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ABSTRACT 
TapSongs are presented, which enable user authentication 
on a single “binary” sensor (e.g., button) by matching the 
rhythm of tap down/up events to a jingle timing model 
created by the user. We describe our matching algorithm, 
which employs absolute match criteria and learns from 
successful logins. We also present a study of 10 subjects 
showing that after they created their own TapSong models 
from 12 examples (< 2 minutes), their subsequent login 
attempts were 83.2% successful. Furthermore, aural and 
visual eavesdropping of the experimenter’s logins resulted 
in only 10.7% successful imposter logins by subjects. Even 
when subjects heard the target jingles played by a 
synthesized piano, they were only 19.4% successful logging 
in as imposters. These results are attributable to subtle but 
reliable individual differences in people’s tapping, which 
are supported by prior findings in music psychology. 

ACM Categories & Subject Descriptors: H5.2. [Information 
interfaces & presentation]: User interfaces—Input devices & 
strategies. K6.5. [Management of computing & information 
systems]: Security & protection—Authentication. 

General Terms: Human Factors, Security. 

Keywords: User authentication, password entry, songs, 
rhythm, jingles, tapping, temporal strings, binary sensors, 
mobile devices. 

INTRODUCTION 
Both in research [2] and as commercial products (Figure 1), 
tiny devices are appearing that have no keyboards and 
possibly even no screens. These devices may only have a 
single button or touch sensor. They may be so small that 
loss or theft become common. If such devices store private 
information like addresses, phone numbers, email, or 
personal data, how should users log in? 

This paper presents a new method of “password” entry 
called a TapSong. Instead of text strings entered on multiple  

 
Figure 1. On the 3rd generation Apple iPod Shuffle there is no 
keyboard or screen. The primary input mechanism is a single button 
on the earbuds’ cord. TapSongs allow rhythmic “passwords” to be 
entered on buttons like this, or on other “binary” sensors. 

keys, a single sensor (e.g., button) can be used to tap a 
songlike rhythm, or jingle, to authenticate the user. The 
TapSong concept is supported by evidence from music 
psychology concerning humans’ ability to perceive and 
perform rhythms [3,4], and from the mnemonic power of 
musical tunes, for example, as used in advertising [16]. We 
developed a simple pattern-matching algorithm that 
compares candidate jingles to user-created TapSong timing 
models. Our algorithm allows successful logins to further 
adapt TapSongs over time. 

Although a security analysis is beyond the current scope, 
the threat model for TapSongs is similar to that of text 
passwords. Certainly, both can be cracked or stolen (e.g., 
[5,17]). But TapSongs differ from text passwords in 
important ways. First, a TapSong may be entered without 
exposing a device, e.g., by tapping anywhere on a touch 
screen in one’s pocket. Second, if a TapSong is captured, it 
may be hard to portray, especially visually. Third, typing a 
stolen password is trivial, but tapping a stolen TapSong, 
even when the jingle is known with certainty, is not so easy; 
the performance of an attacker must be quite similar to that 
of another person. 

Our results indicate that subjects can reliably tap their own 
jingle rhythms, and that individual differences, evident in 
prior studies of rhythm [1,15], make TapSongs promising 
even when compromised by eavesdropping or theft, both of 
which we simulate in our user study. 
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Figure 2. The famous jingle, Shave and a Haircut, Two Bits (Charles Hale,1899), has been used in everything from cartoons to secret knocks. 
A TapSong timing model has mean times and standard deviations shown with “∧” marks. A matching candidate sequence is shown above it, 
with tap down/up events connected by crossbars falling within ±3 standard deviations of the corresponding model means. See also Figure 5. 

RELATED WORK 
Studies of rhythm have been conducted for over one 
hundred years [12]. Recent studies have isolated the brain 
structures responsible for enabling the perception and 
performance of rhythm [13]. Rhythm seems fundamental: 
studies show people’s attempts to tap arrhythmic patterns 
inevitably produce rhythms [4]. Atonal sequences convey 
perceptible rhythms, and tapping replications by non-
musicians are often not significantly different in timing 
from those of musicians [10]. A crucial aspect is that 
individual differences in tapping emerge [1,15]. For in-
depth overviews of the psychology of rhythm, readers are 
directed to prior surveys [3,4]. 

Rarely has rhythm been used for computer input. The work 
most similar to ours is the use of rhythmic blink patterns 
[14]. Like our work, this research had subjects imagine 
songs as the basis for input. Unlike our work, however, the 
system used a nearest-neighbor classifier that required 
many training examples and did not define absolute 
accept/reject criteria. Also, it did not permit musical rests 
because it used discrete blinks for notes of all lengths, not 
separate down/up events defining note durations (see Figure 
5). The work was applied to computer security [15] in an 
attempt to identify people based on the rhythm with which 
they blinked the same song. With TapSongs, our task is 
simpler: we only need to see if an inputted rhythm matches 
a timing model already stored on a device. Our contribution 
is therefore how to enter, model, and match a temporal 
string on a binary sensor for authentication, not how to use 
tapping as a biometric for identification. 

Rhythm was also used for awareLESS input [6], where 
subjects made finger pressure pulses while observers tried 
to infer rhythms from finger motions. Atonal rhythmic 
tapping on the spacebar was also used as input to a music 
information retrieval system [9]. Finally, some commercial 
products attempt to increase password security by analyzing 
the timing with which text passwords are typed [7]. 

THE TAPSONG TECHNIQUE 
People commonly tap the edges of tables, the covers of 
laptops, and paper notepads. These rhythms are often 
catchy phrases from songs, or jingles. Perhaps the most 
famous jingle is Shave and a Haircut, Two Bits (Figure 2). 
The key idea behind TapSongs is to allow such jingles to 
serve as text-less passwords that can be entered on any 
“binary” sensor, i.e., a sensor that simply reports down/up 

events. Examples are buttons, keys, flip-switches, touch 
screens, and simple capacitive touch-sensors. 

Modeling a TapSong Rhythm 
Although the human “time-sense” [12] is quite robust [13], 
a user will not repeatedly enter a tap sequence with the 
exact same timing. A TapSong timing model must capture 
the essential rhythm from examples and also their inherent 
variability. We know from prior work [8,11], for example, 
that events encoding longer time intervals will exhibit more 
variation in accordance with Weber’s law. 

After a user enters a small set (5-15) of tap sequences 
reflecting a given rhythm (e.g., Figure 2), these sequences 
are linearly time-warped to begin and end in sync, and then 
averaged so that the timing model contains the mean down 
or up time (Tµ) at each position. Each mean is coupled with 
its standard deviation (Tσ), thereby retaining the variability 
that is essential to matching and reflective of Weber’s law. 

We investigated how many examples were required for the 
standard deviations around each mean to stabilize. After 
just 5 examples, the percent change in standard deviation 
(∆P) remained less than about 10% (Figure 3). 
 

 
Figure 3. The mean percentage change ∆P of the standard 
deviation of event times Tσ as the timing model for Shave and a 
Haircut, Two Bits (Figure 2) absorbs each successive sequence. T′σi 
is the standard deviation around the ith input event in timing model 
T′, which immediately follows T. The first and last input events are 
ignored because linear time-warping forces them to align. 

Although it takes less than 2 minutes to create a TapSong 
timing model, we could avoid the need for training by using 
premade standard deviations around each tap, scaling them 
according to Weber’s law. Alternatively, we could avoid 
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having to train a TapSong in the first place if a user is 
allowed to select a song from a list, or even to upload a 
jingle from an audio file. Rhythm-extraction software could 
provide a model that reflects the timing of the jingle’s 
notes, again with appropriate standard deviations. In any 
case, as the user logs in over time, the premade values will 
be replaced as a TapSong adapts (described below). 

One benefit of TapSongs is that merely knowing a song title 
does not necessarily reveal its rhythm, or even its number 
of taps. Musical phrases come in many variations, which as 
time series appear quite distinct. For example, a variation of 
Shave and a Haircut, Two Bits is shown in Figure 4. 

 
Figure 4. A variation of Shave and a Haircut, Two Bits that involves 
a triplet. It would not match the timing model shown in Figure 2. 

Logging In with a TapSong 
When a user taps a rhythm in an attempt to log in, the tap 
sequence is first time-warped such that it begins and ends 
with the timing model (see Figure 2). The time-warp is 
linear, not dynamic, which ensures that that the temporal 
relationships among rhythmic events are preserved. Then 
the candidate sequence C and TapSong timing model T are 
said to be a match if they satisfy the three addends of Eq. 1: 

( ) ( ) ( )
ii

TTCiTCTTC imsmsms σμ 3 :3
4

3
2 ≤−∀∧≤≤∧=  (1) 

The first condition is that the number of tap events agrees in 
C and T. The second condition requires that the unwarped 
duration (in ms) of C to be within one-third of T. The third 
condition requires that every candidate down/up event Ci is 
no more than three standard deviations from its 
corresponding model mean Tµi

. (Recall that standard 
deviation Tσi

 is specific to mean Tµi
.) An example of such 

comparisons is shown in Figure 5. 

 

 
Figure 5. An excerpt from Figure 2 showing events from the 
candidate C being compared to corresponding means (Tµ) and 
standard deviations (Tσ) in timing model T. In this excerpt, all events 
Ci fall within ±3Tσi of each Tµi, permitting authentication. 

TapSong Adaptation over Time 
The choice of ±3Tσ was made for reasons both pragmatic 
and theoretical. Pragmatically, we found that this much 
tolerance made it possible to match all input events with a 
properly executed tap sequence without being too forgiving. 

The other reason was theoretical. Users may speed up as 
they become more familiar with their TapSong [11], or they 
may gradually transition from tapping staccato to legato. 
Therefore, TapSongs must adapt over time to subtle but 
reliable timing changes. With each successful login, 
TapSongs can absorb a new sequence into their model, 
computing new means (Tµ) and standard deviations (Tσ). 
However, we must be careful: we do not want to grow or 
shrink a TapSong’s standard deviations solely by virtue of 
our mathematical policy. For example, if ±1Tσ were the 
criterion for absorption, we would only ever shrink our 
standard deviations, making it harder to log in over time! 
We must therefore adopt a tolerance range such that the 
existing standard deviations will be unaffected except by 
consistent trends in user behavior. 

We know from prior research [8] that human timing error 
will be Gaussian around our timing means. A Gaussian 
distribution reaches approximately zero about three 
standard deviations from its mean (Figure 6), so if we use 
±3Tσ as our criterion for absorption, we will preserve the 
existing standard deviation of event times. We confirmed 
this outcome with numerous Monte Carlo simulations. 

 
Figure 6. A mean input event time at Tµ = 0 ms with surrounding 
standard deviation Tσ = 30 ms. Allowing TapSongs whose events all 
fall within Tµ ± 3Tσ = ±90 ms to be absorbed into the timing model 
will retain Tσ = 30 ms as the standard deviation, assuming a normal 
distribution of events around the mean [8]. 

Differentiating Among Multiple Matches 
TapSongs are like text passwords in that a single TapSong 
will be tied to a single device. In such cases, a tap sequence 
only needs to be compared to one TapSong timing model, 
and a match is definable in absolute terms (Eq. 1). 
However, there may be cases when a tap sequence must be 
compared to a set of timing models, such as when logging 
into a shared device. In such cases, it will be necessary to 
score comparisons in the off-chance that a candidate 
matches multiple TapSongs. We devised a distance measure 
for which D = 0 would mean a perfect match in Eq. 2: 
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Eq. 2 calculates the average percent deviation between C 
and T, excluding the first and last events. A distance of 
D = 0.50 indicates that on average, a candidate’s events fell 
at 50% of the tolerable deviation from the timing means. 
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USER STUDY 
We conducted a user study of 10 subjects (6 female). The 
mean age was 36.0 years (SD 13.7). Five subjects could play 
a musical instrument. In Part I, subjects were randomly 
assigned one of 15 jingles consisting of 6-8 notes. 
Examples were opening lines from Itsy Bitsy Spider, Jingle 
Bells, Old MacDonald, and London Bridge. Subjects 
listened to a synthesized piano melody and then tapped its 
rhythm on a mouse button 12 times to create a TapSong 
timing model (< 2 minutes). Then they logged in against 
this model 25 times with adaptation enabled. Subjects were 
83.2% (SD 14.2%) successful, giving a rate of true positives. 

Parts II and III of the experiment examined false positives. 
In Part II, subjects aurally and visually eavesdropped from 
3 feet away while the experimenter tapped each of the 15 
jingles. Subjects were not told the jingles’ names. Although 
in practice, tap down/up events may be difficult to overhear 
(e.g., a finger lifting from a touch screen is nearly silent), 
the experimenter used a loud-clicking mouse button that 
made down/up events audible. Timing models were created 
earlier by the experimenter using 12 examples per jingle 
based on the rhythms of the synthesized piano melodies. 
After each of the 15 logins by the experimenter, the subject 
attempted to replicate. Mean login success was only 10.7% 
(SD 11.4%). About 77.4% (SD 27.5%) of these entries had 
the correct number of taps, but login success was still low at 
12.0% (SD 12.5%). Subjects felt eavesdropping was 
difficult because they did not know the song names or 
melodies, making it impossible to “play” the underlying 
tunes in their heads while listening to the experimenter’s 
taps. 

Part III of the experiment simulated a stolen password. For 
each of the 15 jingles, subjects were told the jingle’s name 
and played its piano melody before logging in. Still, login 
success was only 19.4% (SD 11.5%). Most entries had the 
correct number of taps (91.0%, SD 17.8%), but it seems that 
individual differences arising partly in how staccato or 
legato notes were tapped resulted in TapSongs being 
difficult to match by someone other than their author. 

CONCLUSION 
TapSongs allow text-less user authentication on a single 
binary sensor. TapSongs are user-specific, adaptable, and 
implementable on almost any hardware. It seems that 
individual differences arising in people’s rhythmic tapping 
give TapSongs some ability to distinguish between their 
authors and imposters. 

Future work should formally quantify TapSong “password 
strength,” which depends on many factors, including 
number of notes, heterogeneity of note and rest lengths, and 
variance in the timing model. Security can be strengthened 
or weakened by the designer by adjusting Eq. 1, or by the 
user by creating TapSong timing models from intentionally 
more or less varied input sequences. Future work should 
also examine TapSong memorability, especially for 
TapSongs that have not been entered for days or weeks. 
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