
Portico: Tangible Interaction on and around a Tablet
Daniel Avrahami

1,2
, Jacob O. Wobbrock

2
 and Shahram Izadi

3

1
Intel

2200 Mission College Blvd.

Santa Clara, CA 95054-1549

2
The Information School | DUB Group

University of Washington

Seattle, WA 98195-2840

3
Microsoft Research

7 J J Thomson Avenue

Cambridge, UK

daniel.avrahami@intel.com, wobbrock@uw.edu, shahrami@microsoft.com

surface computers for many users.
The majority of tabletop research and development has
focused on the use of surface computing to support co-
located groups, a natural outcome of existing tabletop
computers resembling everyday tables. However, tangible
interaction for personal or individual use is not yet
widespread, largely due to the size and cost of today’s
tabletop computers. As presented by Beckwith et al. [3],
affordable personal tangible interaction may have particular
promise for education. Recent products such as Apple’s
iPad have started a convergence of portable tablet
computers with tabletop computing through the
introduction of multi-touch technology to tablets. Tablet
computers, being portable and flat and supporting touch
input, are prime candidates for enabling personal tangible
interaction. However, with the exception of ThinSight [8],
which, through the use of sensors embedded in the back of
the display is able to recognize hands and objects placed on
the screen, current tablet computers lack support for
interaction with physical objects. A key challenge is
overcoming the constraints imposed by the boundaries of
the tablet screen, since, for many tangible applications,
small screen real-estate proves prohibitive.
Portico overcomes the challenge of a limited interaction
space by using two cameras on small foldable arms that
provide a large field-of-view. Portico is thus able to
recognize and react to objects manipulated not only on the
tablet screen, but also on the surface beyond the tablet
screen. In our prototype, Portico provides an interactive

ABSTRACT
We present Portico, a portable system for enabling tangible
interaction on and around tablet computers. Two cameras
on small foldable arms are positioned above the display to
recognize a variety of physical objects placed on or around
the tablet. These cameras have a larger field-of-view than
the screen, allowing Portico to extend interaction
significantly beyond the tablet itself. Our prototype, which
uses a 12" tablet, delivers an interaction space six times the
size of the tablet screen. Portico thus allows tablets to
extend both their sensing capabilities and interaction space
without sacrificing portability. We describe the design of
our system and present a number of applications that
demonstrate Portico’s unique capability to track objects.
We focus on a number of fun applications that demonstrate
how such a device can be used as a low-cost way to create
personal surface computing experiences. Finally, we
discuss the challenges in supporting tangible interaction
beyond the screen and describe possible mechanisms for
overcoming them.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces—graphical user interfaces.
General terms: Design, Human Factors.
Keywords: Tangible, TUI, surface, tablet, portable.
INTRODUCTION
Surface and tabletop computing has been an important area
in HCI research for over two decades. Interacting with
surface computers allows users to directly manipulate
digital elements through touch, and often allows interaction
with and through physical objects set directly on the
display. Surface computers, however, are typically large,
expensive, and neither personal nor portable. In this
paper we present Portico, a system that enables tangible
interaction in a new inexpensive portable form-factor,
while still delivering a large interaction space to support
physical interaction with objects, touch, and gesture.
Portico presents a possibility of enabling low-cost personal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’11, October 16–19, 2011, Santa Barbara, California, USA.
Copyright 2011 ACM 978-1-4503-0716-1/11/10...$10.00.

Figure 1. The Portico system in use. Two cameras track
objects on the screen and surrounding surface. In this
application, a toy zebra is tracked.

Paper Session: Tangible UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

347

space six times the size of a 12" tablet screen, equivalent to
the surface area of a 28" screen—a considerable interaction
space for a small, lightweight, low-cost device. Designed to
be portable rather than mobile, we envision that Portico
will be carried around like a regular tablet but used for
tangible interaction when it is on a tabletop, countertop,
classroom desk, or the even the living room floor.
In the remainder of this paper, we describe related work,
our system’s hardware and software, and a number of
example applications that take advantage of Portico’s
capabilities. We then discuss the benefits and limitations of
Portico’s design.
RELATED WORK
Connecting the physical and virtual has been a long sought-
after goal in computing research. The earliest major work
in this area was the DigitalDesk by Wellner in 1993 [23].
Ulmer and Ishii [10, 22] carried this vision forward,
inspiring a long and creative line of research. Much of the
work on tangible interaction focused on the manipulation of
tangible objects as controls for digital elements, often
referred to as Tangible User Interfaces, or TUIs. A nice
review of work on TUIs is provided in the literature [18].
With its strong link to the physical world, tangible
interaction is typically done in the context of a tabletop or
other surface computer that is large, often expensive, and
fixed in its environment.
With Portico, we demonstrate how tangible computing can
be supported in an affordable and portable form-factor
without severely limiting the space available for physical
interaction. This vision of a simple, portable device that can
be carried around and that can quickly turn into a surface
computer is similar to PlayAnywhere [24] and Bonfire
[12], both of which create portable tabletop systems with
the use of standalone projectors and embedded projectors.
While Bonfire allows the laptop to ―spill over‖ to the
tabletop through the use of a projector, Portico achieves
much of the same benefits but without requiring a
projector, making it substantially cheaper, and requiring
significantly less power. Portico can also use the tablet’s
touch-screen for touch and gesture, which is more robust
than vision. Also, with Portico, the primary display is
horizontal in the same plane as the tangible objects,
whereas Bonfire’s primary display was vertical and above
its peripheral interactive surfaces. This difference allows
Portico to take advantage of physical objects interacting
with high-resolution output for the user’s primary tasks.
While the key characteristic of Portico—a large interaction
space in a portable form-factor—is a novel contribution of
our work, the basic use of a tablet as a horizontal display
for interaction with objects on top of the screen has been
demonstrated by prior work. Edge and Blackwell [5], for
example, used a tablet computer on which users could
interact with objects as a fixed peripheral display to a
workstation. As they point out, however, in their case, the
tablet easily could have been replaced with a screen
embedded in the desk on which the workstation is located.

The Collaborative Slate (C-Slate) from Izadi et al. [11] was
designed to support remote collaboration. Not designed to
be portable, C-slate uses a horizontally mounted 21" tablet
combined with a down-facing stereo camera, a vertical
display and webcam, and supports tangible and multi-touch
interaction on the tablet screen. C-Slate does, however,
include abilities to view a collaborator’s face on the vertical
display, and to view the collaborator’s hands on the tablet
screen.
Finally, Hodges et al.’s ThinSight [8] uses optical IR
sensors embedded behind an LCD to detect fingers and
hands on the surface. Although the authors mention it
primarily as a future possibility, their system can also
detect the base of objects placed on the screen, with
potential uses for tangible interaction. Although ThinSight
does not go beyond the confines of its screen and sees
objects only from underneath, our work was nonetheless
inspired by ThinSight and its exploration of tangible
interaction on small form-factor screens.
Interacting Beyond the Screen
A primary goal of Portico is to provide a large interaction
space despite the limited screen area provided by a tablet
computer. The physical design of our system with two
cameras enables it to view and respond to users’
interactions with objects on the surface surrounding the
tablet. Thus, our system’s input space (what the system
sees) is significantly larger than its output space (limited to
the screen boundaries). Prior work on mobile interaction
explored the ability to manipulate on-screen (digital)
content by interacting in the space around the screen. With
mobile devices, screen real-estate often makes it impossible
to accommodate a user’s hands or even fingers without
obstructing the digital content on the screen. SideSight [4]
was designed for mobile devices and uses infrared (IR)
proximity sensors embedded on each side of a mobile
device that detect the position of fingers on the surface
around the device. Abracadabra [7] was designed to allow
finger interaction with graphical interfaces on very small
displays using a combination of a magnetometer in the
device and a magnet on a ring worn by the user to detect
the finger’s position. Portico relates to these prior efforts
and uses vision to track objects and users’ hands outside
the device screen area.
THE DESIGN OF PORTICO
Our system comprises both hardware and software
components: a custom designed hardware attachment, a
vision system used for object detection, and an output
system allowing Portico to visualize objects that are on the
screen or on the table around it.
Hardware Design
Portico comprises a tablet computer and a pair of standard
cameras that are attached to the tablet via custom designed
fixtures. These cameras look down at the tablet screen and
its surrounding surface. We modeled the fixtures in CAD
such that they clasp the sides of the tablet screen (rather
than the base, so they do not block any ports). For our

Paper Session: Tangible UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

348

prototype, we printed the fixtures out of plastic using a
Dimension Elite 3D printer. While printed plastic was
satisfactory for prototyping the fixtures, we believe that
stronger plastic or even aluminum is preferred. To provide
additional robustness to breaking, flexible hinges similar to
those used in eye glasses could allow Portico’s arms to be
bent outwards. Such a design is particularly important
when Portico is used on the floor, or used by children
playing a game, e.g., our Penalty Shootout application
(described below). For our prototype, we used a 12" Dell
Latitude XT convertible tablet that supports both pen and
finger multi-touch input. We also used a pair of Logitech
Webcam Pro 9000 cameras extracted from their original
housings. As shown in Figure 1, each camera is mounted at
the end of a foldable arm attached to each side of the
screen. We designed our system such that when folded
down, the arms and cameras are flush against the tablet and
do not interfere with normal use.
When the arms are raised, the cameras are bent down using
a single rotation hinge to allow them to see the tablet screen
and the tabletop. Figure 2a shows an illustration of the
unified area viewable by the two cameras. Figure 2b
illustrates the system reacting to objects on and around the
screen. Finally, to avoid the system confusing digital
elements drawn on the screen with physical objects, we
applied linear polarizing filters to the screen and cameras.
(Note that while LCDs are linearly polarized, in many
tablets the touch-sensitive element diffuses the light,
requiring another polarizing layer.)
Computer Vision System
We implemented a computer vision system to allow
applications to support interactions with objects on the
tablet and the surface around it. The vision system was
written predominantly in Python and uses Intel’s OpenCV
library. We now describe the vision system in some detail
to enable readers to replicate our system.
As shown in Figure 3 (next page), the vision system was
implemented in a threaded, hierarchical structure. At the
core of the vision system is the Camera Module, which is
responsible for retrieving frames from a single camera,

performing an optional background subtraction step, and
gathering detected objects from different View Modules.
Each View Module is responsible for manipulating raw
camera frames to produce a specific simulated view, and
contains a set of object recognition classifiers that operate
on the simulated view. These views are useful since, as can
be seen in Figure 4a, in order for the camera to see the
tablet screen and the surrounding surface (and still be
folded down when not in use), the cameras must view the
world from a very oblique angle. Our system uses two
Camera Modules, one for each camera. Both Camera
Modules and all View Modules are threaded to allow the
vision system elements to operate concurrently.
A single pass of the vision system consists of these steps:
1. Grabbing camera frames. Each Camera Module is
connected to a single camera device. Upon request from the
Perception Manager, a Camera Module retrieves a new
frame from the camera and passes it to each of its View
Modules.
2. Optional background-subtraction. Portico provides a
background subtraction capability and offers it as an
optional step in the perception process prior to view
generation and object recognition. We use a Gaussian
Mixture Models approach for background subtraction [20],
with a dedicated model for each camera. When applied, a
background/foreground mask is produced and is passed to
each View Module along with the raw camera frame.
3. Producing simulated camera views. Using calibration
homography computed during system setup, a View
Module can produce one of a set of simulated views to be
used for object detection. Each Camera Module also
contains a Raw View Module responsible for object
recognition done on the raw camera view (see Figure 4a-b).
We have implemented support for a number of simulated
views. Our proof-of-concept applications, described below,
make use of the following two simulated views. The Screen
and Bezel View (Figure 4c) produces a rectified view of the
tablet screen and bezel and is useful for performing more
precise detection of objects placed on the tablet. The Table
View (Figure 4d-e) produces a rectified view of the tablet

Figure 2. Portico system illustrations: The unified area viewable by the two cameras (left), and the system reacting to object on and
around the tablet (right).

Paper Session: Tangible UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

349

screen and surrounding surface and is computed such that
the tablet screen occupies one of the top quadrants of the
rectified view depending on whether the left or right
camera is used. Finally, a Screen View is also available,
producing a rectified view of the tablet screen only. If
background subtraction is used, a View Module will distort
the background/foreground mask received with the raw
camera frame such that it matches the simulated view.
We implemented the View Module class such that the
resolution of each of the views (Raw, Screen and Bezel,
Table, and Screen) is independent and can be changed
depending primarily on the details of objects that need to be
detected. Note that while the resolution of a rectified view
has performance implications in our prototype (rectification
is a pixel-wise multiplication operation), such operations
can be accelerated in hardware to reduce this performance
hit.
4. Object classification. Each View Module contains a list
of classifiers responsible for vision-based object
recognition. After its view is produced, a View Module
gives its simulated view to each of these classifiers. Since
some classifiers (e.g., Color-Histogram) make use of
foreground/background segmentation, while other
classifiers do not (e.g., HaarCascade or Template
Matching), our implementation allows each classifier to
request that images are returned as-is, or that background
subtraction operations take place first. Each classifier then
returns a list of detected objects, which can be empty.
Our system supports an extensible set of classifiers. Each
classifier must implement a set of basic functions,
including classify(), trainNegative(),
trainPositive(), and reset(). Our system already
includes a small set of implemented classifiers such as
Template Matching, Compound Template Matching,
HaarCascade, and a Color-Histogram. We plan to add a 2D
marker classifier as well as a SIFT-based classifier, which
is robust to rotation and scaling, in the future.
5. Aligning object coordinates. Since different views have
different resolutions and coordinate systems in relation to
the tablet screen, the coordinates of each object must be

transformed into a uniform coordinate system prior to
passing the objects to the Camera Module. We chose to
transform the coordinates of each detected object to
conform to the tablets’ coordinate system, such that an
object placed at the top-left of the tablet screen will have a
coordinate of (0,0), and an object placed at the bottom-right
corner of the tablet screen will have a coordinate of
(1280, 800) in our prototype. At the end of this step,
objects to the left of the tablet have negative x-coordinates,
objects in front of the tablet have y-coordinates greater than
800, and objects to the right of the tablet have x-coordinates
greater than 1280. Converging on this single coordinate
system allows our output system to easily tell whether an
object is on or off the screen, and choose one or more
visualizations appropriately. The list of objects with
updated coordinates is passed to the Camera Module.
6. Removing redundant objects across views. When
entering this step, a Camera Module may hold more than
one set of objects classified on different views with
potential redundancies. However, each object must be
reported at most once to the output system. We thus iterate
over the lists returned from the different views and remove
duplicates of objects that occur in multiple lists. We
consider two objects with the same name and an overlap
greater than 75% to be duplicates. The single list of objects
is then passed from each Camera Module to the Perception
Manager for processing.
7. Unifying objects across cameras. Similar to the previous
step, the final step in the process is to merge objects
returned from the two cameras, which is a step relevant to
objects within the overlapping area between the two
cameras. Unlike merging objects from different views of
the same camera, however, we cannot assume that a single
object detected by both cameras will have perfect overlap
between the views. In fact, for any 3D object, we can
assume that this will not be the case. Our system uses the
overlapping area for an object seen by both cameras as the
possible base of the object. For overlapping objects, only
the intersecting area is thus reported to the output
subsystem to approximate an object’s touch point with the

Figure 3. System diagram. Vision system with two camera feeds communicates detected objects to the output system over UDP
sockets. Digital representations for each object are created and passed to subscribed applications.

Paper Session: Tangible UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

350

surface and provide feedback at the appropriate position.
8. Passing Objects to the Output System. Finally, the
unified list of objects from both cameras is passed over
UDP sockets to the output system.
System Calibration
Prior to first use (―in the factory‖), the system is calibrated
to generate the different camera views and to deliver
correct object positions. System calibration consists of
three steps. Note that because the camera and screen are
orthogonally polarized, these steps cannot use virtual on-
screen markers. In the first step, the four corners of the
screens are located, once per camera. The transformation
homographies are stored on file and are loaded whenever
the system starts. In our prototype, the corners are manually
selected with the stylus; however, in the future, this step
should be performed automatically, e.g., by embedding
permanent physical markers at the screen corners.
At this point, an object placed on the screen will correctly
receive the same coordinates from both cameras. However,
because the plane of the tablet screen is elevated above the
plane of the table, an object placed on the table surface will
receive different coordinates from each camera. Thus, to
correct for the difference in planes between the screen and
tabletop, in the second calibration step, a single physical
marker is placed on the table at the overlap between the
two cameras (at this point, the system will report seeing
two markers on the table). The system computes an offset
that aligns the marker’s coordinates, stores it, and later

applies it to the coordinates of all off-screen objects. Since
the thickness of the tablet is fixed, this step needs to be
performed only once.
Finally, in order for physical objects to correspond to
meaningful coordinates in application space, the calibration
marker is placed at the four corners of a calibration
application and a transformation is computed based on the
coordinates returned by the vision system. This transform is
stored, and later used by our various applications.
Output System
Our output system is responsible for listening for objects
delivered over UDP from the vision system, and for
providing mechanisms to allow an application to visualize
and represent physical objects. By using sockets for the
communication between the vision system and output
system, we were able to support applications written in
different languages. Currently we have implemented two
versions of the output system, one for writing applications
in C# using .NET 2.0 and the other for Java.
As shown in Figure 3 (right side), the output system
contains a UDP client that parses incoming messages for
physical objects. Our system contains a basic representation
of a physical object (the VisionObject class) which can be
subclassed to support specific objects. Each VisionObject
(or subclass) possesses the knowledge of how to draw itself
when it represents an object on the tablet or when that
object lies beyond the tablet’s boundaries. The output
system uses an object’s coordinates to determine whether

(a) (b) (c)

(d) (e)

Figure 4. Multiple camera views: The raw camera view of (a) the right, and (b) the left cameras. (c) A rectified view of the screen
and bezel (from the left camera), and the rectified view of screen and tabletop surface from (d) the right and (e) the left cameras.

Paper Session: Tangible UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

351

the object is on- or off-screen, and objects know how to
draw themselves based on where they are found in relation
to the screen. An Output Manager then passes the parsed
objects to any subscribed application, which allows more
than one running application to interact with physical
objects simultaneously.
For easier application development, we created a Vision
Simulator in C# that allows for using simple drag-and-drop
operations to send simulated on-screen and off-screen
objects to any application. It has been our experience that
this decoupling of an application’s computer vision
requirements and output capabilities greatly increases the
ability to iterate and debug applications.
Optional Feedback for Off-Screen Objects
With an input area larger than the screen, conveying to
users the system’s perception of objects outside its output
space could be useful. For example, in Bonfire [12],
information about coffee consumption is presented next to
the user’s coffee cup. However, a user is unlikely to want
to place a beverage on their tablet. Similarly, in Classmate
Assist [3], a student is guided through a sequence of actions
with math manipulatives. Because of the screen size, in
Portico, many of the objects will necessarily be off the
tablet. In Halo [2], Baudisch and Rosenholtz presented a
technique for visualizing off-screen objects using contorted
partial ellipses. Originally designed for PDAs and phones,
Halo demonstrated the ability to convey the location of
landmarks on a large virtual map that are off the current
display. In Wedge [6], Gustafson et al. modified Halo to
convey distance and direction, while reducing screen
clutter. Inspired by this work, Portico enables application
developers to provide users with optional feedback about
objects that are off the screen using a library of
visualizations that can be easily modified and extended.
Figure 5 shows a number of the off-screen visualizations in
action. This library includes visualizations for reflecting the
presence of an off-screen object and manipulators that can
be applied for conveying the distance of the object from the
tablet. The following visualizations are implemented:
Line. A line, or ray, is drawn from the center of the tablet
screen in the direction of the object that is on the table. The

line can be used with thickness or an alpha-blend to
indicate an object’s distance from the tablet.
Icon. An icon representing the object is drawn at the edge
of the screen. The position of the icon is computed such
that the icon is placed at the edge of the screen on the
imaginary line connecting the object’s and screen’s centers.
Arrow. Similar to the icon, an arrow is drawn at the edge of
the screen pointing in the direction of the object. Arrows
have stems by default, but those can be turned off. In our
prototype, thinner, longer arrows are used for objects that
are farther away from the tablet screen.
Callout. A callout looks similar to a speech bubble with the
tail pointing towards the off-screen object. A callout
includes a label and an optional icon. It can be sized and
alpha-blended to reflect an object’s distance.
Halo. Inspired by Baudisch and Rosenholtz’s [2] technique
for visualizing virtual off-screen elements, we support
halos to visualize physical elements off the tablet screen.
Halos are arcs at the screen edge that are part of a virtual
circle centered at the physical object. Thus, a halo with a
larger radius conveys that an object is further away from
the screen.
Alpha Blend. This visualization manipulator changes the
alpha value of a visualization based on the object’s distance
from the screen. When the object is touching the screen, the
alpha value is 100%. We set the alpha value for an object at
the edge of the outer interaction space to 20%.
Size. This manipulator changes the size of the visualization.
By default, greater size indicates that objects are further
away; however, this can be easily reversed by altering
options in a settings file.
Length. For some elements, a longer representation can be
useful to conveying that the object is further away. In our
system, the stem of an arrow becomes longer the farther
away an object is.

Figure 5. Some of the off-screen visualizations: arrows, icons,
and halos.

Figure 6. Using physical tokens to play Tic Tac Toe on the
tablet. The game is supervised by Portico and any illegal
moves are flagged (and audibly “buzzed”).

Paper Session: Tangible UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

352

Line-Thickness. Portico can change the line thickness used
by some visualizations, for example, making lines thicker
for objects nearer to the screen.
PORTICO’S PROOF-OF-CONCEPT APPLICATIONS
To put Portico through its paces, we created a number of
fully functional applications designed to highlight Portico’s
capabilities to respond to objects on and off the screen. Our
examples highlight some playful uses of Portico.
Tic Tac Toe: Tracking On-Screen Objects
Tic Tac Toe is a basic demonstration of our system’s ability
to detect objects on the tablet, and to make use of the
tablet’s screen and touch capabilities. In this application,
physical tokens are used by one or two players to play the
classic game (Figure 6). Portico recognizes tokens’
positions on the screen to determine the state of the game-
board and highlight tokens from underneath.
After placing a piece, a player touches the NEXT button on
the screen to indicate the completion of their turn. At this
point, the application checks the state of the game board to
ensure that no ―mistakes‖ or ―cheats‖ were made. If one is
found, the application plays an audible buzzer, and visually
flags the illegal pieces. Although simple, Tic Tac Toe
conveys Portico’s ability to oversee physical transactions
and augment the experience, in this case, by providing a
referee or, if desired, a computer opponent.
Penalty Shootout: Dynamic Off-Screen Interaction
Our second application is called Penalty Shootout. In this
application, designed to be played on the floor or carpet,
the tablet screen shows a soccer goal and goalie. The player
physically rolls a small soccer ball-shaped foosball on the
carpet toward the virtual goal on the screen. When the
physical ball hits the tablet’s chassis, a virtual ball appears
and flies toward the goal along the same trajectory as the
incoming physical ball (Figure 7) and the goalie tries to
block the shot.
Penalty Shootout takes advantage of the tablet being raised
from the table so that the physical ball can impact the tablet

and then return, more or less, to the user. Velocity and
acceleration in the physical world are converted directly
into virtual motion on the screen. The velocity of the
physical ball is translated into the height of the virtual
soccer ball on the screen. Thus, if the physical ball is rolled
too fast, the shot will appear to travel over the goal.
The direction of the physical ball is computed by
performing linear regression on the observed locations of
the incoming ball samples. The centroid of the template-
matched ball is used. For recognition purposes, the vision
system was trained on ―blurry‖ images of a ball being
rolled at the tablet as well as stationary soccer balls. Linear
regression provided some robustness to noisy samples.
Penalty Shootout highlights our system’s ability to detect
objects off the tablet, track their velocity and trajectory, and
react to them on the screen. Our use of physics calculations
was inspired by Wilson et al.’s [25] work on bringing
physics to interactions with virtual objects on a Microsoft
Surface. Penalty Shootout is just one in a large class of
possible games that make use of the trajectory and velocity
of tracked physical objects around the surface. Others
include ―eagle-eye‖ golf, bowling, or marbles.
Portico Arcade: Off-Screen Physical Controls
Portico Arcade pays tribute to Atari’s classic 1979 arcade
game Asteroids. In Portico Arcade, physical interaction
with a custom toy we’ve created takes place entirely off the
tablet screen. Similar to SideSight [4], user’s actions do not
block their view of the screen. In this game, the angle of a
plastic spaceship on the table is used to control the rotation
of a virtual spaceship on the screen and aim its lasers
(Figure 8). As in the original Asteroids game, the player’s
goal is to shoot floating asteroids while avoiding being hit
by them. We also created physical add-on weapons that can
be snapped onto the plastic ship for added firepower. In our
example, snap-on cannons enable the player to fire three
lasers at a time instead of just one. To determine the angle
of the spaceship, two circular visual tags, one on each
wing, are tracked and the angle between them is calculated.
Other visual tags are used to detect the presence of add-on

Figure 7. Penalty Shootout. The player rolls the soccer ball on
the table or floor towards the screen. After the toy ball hits the
tablet chassis, a virtual ball continues the physical ball’s
trajectory and speed towards the goal.

Figure 8. Portico Arcade uses a physical spaceship on the table
to control the angle of an on-screen virtual spaceship. Physical
add-on weapons provide increased firepower.

Paper Session: Tangible UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

353

weapons. If a tag on either wing is not detected, an
indicator on the corresponding wing of the on-screen
virtual spaceship turns from orange to gray, and the ship
does not rotate. This feedback is meant to help the user
realize that the system’s view of the ship is obstructed, or
that the ship is outside the system’s interactive area.
Tabletgotchi: Virtual Worlds for Physical Pets
Our fourth proof-of-concept application, Tabletgotchi,
allows a child to play with an uninstrumented physical toy
pet (e.g., a plush zebra), and have the system react to the
toy’s state on, or around, the tablet (see Figures 1 and 9).
Tabletgotchi was inspired by Webkinz1 and the original
Tamagotchi Japanese virtual pets. With Webkinz, a child
links a physical plush pet with its virtual instantiation in the
digital world on the Webkinz’s web site. The child can then
play with the virtual toy in its virtual world or with the
physical toy in the physical world. However, the physical
and virtual remain disconnected. With Tabletgotchi, we
establish a link to bring the two worlds directly together.
In Tabletgotchi, a physical toy zebra can ―eat‖ food shown
on the screen, or ―drink‖ from a virtual pool of water. (A
timer periodically replenishes the supply.) A sand area
provides a place for the zebra to use the ―potty.‖ The
physical orientation of the zebra is also relevant in
Tabletgotchi. Specifically, the zebra can ―nap,‖ as our
system distinguishes between a standing zebra and a zebra
lying down. For example, laying the zebra on its side below
the tablet triggers a ―dream‖ where a nature video of zebras
in the wild plays above the zebra’s head on the screen. If
the zebra stands up mid-dream, the state change is
immediately recognized and the dream promptly stops.
Future versions could add 3D gesture tracking to enable
actions such as ―petting‖ to be recognized and rewarded.
We believe that allowing the physical toy to participate in
play, rather than substituting it as with Webkinz, will
encourage young children to interact with objects around
them, and reduce the extent to which they focus their
attention entirely on digital content.
DISCUSSION
Over the course of this work, we obtained insights into the
capabilities and limitations of Portico. We believe that
Portico represents a new approach to enabling personal and
portable tangible surface interaction. We also believe that
the interaction area provided by Portico, larger than the
screen of the tablet, is necessary for meaningful and
extensible portable tangible applications, and we consider
this to be a primary contribution of Portico. Furthermore,
with the vision and output systems in place, developing
applications is easy. For example, Tabletgotchi and Pentaly
Shootout were 600 and 552 lines of C# code respectively,
and each used template matching of prototypical views of
the objects with approximately 20 negative examples to
train the classifier threshold.

1 Webkinz: http://www.webkinz.com/

Beyond interaction with physical objects for tangible
manipulation, prior work, such as DigitalDesk 23] and
Bonfire [12], proposed incorporating everyday objects to
enrich a person’s computing interaction. In the work on
Bonfire, for example, a coffee cup is tracked for personal
logging. In order to support such interaction with a
personal tabletop system, however, a large class of objects
(e.g., liquids and other consumables) must be recognized
without the need for the user to place them on the screen.
Our system provides a natural extension to these systems in
its ability to recognize objects around the tablet. A cup
placed next to (rather than on) the tablet would be detected
and tracked. While the absence of a projector makes it
impossible to provide labels right next to objects, off-
screen visualizations can be used instead.
System-in-Use
We informally tested our system with one 4 year-old and
two 3-year old boys. Our applications clearly targeted a
young crowd and the use of familiar physical objects was
very appealing to them. The children were keen to use the
system and the objects right away and greatly enjoyed their
experiences. In one case, one of the 3-year old children
showed that he personally identified with the zebra’s
actions and drew analogies to his own experiences. (―He
[the zebra] uses the potty like I use the potty!‖)
One noteworthy behavior that we did not expect was that,
once the children were done using an application as we
intended, they attempted to use objects with applications
not designed for those objects. For example, one child tried
using the tic-tac-toe pieces in the Tabletgotchi application
and was confused when the system did not react to these
objects. This observation suggests that our classifiers
should support the option to recognize the presence of
unknown objects, and suggests that applications still act on
these unknown objects in some possibly playful or
meaningful way.
System Performance
To give a sense of Portico’s performance, we examined the
number of frames-per-second (fps) under different

Figure 9. Tabletgotchi uses an uninstrumented zebra that
“eats” carrots, “drinks” water (right side), uses the sand area
(left side), or lays below the tablet and dreams (above). If the
zebra stands up, the dream video stops, responding to the
change in the zebra’s physical state.

Paper Session: Tangible UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

354

conditions. As a baseline, with both cameras set to a
resolution of 800×600 and without any additional
processing, the vision system runs at 30 fps. Next, the
system yields 24 fps for rectification of each camera once
(e.g., to generate the Table view) and 18 fps to rectify each
camera twice (e.g., to generate both the Table and Bezel
views). Such frequent matrix manipulations for
rectification could take advantage of hardware acceleration.
The compute time required for classification is dependent
on the type of classifiers used and the number of objects
possible in the scene. In Portico Arcade and Tabletgotchi,
for example, the system runs at 14 fps, which we found
sufficient for our explorations.
System Constraints
Contour of the Interaction Space
One possible limitation of our system mentioned earlier is
that the cameras’ coverage to the right and left of the tablet
screen is angled. As a result, the contour of the area viewed
by the cameras resembles a wedge rather than a rectangle,
which may make perceiving the bounds of the interaction
space more difficult for users. The shape of the interaction
space (see Figures 4d-e) is determined by the type of
cameras used and their placement. In designing our
prototype, for example, we limited the height of the
cameras (specifically, the arms on which the cameras are
mounted) to the depth of the screen such that, when folded,
the cameras are flush with the screen and allow the tablet to
be used normally. We also opted to utilize cheap web
cameras, as they provide the benefits of being lightweight,
low-cost, and widely available. While the current shape of
the interaction space does not pose a limitation for all
applications, for other applications, growing or widening
the interaction space may be desirable. Fish-eye lens
cameras, for example, could provide a wider view of the
tabletop around the screen than our current cameras,
although they would sacrifice image fidelity at the
periphery. Similarly, different placements of the cameras,
likely with different mounting arms, will produce different
interaction spaces. Finally, on-screen visualizations, for
example, a ―radar‖ view of the interaction space that, at a
glance, can highlight all objects recognized by the system
and convey the extent of the interaction space, may also
help.
Sensitivity to Illumination Changes and Obstruction
Like any top-view camera-based system, Portico is
sensitive to changes in illumination and obstruction. IR-
based sensing, especially when done from behind the
screen, can robustly detect the placement of objects on the
screen. Top-down camera systems, however, can observe
more of the object’s shape than merely its contact points
with the surface, as well as see objects from the user’s point
of view. While Portico’s top-down cameras were adequate
for a proof-of-concept, a system that combines our design
with the optical sensors used in ThinSight [4] could benefit
from both approaches. IR-based depth sensing cameras can
provide robustness to illumination, together with added 3D
capabilities; however, many of the objects used in tangible

educational and playful applications (e.g., coins, Cuisenaire
rods, Tangram and jigsaw puzzle pieces) are thinner than
the depth resolution provided by current 3D cameras.
Another constraint of our system is that cameras may fail to
see objects that are very close to or touching the tablet if
the tablet is thick. As new tablets are made thinner (the
recent iPad’s thickness is 8.8 mm compared to our
prototype’s 35 mm), this problem will be significantly
reduced.
Potential for Use in Education
Tangible and surface computing can present significant
benefits to education. The use of manipulatives in
mathematics education dates back to the 19th century with
Swiss educator Johann Heinrich Pestalozzi [16].
Manipulatives are concrete objects that can be viewed and
physically handled by students in order to demonstrate or
model abstract concepts. In a meta-analysis of 60 studies,
Sowell [19] affirms the effectiveness of manipulative
material for students’ achievement and attitudes in math
education, particularly over long-term use. Studying the use
of tangible computing for education, Antle et al. [1]
compared how children solve a digital puzzle using a
mouse, a tangible augmented puzzle, and a standard
physical puzzle. Their results show that children were more
successful and faster at solving puzzles using a tangible-
based approach. Related results by Tuddenham et al. [21]
suggest that when using tangibles, users are both quicker to
acquire, and more accurate in manipulating, interface
control objects, compared to using multi-touch or mouse-
and-puck. Patten et al. [15] proposed using Sensetable for
chemistry and system dynamics simulation applications.
Zuckerman et al. [26] presented a system that uses
computationally enhanced manipulatives. They show that
their manipulatives are accessible to young children and
encourage learning of abstract concepts through an iterative
hands-on process. Scarlatos [17] used multimedia and
visually tagged tangible objects to guide children in
collaborative problem solving with the TICLE system.
Horn et al. [9] demonstrated the use of tangible interaction
for instruction of computer programming concepts.
As this prior research shows, the promise of tangible
interaction to improve the learning experience is great.
Similar to [3], we believe, however, that in order for this
promise to be realized at a large scale, tangible interaction
must be supported by personal systems, not only by
traditional fixed tabletop computers. With Portico, we seek
to deliver the benefits of tangible interaction to children in
the classroom, in their home, or even on the living room
carpet, all in a low-cost portable and personal form.
FUTURE WORK
As mentioned above, our system currently includes only a
handful of object classifiers and we intend to extend this set
to support a greater range of objects. We also intend to
support tracking of objects across frames, as shown in [24].
The use of IR-based cameras could mitigate the sensitivity
to illumination changes, while higher resolution cameras
will allow for scanning of physical objects, similar to [13].

Paper Session: Tangible UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

355

Our current prototype, which used a 12" tablet, was able to
produce an interaction space six times larger. In our desire
to support our system’s use for education, we have since
created a prototype using a small 10" tablet, a platform
more suitable for use within schools. We plan to explore
the use of our system to support math-manipulative
activities in the future.
CONCLUSION
This paper presents Portico, a low-cost surface computing
system that supports tangible interaction. Using its
mounted cameras, Portico greatly extends a tablet’s
interaction space to include objects manipulated on the
tabletop surface around it. We presented four proof-of-
concept applications—Tic Tac Toe, Penalty Shootout,
Portico Arcade, and Tabletgotchi—each of which
highlights an important aspect of Portico’s capabilities.
Unlike most prior surface computing systems, Portico is
based on a personal and portable form factor, namely a
tablet computer, and as such, Portico brings surface
computing one step closer to everyday use.
ACKNOWLEDGEMENTS
We thank Shaun K. Kane, Anthony LaMarca, Matthai
Philipose, Richard Beckwith, Noam Avrahami, Caelan D.
Wobbrock, and Malcolm Greenstein.
REFERENCES
1. Antle, A. N., Droumeva, M., and Ha, D. 2009. Hands

on what?: Comparing children's mouse-based and
tangible-based interaction. In Proc. IDC '09, 80-88.

2. Baudisch, P. and Rosenholtz, R. 2003. Halo: A
technique for visualizing off-screen objects. In Proc.
CHI’03, ACM Press, 481-488.

3. Beckwith, R., Theocharous, G., Avrahami, D. and
Philipose M. 2010. Tabletop ESP: Everyday sensing
and perception in the classroom. Intel Technology
Journal 14 (1), 16-31.

4. Butler, A., Izadi, S., and Hodges, S. 2008. SideSight:
Multi-"touch" interaction around small devices. In Proc
UIST '08, ACM Press, 201-204.

5. Edge, D. and Blackwell, A.F. 2009. Peripheral tangible
interaction by analytic design. In Proc. TEI '09, 69-76.

6. Gustafson, S., Baudisch, P., Gutwin, C., and Irani, P.
2008. Wedge: Clutter-free visualization of off-screen
locations. In Proc. CHI’08, ACM Press, 787-796.

7. Harrison, C. and Hudson, S. E. 2009. Abracadabra:
Wireless, high-precision, and unpowered finger input
for very small mobile devices. In Proc. UIST’09. 121-
124.

8. Hodges, S., Izadi, S., Butler, A., Rrustemi, A., and
Buxton, B. 2007. ThinSight: Versatile multi-touch
sensing for thin form-factor displays. In Proc. UIST’07,
ACM Press, 259-268.

9. Horn, M.S., Solovey, E.T., Jacob, R.J.K. 2008. Tangible
programming and informal science learning: Making
TUIs work for museums. In Proc. IDC'08, 194-201.

10. Ishii , H. and Ullmer, B. 1997. Tangible Bits: Towards
seamless interfaces between people, bits and atoms. In
Proc. CHI’97, ACM Press, 234-241.

11. Izadi, S., Agarwal, A., Criminisi, A., Winn, J., Blake,
A., & Fitzgibbon, A. 2007. C-Slate: A multi-touch and
object recognition system for remote collaboration
using horizontal surfaces. In Proc. Tabletop’07. 3-10.

12. Kane, S. K., Avrahami, D., Wobbrock, J. O., Harrison,
B., Rea, A. D., Philipose, M., and LaMarca, A. 2009.
Bonfire: a nomadic system for hybrid laptop-tabletop
interaction. In Proc. UIST'09, ACM Press, 129-138.

13. Kirk, D., Izadi, S., Sellen, A., Taylor, S., Banks, R. &
Hilliges, O. 2010. Opening up the family archive. In
Proc. CSCW’10, ACM Press, 261-270.

14. Kratz, S. and Rohs, M. 2009. HoverFlow: Expanding
the design space of around-device interaction. In Proc.
MobileHCI '09, ACM Press, 1-8.

15. Patten, J., Ishii, H., Hines, J., and Pangaro, G. 2001.
Sensetable: A wireless object tracking platform for
tangible user interfaces. In Proc. CHI‘01, 253-260.

16. Saettler, P. A History of Instructional Technology. New
York: McGraw-Hill, 1968.

17. Scarlatos L.L. 2002. TICLE: Using multimedia
multimodal guidance to enhance learning. Information
Sciences 140 (1-2), 85-103.

18. Shaer, O. and Hornecker, E. 2009. Tangible user
interfaces: Past, present and future directions.
Foundations and Trends in Human-Computer
Interaction 3 (1-2), 1-137.

19. Sowell, E. 1989. Effects of manipulative materials in
mathematics instruction. Journal for Research in
Mathematics Education, 20: 498–505.

20. Stauffer, C., and Grimson, W. 1999. Adaptive
background mixture models for real time tracking. In
Proc. CVPR’99, IEEE, 246-252.

21. Tuddenham, P., Kirk, D., and Izadi, S. 2010. Graspables
Revisited: multi-touch vs. tangible input for tabletop
displays in acquisition and manipulation tasks. In Proc.
CHI '10, ACM Press, 2223-2232.

22. Ullmer, B. and Ishii, H. 1997. The metaDESK: Models
and prototypes for tangible user interfaces. In Proc.
UIST’97, ACM Press, 223-232.

23. Wellner, P. 1991. The DigitalDesk calculator: Tangible
manipulation on a desk top display. In Proc. UIST’91,
ACM Press, 27 - 33.

24. Wilson, A. 2005. PlayAnywhere: A compact interactive
tabletop projection-vision system. In Proc. UIST‘05,
ACM Press, 83-92.

25. Wilson, A. D., Izadi, S., Hilliges, O., Garcia-Mendoza,
A., and Kirk, D. 2008. Bringing physics to the surface.
In Proc. UIST’08, ACM Press, 67-76.

26. Zuckerman O., Arida S., and Resnick M. 2005.
Extending tangible interfaces for education: Digital
Montessori-inspired manipulatives. In Proc. CHI’05,
ACM Press, 859-868.

Paper Session: Tangible UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

356

