. In our 
system, the stem of an arrow becomes longer the farther 
away an object is.  

 
Figure 5. Some of the off-screen visualizations: arrows, icons, 
and halos. 

 
Figure 6. Using physical tokens to play Tic Tac Toe on the 
tablet. The game is supervised by Portico and any illegal 
moves are flagged (and audibly “buzzed”). 
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Line-Thickness. Portico can change the line thickness used 
by some visualizations, for example, making lines thicker 
for objects nearer to the screen. 
PORTICO’S PROOF-OF-CONCEPT APPLICATIONS 
To put Portico through its paces, we created a number of 
fully functional applications designed to highlight Portico’s 
capabilities to respond to objects on and off the screen. Our 
examples highlight some playful uses of Portico.  
Tic Tac Toe: Tracking On-Screen Objects 
Tic Tac Toe is a basic demonstration of our system’s ability 
to detect objects on the tablet, and to make use of the 
tablet’s screen and touch capabilities. In this application, 
physical tokens are used by one or two players to play the 
classic game (Figure 6). Portico recognizes tokens’ 
positions on the screen to determine the state of the game-
board and highlight tokens from underneath.  
After placing a piece, a player touches the NEXT button on 
the screen to indicate the completion of their turn. At this 
point, the application checks the state of the game board to 
ensure that no ―mistakes‖ or ―cheats‖ were made. If one is 
found, the application plays an audible buzzer, and visually 
flags the illegal pieces. Although simple, Tic Tac Toe 
conveys Portico’s ability to oversee physical transactions 
and augment the experience, in this case, by providing a 
referee or, if desired, a computer opponent. 
Penalty Shootout: Dynamic Off-Screen Interaction 
Our second application is called Penalty Shootout. In this 
application, designed to be played on the floor or carpet, 
the tablet screen shows a soccer goal and goalie. The player 
physically rolls a small soccer ball-shaped foosball on the 
carpet toward the virtual goal on the screen. When the 
physical ball hits the tablet’s chassis, a virtual ball appears 
and flies toward the goal along the same trajectory as the 
incoming physical ball (Figure 7) and the goalie tries to 
block the shot. 
Penalty Shootout takes advantage of the tablet being raised 
from the table so that the physical ball can impact the tablet 

and then return, more or less, to the user. Velocity and 
acceleration in the physical world are converted directly 
into virtual motion on the screen. The velocity of the 
physical ball is translated into the height of the virtual 
soccer ball on the screen. Thus, if the physical ball is rolled 
too fast, the shot will appear to travel over the goal.  
The direction of the physical ball is computed by 
performing linear regression on the observed locations of 
the incoming ball samples. The centroid of the template-
matched ball is used. For recognition purposes, the vision 
system was trained on ―blurry‖ images of a ball being 
rolled at the tablet as well as stationary soccer balls. Linear 
regression provided some robustness to noisy samples.  
Penalty Shootout highlights our system’s ability to detect 
objects off the tablet, track their velocity and trajectory, and 
react to them on the screen. Our use of physics calculations 
was inspired by Wilson et al.’s [ 25] work on bringing 
physics to interactions with virtual objects on a Microsoft 
Surface. Penalty Shootout is just one in a large class of 
possible games that make use of the trajectory and velocity 
of tracked physical objects around the surface. Others 
include ―eagle-eye‖ golf, bowling, or marbles. 
Portico Arcade: Off-Screen Physical Controls 
Portico Arcade pays tribute to Atari’s classic 1979 arcade 
game Asteroids. In Portico Arcade, physical interaction 
with a custom toy we’ve created takes place entirely off the 
tablet screen. Similar to SideSight [ 4], user’s actions do not 
block their view of the screen. In this game, the angle of a 
plastic spaceship on the table is used to control the rotation 
of a virtual spaceship on the screen and aim its lasers 
(Figure 8). As in the original Asteroids game, the player’s 
goal is to shoot floating asteroids while avoiding being hit 
by them. We also created physical add-on weapons that can 
be snapped onto the plastic ship for added firepower. In our 
example, snap-on cannons enable the player to fire three 
lasers at a time instead of just one. To determine the angle 
of the spaceship, two circular visual tags, one on each 
wing, are tracked and the angle between them is calculated. 
Other visual tags are used to detect the presence of add-on 

Figure 7. Penalty Shootout. The player rolls the soccer ball on 
the table or floor towards the screen. After the toy ball hits the 
tablet chassis, a virtual ball continues the physical ball’s 
trajectory and speed towards the goal. 

 
Figure 8. Portico Arcade uses a physical spaceship on the table 
to control the angle of an on-screen virtual spaceship. Physical 
add-on weapons provide increased firepower. 
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weapons. If a tag on either wing is not detected, an 
indicator on the corresponding wing of the on-screen 
virtual spaceship turns from orange to gray, and the ship 
does not rotate. This feedback is meant to help the user 
realize that the system’s view of the ship is obstructed, or 
that the ship is outside the system’s interactive area. 
Tabletgotchi: Virtual Worlds for Physical Pets 
Our fourth proof-of-concept application, Tabletgotchi, 
allows a child to play with an uninstrumented physical toy 
pet (e.g., a plush zebra), and have the system react to the 
toy’s state on, or around, the tablet (see Figures 1 and 9). 
Tabletgotchi was inspired by Webkinz1 and the original 
Tamagotchi Japanese virtual pets. With Webkinz, a child 
links a physical plush pet with its virtual instantiation in the 
digital world on the Webkinz’s web site. The child can then 
play with the virtual toy in its virtual world or with the 
physical toy in the physical world. However, the physical 
and virtual remain disconnected. With Tabletgotchi, we 
establish a link to bring the two worlds directly together.  
In Tabletgotchi, a physical toy zebra can ―eat‖ food shown 
on the screen, or ―drink‖ from a virtual pool of water. (A 
timer periodically replenishes the supply.) A sand area 
provides a place for the zebra to use the ―potty.‖ The 
physical orientation of the zebra is also relevant in 
Tabletgotchi. Specifically, the zebra can ―nap,‖ as our 
system distinguishes between a standing zebra and a zebra 
lying down. For example, laying the zebra on its side below 
the tablet triggers a ―dream‖ where a nature video of zebras 
in the wild plays above the zebra’s head on the screen. If 
the zebra stands up mid-dream, the state change is 
immediately recognized and the dream promptly stops. 
Future versions could add 3D gesture tracking to enable 
actions such as ―petting‖ to be recognized and rewarded.  
We believe that allowing the physical toy to participate in 
play, rather than substituting it as with Webkinz, will 
encourage young children to interact with objects around 
them, and reduce the extent to which they focus their 
attention entirely on digital content.  
DISCUSSION 
Over the course of this work, we obtained insights into the 
capabilities and limitations of Portico. We believe that 
Portico represents a new approach to enabling personal and 
portable tangible surface interaction. We also believe that 
the interaction area provided by Portico, larger than the 
screen of the tablet, is necessary for meaningful and 
extensible portable tangible applications, and we consider 
this to be a primary contribution of Portico. Furthermore, 
with the vision and output systems in place, developing 
applications is easy. For example, Tabletgotchi and Pentaly 
Shootout were 600 and 552 lines of C# code respectively, 
and each used template matching of prototypical views of 
the objects with approximately 20 negative examples to 
train the classifier threshold. 

                                                           
1 Webkinz: http://www.webkinz.com/ 

Beyond interaction with physical objects for tangible 
manipulation, prior work, such as DigitalDesk  23] and 
Bonfire [ 12], proposed incorporating everyday objects to 
enrich a person’s computing interaction. In the work on 
Bonfire, for example, a coffee cup is tracked for personal 
logging. In order to support such interaction with a 
personal tabletop system, however, a large class of objects 
(e.g., liquids and other consumables) must be recognized 
without the need for the user to place them on the screen. 
Our system provides a natural extension to these systems in 
its ability to recognize objects around the tablet. A cup 
placed next to (rather than on) the tablet would be detected 
and tracked. While the absence of a projector makes it 
impossible to provide labels right next to objects, off-
screen visualizations can be used instead.  
System-in-Use 
We informally tested our system with one 4 year-old and 
two 3-year old boys. Our applications clearly targeted a 
young crowd and the use of familiar physical objects was 
very appealing to them. The children were keen to use the 
system and the objects right away and greatly enjoyed their 
experiences. In one case, one of the 3-year old children 
showed that he personally identified with the zebra’s 
actions and drew analogies to his own experiences. (―He 
[the zebra] uses the potty like I use the potty!‖)  
One noteworthy behavior that we did not expect was that, 
once the children were done using an application as we 
intended, they attempted to use objects with applications 
not designed for those objects. For example, one child tried 
using the tic-tac-toe pieces in the Tabletgotchi application 
and was confused when the system did not react to these 
objects. This observation suggests that our classifiers 
should support the option to recognize the presence of 
unknown objects, and suggests that applications still act on 
these unknown objects in some possibly playful or 
meaningful way.  
System Performance 
To give a sense of Portico’s performance, we examined the 
number of frames-per-second (fps) under different 

 
Figure 9. Tabletgotchi uses an uninstrumented zebra that 
“eats” carrots, “drinks” water (right side), uses the sand area 
(left side), or lays below the tablet and dreams (above). If the 
zebra stands up, the dream video stops, responding to the 
change in the zebra’s physical state. 
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conditions. As a baseline, with both cameras set to a 
resolution of 800×600 and without any additional 
processing, the vision system runs at 30 fps. Next, the 
system yields 24 fps for rectification of each camera once 
(e.g., to generate the Table view) and 18 fps to rectify each 
camera twice (e.g., to generate both the Table and Bezel 
views). Such frequent matrix manipulations for 
rectification could take advantage of hardware acceleration. 
The compute time required for classification is dependent 
on the type of classifiers used and the number of objects 
possible in the scene. In Portico Arcade and Tabletgotchi, 
for example, the system runs at 14 fps, which we found 
sufficient for our explorations. 
System Constraints 
Contour of the Interaction Space 
One possible limitation of our system mentioned earlier is 
that the cameras’ coverage to the right and left of the tablet 
screen is angled. As a result, the contour of the area viewed 
by the cameras resembles a wedge rather than a rectangle, 
which may make perceiving the bounds of the interaction 
space more difficult for users. The shape of the interaction 
space (see Figures 4d-e) is determined by the type of 
cameras used and their placement. In designing our 
prototype, for example, we limited the height of the 
cameras (specifically, the arms on which the cameras are 
mounted) to the depth of the screen such that, when folded, 
the cameras are flush with the screen and allow the tablet to 
be used normally. We also opted to utilize cheap web 
cameras, as they provide the benefits of being lightweight, 
low-cost, and widely available. While the current shape of 
the interaction space does not pose a limitation for all 
applications, for other applications, growing or widening 
the interaction space may be desirable. Fish-eye lens 
cameras, for example, could provide a wider view of the 
tabletop around the screen than our current cameras, 
although they would sacrifice image fidelity at the 
periphery. Similarly, different placements of the cameras, 
likely with different mounting arms, will produce different 
interaction spaces. Finally, on-screen visualizations, for 
example, a ―radar‖ view of the interaction space that, at a 
glance, can highlight all objects recognized by the system 
and convey the extent of the interaction space, may also 
help. 
Sensitivity to Illumination Changes and Obstruction 
Like any top-view camera-based system, Portico is 
sensitive to changes in illumination and obstruction. IR-
based sensing, especially when done from behind the 
screen, can robustly detect the placement of objects on the 
screen. Top-down camera systems, however, can observe 
more of the object’s shape than merely its contact points 
with the surface, as well as see objects from the user’s point 
of view. While Portico’s top-down cameras were adequate 
for a proof-of-concept, a system that combines our design 
with the optical sensors used in ThinSight [ 4] could benefit 
from both approaches. IR-based depth sensing cameras can 
provide robustness to illumination, together with added 3D 
capabilities; however, many of the objects used in tangible 

educational and playful applications (e.g., coins, Cuisenaire 
rods, Tangram and jigsaw puzzle pieces) are thinner than 
the depth resolution provided by current 3D cameras. 
Another constraint of our system is that cameras may fail to 
see objects that are very close to or touching the tablet if 
the tablet is thick. As new tablets are made thinner (the 
recent iPad’s thickness is 8.8 mm compared to our 
prototype’s 35 mm), this problem will be significantly 
reduced. 
Potential for Use in Education 
Tangible and surface computing can present significant 
benefits to education. The use of manipulatives in 
mathematics education dates back to the 19th century with 
Swiss educator Johann Heinrich Pestalozzi [ 16]. 
Manipulatives are concrete objects that can be viewed and 
physically handled by students in order to demonstrate or 
model abstract concepts. In a meta-analysis of 60 studies, 
Sowell [ 19] affirms the effectiveness of manipulative 
material for students’ achievement and attitudes in math 
education, particularly over long-term use. Studying the use 
of tangible computing for education, Antle et al. [ 1] 
compared how children solve a digital puzzle using a 
mouse, a tangible augmented puzzle, and a standard 
physical puzzle. Their results show that children were more 
successful and faster at solving puzzles using a tangible-
based approach. Related results by Tuddenham et al. [ 21] 
suggest that when using tangibles, users are both quicker to 
acquire, and more accurate in manipulating, interface 
control objects, compared to using multi-touch or mouse-
and-puck. Patten et al. [ 15] proposed using Sensetable for 
chemistry and system dynamics simulation applications. 
Zuckerman et al. [ 26] presented a system that uses 
computationally enhanced manipulatives. They show that 
their manipulatives are accessible to young children and 
encourage learning of abstract concepts through an iterative 
hands-on process. Scarlatos [ 17] used multimedia and 
visually tagged tangible objects to guide children in 
collaborative problem solving with the TICLE system. 
Horn et al. [ 9] demonstrated the use of tangible interaction 
for instruction of computer programming concepts. 
As this prior research shows, the promise of tangible 
interaction to improve the learning experience is great. 
Similar to [ 3], we believe, however, that in order for this 
promise to be realized at a large scale, tangible interaction 
must be supported by personal systems, not only by 
traditional fixed tabletop computers. With Portico, we seek 
to deliver the benefits of tangible interaction to children in 
the classroom, in their home, or even on the living room 
carpet, all in a low-cost portable and personal form. 
FUTURE WORK 
As mentioned above, our system currently includes only a 
handful of object classifiers and we intend to extend this set 
to support a greater range of objects. We also intend to 
support tracking of objects across frames, as shown in [ 24]. 
The use of IR-based cameras could mitigate the sensitivity 
to illumination changes, while higher resolution cameras 
will allow for scanning of physical objects, similar to [ 13]. 
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Our current prototype, which used a 12" tablet, was able to 
produce an interaction space six times larger. In our desire 
to support our system’s use for education, we have since 
created a prototype using a small 10" tablet, a platform 
more suitable for use within schools. We plan to explore 
the use of our system to support math-manipulative 
activities in the future. 
CONCLUSION 
This paper presents Portico, a low-cost surface computing 
system that supports tangible interaction. Using its 
mounted cameras, Portico greatly extends a tablet’s 
interaction space to include objects manipulated on the 
tabletop surface around it. We presented four proof-of-
concept applications—Tic Tac Toe, Penalty Shootout, 
Portico Arcade, and Tabletgotchi—each of which 
highlights an important aspect of Portico’s capabilities. 
Unlike most prior surface computing systems, Portico is 
based on a personal and portable form factor, namely a 
tablet computer, and as such, Portico brings surface 
computing one step closer to everyday use. 
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