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ABSTRACT

We describe our system called MobileASL for real-time video
communication on the current U.S. mobile phone network.
The goal of MobileASL is to enable Deaf people to com-
municate with Sign Language over mobile phones by com-
pressing and transmitting sign language video in real-time on
an off-the-shelf mobile phone, which has a weak processor,
uses limited bandwidth, and has little battery capacity. We
develop several H.264-compliant algorithms to save system
resources while maintaining ASL intelligibility by focusing
on the important segments of the video. We employ a dy-
namic skin-based region-of-interest (ROI) that encodes the
skin at higher quality at the expense of the rest of the video.
We also automatically recognize periods of signing versus
not signing and raise and lower the frame rate accordingly, a
technique we call variable frame rate (VFR).

We show that our variable frame rate technique results in a
47% gain in battery life on the phone, corresponding to an
extra 68 minutes of talk time. We also evaluate our sys-
tem in a user study. Participants fluent in ASL engage in
unconstrained conversations over mobile phones in a labora-
tory setting. We find that the ROI increases intelligibility and
decreases guessing. VFR increases the need for signs to be
repeated and the number of conversational breakdowns, but
does not affect the users’ perception of adopting the technol-
ogy. These results show that our sign language sensitive al-
gorithms can save considerable resources without sacrificing
intelligibility.

ACM Classification: H5.2 [Information interfaces and
presentation]:Multimedia Information Systems–Video. K.4.2
[Computers and Society]: Social Issues–Assistive technolo-
gies for persons with disabilities.

General terms: Human Factors
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computer vision, region-of-interest, variable frame rate.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’09, October 4–7, 2009, Victoria, British Columbia, Canada..
Copyright 2009 ACM 978-1-60558-745-5/09/10 ...$10.00.

Figure 1: Deaf people can use MobileASL to
communicate via real-time video on an off-the-
shelf mobile phone over current non-3G cell phone
networks.

INTRODUCTION

Mobile phone use has skyrocketed in recent years, with more
than 2.68 billion subscribers worldwide [13]. Video mobile
phones make it possible for Deaf1 people to communicate
in their native sign language. The explosion of mobile
technologies has not left Deaf people behind; on the contrary,
many regularly use mobile text devices such as Blackberries
and Sidekicks. However, text messaging is much slower than
signing. Signing has the same communication rate as spoken
language of 120-200 words per minute (wpm) versus 5-60
wpm for text messaging [5, 14]. Furthermore, text messaging
forces Deaf users to communicate in English as opposed to
ASL.

The goal of MobileASL (Figure 1) is to provide real-time
sign language video communication on off-the-shelf mobile
phones between users that wear no special clothing or equip-
ment. The challenges are three-fold:

• Low bandwidth: In the United States, the majority of
the mobile phone networks uses general packet radio
service (GPRS) [8], which can support bandwidth up to
around 30-50 kbps [7]. Japan and Europe use the higher

1Capitalized Deaf refers to members of the signing Deaf community,
whereas deaf is a medical term.
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bandwidth 3G network [12]. While real-time mobile video
communication is already available there, the quality is
poor, the videos are jerky, and there is significant delay.

• Low processing speed: Even the best mobile phones
available on the market running an operating system like
Windows Mobile and able to execute many different pro-
grams have very limited processing power. Our current
MobileASL phones (HTC TyTN II) have a 400 MHz
processor, versus 2.5 GHz or higher for a typical desktop
computer. The processor must be able to encode and
transmit the video in close to real-time; otherwise, a delay
is introduced that negatively affects intelligibility.

• Limited battery life: A major side effect of the inten-
sive processing involved in video compression on mobile
phones is battery drain. Insufficient battery life of a mobile
device limits its usefulness if a conversation cannot last
for more than a few minutes. In an evaluation of the
power consumption of a handheld computer, Viredaz and
Wallach found that decoding and playing a video was
so computationally expensive that it reduced the battery
lifetime from 40 hours to 2.5 hours [29]. For a sign
language conversation, not only do we want to play video,
but we also want to capture, encode, transmit, receive and
decode video, all in real-time. Power is in some ways the
most intractable problem; while bandwidth and processing
speed can be expected to grow over the next few years,
battery storage capacity has not kept up with Moore’s law.

MobileASL must overcome these challenges while produc-
ing intelligible sign language video. With intelligibility as
the goal, we can harness the natural structure of two-sided
conversation as well as linguistic aspects of sign language
to save resources. We save processor cycles and power
by utilizing a variable frame rate (VFR). We automatically
determine when the user is signing and encode and transmit
at the highest possible frame rate. When the user is not
signing, we lower the frame rate to 1 frame per second (fps).

By focusing on the important parts of the video, we try to
increase intelligibility while maintaining the level of com-
pression, thus addressing the challenge of low bandwidth.
Given that much of the grammar of sign language is found
in the face [27], we encode the skin at higher quality at the
expense of the rest of the frame.

This paper describes our MobileASL system and details
our implementation of sign language-sensitive algorithms
for variable frame rate and dynamic skin-based region-
of-interest bit allocation. We implement both of these
features in the video encoder on the phone to enable real-
time compression and transmission. We report on the
classification accuracy of our variable frame rate and the
power savings. Use of the variable frame rate results in a
47% power gain for the battery life of the phone, equivalent
to 68 minutes of talk time.

We evaluate our system in a user study in which the par-
ticipants carry on unconstrained conversation on the phones
in a laboratory setting. We gather both subjective and
objective measures from the users. The results of our study

show that our skin-based region-of-interest (ROI) technique
reduces guessing and increases comprehension. The VFR
technique results in more repeats and clarifications and in
more conversational breakdowns, but this does not affect
participants’ perceived likelihood of using the phone. Thus
we can significantly decrease resource use and this does not
appear to detract from the users’ overwhelmingly favorable
impression of the technology. Our techniques employed in
MobileASL may also be useful in other work that incorpo-
rates real-time video in user interfaces, especially on mobile
devices.

RELATED WORK

Most computer science research in assistive technology for
the Deaf focuses on sign language recognition, in which
researchers attempt to translate sign language into English
text. Ong and Ranganath describe the state-of-the-art [19].
However, the goal of our project does not involve translation
or interpretation. We focus instead on providing the same ac-
cess to the mobile telecommunications network that hearing
people enjoy.

Early Work in Sign Language Video Compression

Compression of sign language video so that Deaf users can
communicate over the telephone lines has been studied since
at least the early 1980s. The specified bandwidth of the
copper lines that carry the voice signal is 9.6 kbps or 3 kHz,
too low for even the best video compression methods 40
years later. The earliest projects compressed sign language
video by reducing multi-tone video to a series of binary
images and transmitting them; see [6] for an overview. This
approach achieves very low bit rate but suffers from several
drawbacks. First, the binary images have to be transmitted
separately and compressed using runtime coding or other
algorithms associated with fax machines. The temporal
advantage of video, namely that an image is not likely to
differ very much from its predecessor, is lost. Moreover,
complex backgrounds will make the images very noisy, since
the edge detectors will capture color intensity differences
in the background; the problem only worsens when the
background is dynamic. Finally, much of the grammar of
sign language is in the face. In these projects, the facial
expression of the signer is lost. The majority of the papers [6]
have very little in the way of evaluation, testing the systems
in an ad-hoc manner and often only testing the accuracy of
recognizing individual signs.

Recent Work in Video Compression

With the advent of the Internet and higher bandwidth con-
nections, researchers began focusing on compressing sign
language video instead of an altered signal. One obvious
way to compress video is to separately compress each frame,
using information found only within that frame. This method
is called intra-frame coding. However, as noted above, this
negates the temporal advantage of video. Modern video
compression algorithms use information from other frames
to code the current one; this is called inter-frame coding. The
latest standard in video compression is H.264. It performs
significantly better than its predecessors, achieving the same
quality at up to half the bit rate [30]. H.264 works by dividing
a frame into 16× 16 pixel macroblocks. These are compared
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to previously sent reference frames. The algorithm looks
for exact or close matches for each macroblock from the
reference frames. Depending on how close the match is,
the macroblock is coded with the location of the match, the
displacement via a motion vector, and whatever residual error
information is necessary. Macroblocks can be subdivided to
the 4 × 4 pixel level. When a match cannot be found, the
macroblock is coded as an intra-block, only from informa-
tion within the current frame.

Region-of-interest and foveal compression. The availability
of higher quality video at a lower bit rate led researchers to
explore modifying standard video compression to work well
on sign language video. Many researchers were motivated
by work investigating the focal region of ASL signers. Some
research used an eye-tracker to follow the visual patterns
of signers watching sign language video and determined
that users focused almost entirely on the face [1, 18]. In
some sense, this is intuitive, because humans perceive motion
using their peripheral vision [3]. Signers can recognize the
overall motion of the hands and process its contribution to
the sign without shifting their gaze, allowing them to focus
on the finer points of grammar found in the face.

One natural inclination is to increase the quality of the face
in the video. Agrafiotis et al. [1] implemented foveal
compression, in which the macroblocks at the center of the
user’s focus are coded at the highest quality and with the
most bits; the quality falls off in concentric circles. Their
videos were not evaluated by Deaf users. Similarly, Woelders
et al. [31] took video with a specialized foveal camera
and tested various spatial and temporal resolutions. Signed
sentences were understood at rates greater than 90%, though
they did not test the foveal camera against a standard camera.

As we have done in this work, other researchers have
implemented region-of-interest encoding for reducing the bit
rate of sign language video. A region-of-interest, or ROI,
is simply an area of the frame that is coded at a higher
quality at the expense of the rest of the frame. Schumeyer
et al. [25] suggest coding the skin as a region-of-interest
for sign language videoconferencing. Similarly, Saxe and
Foulds [24] used a sophisticated skin histogram technique
to segment the skin in the video and compress it at higher
quality. Habili et al. [9] also used advanced techniques
to segment the skin. None of these projects evaluated
their videos with Deaf users for intelligibility, and none of
the methods are real-time, making them unsuitable for our
purposes.

Temporal compression. The above research focused on
changing the spatial resolution to better compress the video.
Another possibility is to reduce the temporal resolution.
The temporal resolution, or frame rate, is the rate at which
frames are displayed to the user. Early work [11, 21] found
a sharp drop in intelligibility of sign language video at 5
fps. Parish and Sperling [20] created artificially subsampled
videos with very low frame rates and found that when the
frames are chosen intelligently (i.e., to correspond to the
beginning and ending of signs), the low frame rate was far
more understandable. Johnson and Caird [15] trained sign
language novices to recognize 10 isolated signs, either as

points of light or conventional video. They found that users
could learn signs at frame rates as low as 1 fps, though they
needed more attempts than at a higher frame rates. Sperling
et al. [26] explored the intelligibility of isolated signs at
varying frame rates. They found nonsignificant differences
from 30 to 15 fps, a slight decrease in intelligibility from 15
to 10 fps, and a large decrease in intelligibility from 10 fps
to 5 fps.

More recently, Hooper et al. [10] looked at the effect of
frame rates on the ability of sign language students to un-
derstand ASL conversation. They found that comprehension
increased from 6 fps to 12 fps and again from 12 fps to
18 fps. The frame rate was particularly important when
the grammar of the conversation was more complex, as
when it included classifiers and transitions as opposed to
just isolated signs. Woelders et al. [31] studied both spatial
resolution and temporal resolution and found a significant
drop in understanding at 10 fps. At rates of 15 fps, video
comprehension was almost as good as the original 25 fps
video. Finger spelling was not affected by the frame rates
between 10 and 25 fps, possibly because the average speed
of finger spelling is five to seven letters per second and thus
10 fps is sufficient [22].

DESCRIPTION OF MOBILEASL

The MobileASL implementation is based on the Open Source
x264 H.264 codec [2, 16]. The x264 encoder was compared
with the JM reference encoder (ver 10.2) [17] and was shown
to be 50 times faster, while providing bit rates within 5% for
the same peak signal-to-noise ratio (PSNR) [16]. This makes
it a good choice for H.264 video compression on low-power
devices.

We use HTC TyTN-II phones (Windows Mobile 6.1, Qual-
comm MSM7200, 400 MHz ARM processor, Li-polymer
battery), chosen because they have a front camera on the
same side as the screen (Figure 1). The video size is QCIF
(176 × 144). There are two ways to increase the processing
speed of compression. We perform assembly optimization
using the ARMv6 single instruction multiple data assembly
set, and convert the most computationally intensive opera-
tions, such as motion estimation, into assembly. We also use
the lowest possible x264 settings, changing the code when
necessary. Even with these settings, our phones are only able
to encode at a maximum rate of 7-8 fps; the bottleneck in this
case is not the bandwidth, but the processor. We therefore
modify the encoder to include our VFR and ROI encoding.

Variable Frame Rate

Our goal is to determine if the user is signing or not in order
to adjust the frame rate and save power. In previous research
associated with MobileASL projects [4], researchers used
advanced feature extraction techniques and machine learning
to recognize signing and not signing periods on conversa-
tional web cam videos. They also incorporated features
from both sides of the conversation to increase classification
accuracy. Building on this work, we implement several
different techniques for automatic recognition on the phones.

Baseline differencing. As a simple, baseline method, we
calculate the sum of absolute differences between successive
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frames. Let Ik(i, j) be the luminence component of pixel
(i, j) in frame k. Then the sum of absolute differences for
frame k is:

d(k) =
∑

(i,j)∈I(k)

|Ik(i, j) − Ik−1(i, j)| (1)

We check this value against a previously determined thresh-
old τ arrived at by training on conversational sign language
video. If d(k) > τ , we classify the frame as signing.

Joint differencing with linear programming. Previously, re-
searchers utilized differencing information from both sides
of the phone conversation to increase classification accuracy
[4]. The parameters were determined empirically. We im-
prove this by posing the problem as a linear program. Define
d1(k) as the sum of absolute differences from the primary
side of the conversation and d2(k) as the sum of absolute
differences from the secondary side of the conversation. We
want to choose α, β, and τ such that the following is true for
as many k as possible:

αd1(k) − βd2(k) > τ when k is a signing frame,

αd1(k) − βd2(k) ≤ τ when k is not.

The intuition for these equations is that the motion, and
therefore the differences, will be high on one side and low
on the other, indicating signing.

Let C = {c1, ..., cn} be a vector of indicator variables
where 1 indicates signing and -1 indicates not signing, ck ∈
{−1, 1}. Then:

αd1(k) − βd2(k) > τ ∀k|ck = 1

αd1(k) − βd2(k) ≤ τ ∀k|ck = −1

Assume τ is positive. Let µ = α/τ and γ = β/τ . Write:

µd1(k) − γd2(k) > 1 ∀k|ck = 1

µd1(k) − γd2(k) ≤ 1 ∀k|ck = −1
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Figure 2: Histogram graph of the number of error εk

terms with certain values. The vast majority are 0.

This is equivalent to:

−µd1(k) + γd2(k) ≤ −1 ∀k|ck = 1

µd1(k) − γd2(k) ≤ 1 ∀k|ck = −1

Thus the training problem is to choose µ and γ so that

−µd1(k)ck + γd2(k)ck ≤ −ck (2)

is true for as many k as possible. The optimal solution would
minimize the number of k for which Equation 2 is not true.
To approximate this, we subtract an error term per frame and
minimize the sum. The linear program is:

min
n∑

k=1

εk

subject to

−µd1(1)c1 + γd2(1)c1 − ε1 ≤ −c1

−µd1(2)c2 + γd2(2)c2 − ε2 ≤ −c2

...
...

−µd1(n)cn + γd2(n)cn − εn ≤ −cn

µ, γ, εk ≥ 0

The variables in the linear program are µ, γ, and εk, 1 ≤
k ≤ n. We normalize the d1(k) and d2(k) so that they are
between 0 and 1 and run Simplex to find the settings for µ and
γ that minimize the error. The classification of an unknown
frame p is “signing” if −µd1(p) + γd2(p) ≤ −1 and “not
signing” otherwise.

Though this is not an optimal protocol, in practice the error
values εk are quite small. Figure 2 shows a histogram of ε
values. The majority, over 66 percent of the total, are equal
to 0, and the mean is 0.19.

Support vector machine. In the earlier work, the optimal
method used features available “for free” from the H.264
encoder, plus skin information, and trained a support vector
machine (SVM) for classification. The encoder features were
a summary motion vector and the number of intra blocks.
The skin features were the area, centroid, and bounding box
of the three largest skin blobs, ideally corresponding to the
face and hands. Previously, this was implemented on a
standard PC using web camera videos. To implement skin
feature extraction on the phone, we need to detect the skin
rapidly, filter and threshold, and determine the three largest
connected components and their area, center of gravity, and
bounding box.

Since we are using relatively coarse features from only
the three biggest skin patches, our skin detection algorithm
does not have to be very precise. We detect the skin
using a simple range query on the chrominance compo-
nents. Yang et al. [32] found that when the color model
was YUV, the skin is constrained to a small space in the
chrominance dimension and is relatively robust to different
lighting conditions. The differences in skin color due to
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race are also mainly captured in the luminance component.
In our experiments, we assigned a pixel as skin if the U
component was between 77 and 127 and the V component
was between 133 and 173, and found it robust to differences
in lighting and skin tone. We apply a 4 × 4 averaging filter
on the binary skin map to eliminate small holes. We detect
the connected components by using the classical two-pass
labeling algorithm that employs a union-find data structure
[23]. As we label the components, we keep track of their
current area, center of gravity, and bounding box, so that after
we’ve found the connected components, the task is finished;
we do not need to iterate over the skin map again. This
version of the feature extraction is cheap enough not to affect
the encoding frame rate.

To improve the classification accuracy, we use the change in
area, centroid, and bounding box of the three components,
rather than their raw value. We also add the pixel differences
from the person to whom we’re talking. This is transmitted
in packets whether or not the frame itself is sent. Since that
data is so small, transmitting it does not affect the bit rate or
encoding time.

Unfortunately, the float operations of the SVM cause an
unacceptable delay in the encoding of the video. Although
we could not use the algorithm for evaluation with users,
we report on the results of testing it against the other two
methods for classification accuracy.

Dynamic Skin Region-of-Interest Encoding

The encoder aims to produce the highest possible quality
frame at a given bit rate (in our case, 30 kbps). The quality
of each macroblock is determined by the quantizer step size,
or QP. Lower QPs indicate higher quality but also require a
higher bit rate.

We employ a simple skin detection technique on the un-
compressed image. The image is captured in YUV format,
where Y is the luminance component and U and V are the
chrominance components. We examine the U and V values
and determine if they are in the appropriate range for skin.
We then check each 16 × 16 pixel macroblock and deem it
skin if the majority of pixels in the block are skin. We change
the quality of the skin by adjusting the QP value for the skin
macroblocks. In our experiments, ROI 0 corresponds to no
reduction in quantizer step size; ROI 6 corresponds to a 6
step reduction in size; and ROI 12 corresponds to a 12 step
reduction in size. Forced to make the skin macroblocks of
higher quality, the encoder must reduce the quality elsewhere
in the frame to maintain the bit rate.

Figure 3 shows a comparison of ROI 0 (left) and ROI 12
(right). The face and hand are slightly clearer in the ROI 12
picture. However, in the ROI 0 picture there is a clear line
between the shirt and the background around the shoulder
area. In the ROI 12 picture, this line is smudged and blocky.

SYSTEM EVALUATION RESULTS

In this section, we describe the classification results and the
power savings for the VFR. In the next section we evaluate
the intelligibility of our system with users.

Figure 3: ROI 0 (left) and ROI 12 (right). Notice
that the skin in the hand is clearer at ROI 12, but the
background and shirt are far blurrier.

Classification Accuracy

To test the classification accuracy of our algorithms, we
captured YUV video from the phone camera and hand
labeled the frames as signing or not. We recorded four
conversations with six different users, for a total of 8 videos.
We evaluated the accuracy of the methods by dividing each
video into four parts, training on three, and testing on the
fourth. We report the average score. This is equivalent to a
user spending time training the phone before first use. Since
phones are personal devices, it would be natural to add this
feature. To smooth out the results temporally, we apply a
sliding window that takes the average vote over the window
and classifies accordingly. We experimented with several
different window sizes and found the three-frame window
to be the best across all methods.

Figure 4 displays a comparison of the average classification
accuracy of the different methods for each video. Over all
the videos, SVM performed the best, with 77.8% of frames
on average classified correctly. Baseline differencing also
performed quite well, with 76.6% of frames on average clas-
sified correctly. Joint linear programming was a distant third,
with 67.1% accuracy, even though using joint information
had performed well in previous work. We believe that the
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Figure 5: Power savings when encoding the video with the VFR turned on. (Left) Snap shot of the power draw in milliamps
(mA). (Right) Battery drain. The VFR yields an additional 68 minutes of talk time.

smaller field-of-view on the phone videos compared to the
earlier web cam videos affected the influence of the joint
information, making it less relevant.

It is a welcome surprise that baseline differencing performs
so well, because it is computationally cheap to implement on
the phone. The SVM uses the differencing as a feature, but
it is likely that it is overtraining to noisy data with the other
features. Upon further investigation, we found that the sum
of absolute differences is the most salient feature, followed
by the motion vectors.

Power Savings

In order to quantify the power savings on the phone, we
simulated a sign language conversation and monitored the
power usage for an hour on two phones with the VFR on and
with it off. The simulated conversation consisted of motion
resulting in the higher frame rate every other minute, as
though each person were signing for a minute, then listening
for a minute, and so on. From observations of users on the
phones, this seemed to be a reasonable scenario. Figure 5
shows a snap shot of the power draw when the phone utilizes
a VFR versus when it does not. The power draw dips when
the frame rate is lowered, due to the less processing power
required to encode and transmit at 1 fps. Over an hour of talk
time, the average power draw is 32% less with VFR on than
with it off.

In terms of battery life, the power savings is dramatic.
Testing two different phones over the course of an hour,
the phone without the VFR lost 39% of battery life, versus
25% when the VFR was on. Regression analysis shows
that the rate of loss over time for battery life on the phones
is linear, with correlation coefficients of greater than 0.99.
The average slope of the power drain on the battery every 5
seconds with the VFR off is -0.0574, versus -0.0391 with
it on. This corresponds to 68 extra minutes of talk time,
or a 47% power gain over the battery life of the phone (see
Figure 5).

MOBILEASL USER STUDY

In this section, we evaluate the user experience of Mo-
bileASL in a laboratory setting. We tested VFR on and off
together with dynamic skin ROI encoding. The settings for
the ROI varied between 0, or no ROI; 6, or low ROI; and 12,

or high ROI. The numbers correspond to encoder settings.
The three different ROI levels and two different VFR settings
result in six different possible combinations. The order of the
settings was changed between conversations according to a
Latin Square. Differencing with the τ parameter (Equation
1) trained on earlier videos was used to decide when to lower
the frame rate. The signing frame rate of the phones was 7-
8 fps. There was no perceptible delay. The architecture is
shown in Figure 6.

Figure 6: The architecture of the variable frame rate.
Differences between frames are checked; if the user
isn’t signing, the frame is sent only to maintain 1 fps.

Given that our application is mobile phone communication,
we expect a variety of different conversations to take place
between people who may or may not already know each
other. For example, a user might call an unfamiliar inter-
preter in order to reach his or her doctor. On the other
hand, users will certainly call friends and family members.
The conversations recorded represent this variety. There is
always a tradeoff between repeatability of experiments and
the realism of the setup; we erred on the side of realism.

We gathered both subjective and objective measures. The
subjective measures were obtained via a survey. For the
objective measures, we wanted to see how the conversations
were affected by our changes to VFR and ROI. We video-
taped each conversation and analyzed the recording after.

Participants

Altogether, 15 participants fluent in ASL (age: 24-59, mean
= 42, 5 male) recruited from the Seattle area took part
in the study. Eight of 15 participants preferred ASL for
communication, four preferred English, and the remaining
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three chose both. Of the participants that chose English,
three were interpreters with 7, 15, and 30 years experience,
and one read lips but had known ASL for 21 years. Five
participants wore glasses for near-sightedness.

Nine separate conversations were recorded. Three conver-
sations were with a research staff member fluent in ASL,
so statistics were only collected from one side of those
conversations. Five of the conversations were between
strangers and four were between people that knew each other
well, including one husband/wife pair.

Apparatus

The participants sat on the same side of a table, separated by
a screen. In the background was a black drape. The phones
were on the table in front of them, and they were told to
adjust their positioning and the phone location so that they
were comfortable carrying on the conversation.

Procedure

The participants were told to talk about whatever came to
mind, and that they would be interrupted after five minutes
and the settings changed on the phone. After each five
minute period (subconversation), they filled out a paper ques-
tionnaire. Each conversation was videotaped, and objective
measures were calculated from the recording.

Subjective measures. The participants were asked to sub-
jectively rate the quality of the video, measured by how hard
or easy it was to understand. The survey questions were as
follows:

• During the video, how often did you have to guess what the
signer was saying (where 1 is never and 5 is all the time)?

• How difficult would you say it was to comprehend the
video (where 1 is very easy and 5 is very difficult)?

• Changing the frame rate of the video can be distracting.
How would you rate the annoyance level of the video
(where 1 is not annoying at all and 5 is extremely annoy-
ing)?

• The video quality over a cell phone is not as good as
video quality when communicating via the Internet (e.g.,
by using a web cam) or over a set top box. However, cell
phones are convenient since they are mobile. Given the
quality of conversation you just experienced, how often
would you use the mobile phone for making video calls
versus just using your regular version of communication
(e.g., go home to use the Internet or set top box, or just
text)?

• If video of this quality were available on the cell phone,
would you use it?

The fourth question was poorly worded and often had to be
explained verbally. We were trying to capture the trade-off
in the greater convenience of the mobile phone than other
methods versus its lower quality. After we explained the
purpose of this question, participants understood it without
confusion.

Objective measures. Our goal was to measure the compre-
hensibility of the conversation. A confusing conversation

might contain a lot of requests for repetitions, called repair
requests [28], and conversational breakdowns, where one
person says, “I can’t hear you,” gives up, or similar. In
sign language, there is an additional feature, which is finger
spelling. Finger spelling is when someone spells out the
name of something, and occurs mainly with proper names,
titles, and technical words. However, some finger spelled
words are lexicalized “loan signs,” common words whose
sign has become the stylized finger spelling (e.g., “bus,”
“back”). Since these act as regular signs, we do not count
them in our finger spelling measure.

The objective measures were number of repair requests,
average number of turns associated with repair requests,
number of conversational breakdowns, and speed of finger
spelling. These were all calculated from the videotaped
user study sessions with the help of a fluent ASL speaker.
In sign language conversation, a repair request may mean
forming the sign for “again” or “what?,” or finger spelling
in unison with the conversation partner. For each repair
request, we counted the number of turns until the concept
was understood; this is the number of times the requester
had to ask for repetition before moving on. Conversational
breakdowns were calculated as the number of times the
participant signed the equivalent of “I can’t see you” (e.g.
“frozen,” “blurry,” “choppy”). If repair requests were made
but never resolved, we counted it as a conversational break-
down. Finally, we measured the time it took to sign each
finger spelled word and divided by the number of characters
in that word, resulting in characters per second.

User Study Results

The results of the study were statistically significant for only
one of the subjective measures, guessing. VFR affected all
of the objective measures except for finger spelling speed but
ROI did not.

Likert scale subjective measures. Table 1 contains the χ2

test and significance values for the five questions. Only the
first question in the questionnaire yielded statistically signif-
icant results. The interaction results were all non-significant,
indicating levels of ROI and VFR did not disproportionately
affect one another.

The ROI had a significant effect on participants’ Likert
responses for how often they had to guess, with 1=not at all,
5=all the time. A Wilcoxon signed-rank test shows that ROI
0 and ROI 6 were not significantly different (z = 0.50, ns),
but that ROI 0 and ROI 12 were different (z = 35.00, p <
.01) and ROI 6 and ROI 12 were also different (z =
35.50, p < .05). Thus, perceptions of guessing frequency
decreased when ROI coding reached 12 from 0 and 6. The
VFR increased perceptions of guessing frequency. The
means for ROI 0, 6, and 12 were 1.90, 1.88, and 1.42,
respectively. The mean for VFR off was 1.60 and for VFR
on was 1.87.

The ROI and VFR did not cause a detectable difference in
participants’ Likert responses for how annoyed they were
at the level of frame rate, how often they would prefer
the phone to some other means of communication, or their
potential future use of the technology. The overall means
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Question ROI VFR Interaction

χ2(2, N = 90) p χ2(1, N = 90) p χ2(2, N = 90) p
Guesses 11.11 < .01∗∗ 4.44 < .05∗ 0.78 .68

Comprehension 5.33 .07 2.87 .09 2.75 .25
Annoyance 3.07 .22 0.79 .37 2.26 .32

Phone vs. Other 0.12 .94 1.10 .29 0.18 .91
Would use 0.42 .81 0.22 .64 1.02 .60

Table 1: Statistical analysis for the subjective measures. Statistical significance: ** = p < 0.01, * = p < 0.05.

Question ROI VFR Interaction

χ2(2, N = 90) p χ2(1, N = 90) p χ2(2, N = 90) p
Repair requests 2.66 .26 5.37 < .05∗ 1.99 .37
Number of turns 0.94 .62 4.01 < .05∗ 0.96 .62

Breakdowns 3.38 .18 7.82 < .01∗∗ 1.51 .47
F (2, 28) p F (1, 14) p F (2, 28) p

Finger spelling speed 0.42 .66 0.19 .67 0.21 .81

Table 2: Statistical analysis for the objective measures. Statistical significance: ** = p < 0.01, * = p < 0.05.

for preference of the phone and potential future use were
2.98 and 2.47, respectively, where 1 means the participant
thinks they would definitely use the phone and 5 means the
participant thinks they would definitely not use the phone.

Objective measures. Table 2 contains the statistical results
for the objective measures. Repair requests, number of turns
before a concept was understood, and conversational break-
downs were all affected significantly by VFR, but not by the
ROI. Speed of finger spelling was affected by neither, and
the interaction between ROI and VFR was not statistically
significant. The number of repair requests was highly skewed
and according to a significant Shapiro-Wilk test (W = 0.74,
p < .0001), not amenable to ANOVA. This was also true of
the number of repetitions that transpired before the concept
was understood (W = 0.76, p < .0001) and the number
of conversational breakdowns (W = 0.44, p < .0001).
Typical corrective transformations were not an option, so we
continued to employ ordinal logistic regression as we had
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Figure 7: The number of repair requests, the average
number of turns to correct a repair request, and the
conversational breakdowns.

for our Likert data, which showed an appropriate fit for all
three measures. For finger spelling speed, a non-significant
Shapiro-Wilk test (W = 0.98, p = .12) confirms these data
are suited to analysis with a repeated measures ANOVA.
Finger spelling speed was not affected significantly by ROI
or VFR, and the mean finger spelling speed for all conditions
was 3.28 characters per second.

The means and standard deviations for the significant objec-
tive measures are in Figure 7. VFR negatively affects the
number of repeats, the number of repetitions, and the number
of conversational breakdowns.

Participant comments. Nearly all of the participants asked
when the technology would be available for their use. They
expressed disappointment that the software was not ready for
widespread distribution.

Several participants commented on the awkward angle of the
camera when the phone is on the table. They separately
suggested creating a stand so that the phone could be at the
same level as the face. Two of the participants disliked the
eye strain caused by looking at the small screen. Participants
8 and 9 were affected by an overly bright room that made the
LCD very difficult to see. Participant 9 wore glasses for near
sightedness. They commented that they would only use the
phone for emergencies or very short conversations.

Two of the participants who were interpreters separately
commented on the speed of finger spelling. They noted
that they were finger spelling at a pace somewhat slower
than usual and said this reminded them of video-relay in-
terpreting. Video-relay interpreting occurs over a much
higher bandwidth connection than the mobile phone, but it
sometimes has connection problems and can induce similar
human behavior.

DISCUSSION

Our participants felt that they had to guess less frequently
at higher ROI levels. ROI otherwise had no statistically
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significant effect on the participants. Recall that a high
ROI encodes the skin at a higher quality at the expense of
the rest of the frame, meaning there is no extra cost to the
encoder in terms of bandwidth. Since our algorithm is a
simple range-detection query, there is no extra burden on the
processor. Thus, using a high ROI is a good way to save
system resources and still increase intelligibility.

The results on VFR are more mixed. We expect VFR to
lead to some degradation in quality, since we are leaving
out a lot of information in order to save resources. Indeed,
participants felt they had to guess more frequently. More-
over, their conversations were also objectively affected. They
made more repair requests, took more turns to correct those
requests, and had more conversational breakdowns when
VFR was on. However, an examination of means shows
that overall, they were not making many repair requests or
experiencing many conversational breakdowns. Breakdowns
only occurred once every third conversation on average.

The results on three of the subjective measures were en-
couraging. The VFR did not appear to affect participants’
feelings that they would use the phone instead of other means
of communication or that they would adopt the phone in gen-
eral. It also did not affect their irritation with the frame rate
changes. Because VFR saves considerable system resources,
we expect it to affect conversations; it is encouraging that this
does not mean users feel that they are less likely to adopt the
technology. In a laboratory setting, it is difficult to capture
the advantage of a long-lasting battery. Our future field study
will allow participants to use the phones over a longer period
of time, so we can better evaluate the trade-off in battery life
versus VFR.

The results on finger spelling were surprising. Given the
other objective measure results, we expected finger spelling
to be measurably slower with VFR turned on, but we saw
no statistically significant difference. It may be that the
participants spelled more slowly overall and not just during
the VFR subconversations. However, when analyzing videos
it seemed to us that conversational breakdowns occurred
most often when one participant was finger spelling. We
suspect this is because the differencing method would incor-
rectly label the frames and lower the frame rate, occasionally
resulting in a “frozen” image.

FUTURE WORK

Although we solved many hard technical problems, several
other technical challenges remain. We would like to further
investigate finger spelling. Using our method developed for
the VFR, we want to automatically recognize finger spelling
so that we do not lower the frame rate during these periods of
the video. It would also be interesting to know how using the
mobile phone affects finger spelling compared to other meth-
ods of video communication, such as a video relay service.
In general, we would like to better model sign language as
opposed to just motion, as we do now. We cannot currently
distinguish between extraneous motion, such as someone
drinking coffee, and the purposeful motion of signing.

There are also several different ways we might improve our
classification. We could use a different machine learning

algorithm like boosting; choose different features, such as
histograms of motion vectors, to send to our classifier; and
try to speed up the SVM classifier through quantization.
Face detection algorithms are quite fast, and are implemented
in digital cameras, so it might be possible to make the
dynamic ROI track the face. Adding more training data
would improve classification.

In the future, we will continue to improve MobileASL so that
we may make it widely available. Our next step is to move
out of the lab and into the field. We plan to give participants
phones with MobileASL installed and have them use and
comment on the technology over an extended period of time.

CONCLUSION

In this work, we describe our system for real time video
communication over mobile phones. We create techniques
that save system resources including processor workload
and battery life by focusing on the important parts of the
video. We implement our methods on an off-the-shelf mobile
phone and evaluate our techniques in a user study in which
participants carry on unconstrained conversation over the
phones in a laboratory setting.

The most common question asked by our participants was
“when will this be available?” When recruiting for our study,
we received interested queries from all over the United
States. We are encouraged by the results of this work as it
furthers our ultimate goal: to provide Deaf people full access
to today’s mobile telecommunication network.
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