
In-stroke Word Completion
Jacob O. Wobbrock,1,2 Brad A. Myers

2 and Duen Horng Chau
2

1The Information School
University of Washington

Mary Gates Hall, Box 352840
Seattle, Washington 98195-2840

wobbrock@u.washington.edu

2Human-Computer Interaction Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213
{ bam, dchau }@cs.cmu.edu

ABSTRACT

We present the design and implementation of a word-level
stroking system called Fisch, which is intended to improve
the speed of character-level unistrokes. Importantly, Fisch
does not alter the way in which character-level unistrokes
are made, but allows users to gradually ramp up to word-
level unistrokes by extending their letters in minimal ways.
Fisch relies on in-stroke word completion, a flexible design
for fluidly turning unistroke letters into whole words. Fisch
can be memorized at the motor level since word
completions always appear at the same positions relative to
the strokes being made. Our design for Fisch is suitable for
use with any unistroke alphabet. We have implemented
Fisch for multiple versions of EdgeWrite, and results show
that Fisch reduces the number of strokes during entry by
43.9% while increasing the rate of entry. An informal test
of “record speed” with the stylus version resulted in 50-60
WPM with no uncorrected errors.

Author Keywords

Text entry, text input, unistrokes, word prediction, word
completion, stylus, trackball, isometric joystick, EdgeWrite.

ACM Classification Keywords

H.5.2. Information interfaces and presentation: User
interfaces — Input devices and strategies.

INTRODUCTION

Along with the advent of new mobile devices has come a
variety of new input techniques. Among these are stylus-
based text entry methods, including unistroke methods and
stylus keyboards. However, stylus text entry generally
remains slower than touch-typing, ranging from 15-40
WPM. Recent attempts to address this limitation for stylus
keyboards include optimized key layouts [14] and
keyboards that support word-level gestures [5,10,11,15].
Such gestures may be called word-level unistrokes, which
enable higher entry rates than character-level ones. But
stylus keyboards consume screen real estate, making them
unsuitable for many of the smallest devices on the market

today (e.g. PDA wrist watches). In contrast, unistroke
letters are written on top of each other in the same space,
and therefore may be suitable for particularly small devices.
But unistrokes are inherently character-level, which limits
their speed. To our knowledge, there have been no word-
level stroking solutions for character-level unistroke
methods like Graffiti, Jot, and EdgeWrite [13].

We therefore present a design for extending character-level
unistrokes to word-level strokes using a new technique
called in-stroke word completion. The idea is neither to
define overly verbose strokes that stand for complete
words, nor to use an add-on word completion list, since list-
based word selection can slow users down [3]. Instead, the
idea is to allow character-level entry to remain unchanged
while providing minimal extensions to character-level
unistrokes that change them into words. Users begin word-
level strokes by stroking a word’s first letter, and then,
without lifting, fluidly complete their stroke to write an
entire word. The same stroke always produces the same
word, enabling users to memorize strokes and ramp from
character-level entry to word-level entry. Since natural
language follows Zipf’s law, learning even a small number
of common word-level strokes may produce an increase in
overall entry rates. For example, the word “the” represents
over 6% of the British National Corpus, and the most
common 100 words account for over 46% of it [15].

The principles outlined above are similar to those behind
the SHARK stylus keyboard [5,15]. We therefore dub our
design for word-level unistrokes Fisch, for fluid in-stroke
completion shorthand. Whereas SHARK uses a stylus
keyboard, Fisch uses only a little more space than that
required for letter unistrokes. With SHARK and now Fisch,
stylus keyboards and unistroke alphabets can both support
character-level and word-level entry, better serving novices
and experts alike.

RELATED WORK

Word-level unistrokes appeared previously in Cirrin [10]
and Quikwriting [11], but these methods require users to
access each letter within the word being entered. Although
these methods utilize a single stroke for each word, their
strokes tend to be rather long and “swoopy,” lacking
similarity to Roman letters or words.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’06, October 15–18, 2006, Montreux, Switzerland.
Copyright 2006 ACM 1-59593-313-1/06/0010...$5.00.

As stated, SHARK [5,15] is the most relevant prior method.
SHARK supports high-performance stylus-based text entry.
It differs from Fisch in its dependence on stylus keyboards,
which Fisch does not have. This may make SHARK
unsuitable for particularly small devices. Also, SHARK
relies on a touch-screen for collocated input and output,
since strokes are made directly on top of a stylus keyboard.

Marking menus [7] are also related to Fisch in that both
designs encourage users to transition from reliance on
visual information to reliance on non-visual motor
execution. However, marking menus are commonly
triggered by “pressing-and-waiting” [7], and although a
stylus-dwell could be used in Fisch, we prefer a more
explicit delimiter like the “pigtail loop” used in Scriboli [4].
Another difference is that if marking menus were used in
Fisch, they would obscure the unistrokes themselves.
Instead, Fisch places words along the edges of a stroke’s
bounding box and uses crossing to select [1].

Word prediction and completion systems are also relevant
to Fisch. However, unlike Fisch, most systems supply
candidate words as part of a graphical list, which requires
visual scanning and separate actions for selection. Studies
show that list-based word selection can slow users down
[3]. Also, having separate actions for selection from a list
breaks the fluid motor patterns users may develop for
making word-level strokes. In contrast, allowing words to
be completed in a single non-lifting stroke has potential
benefits for eyes-free mobile use.

THE FISCH DESIGN FOR WORD-LEVEL STROKES

The Fisch design for word-level strokes can be applied to
any character-level unistroke method, such as Graffiti, Jot,
or EdgeWrite [13]. In this section, we describe Fisch in
general terms, later showing its adaptation to EdgeWrite.

Fisch Design Requirements

Fisch integrates word-level strokes into prior unistroke
methods without altering existing character-level strokes.
The explicit design goals of Fisch are that:

1. Character-level strokes remain unchanged.

2. Character-level strokes are minimally extended to
produce words.

3. The same stroke always produces the same word,
enabling memorization through motor repetition.

4. Users can gradually transition from character-level
entry to word-level entry as they become proficient.

In-Stroke Word Completion

The core idea in Fisch is that users make a “subgesture”
within a letter stroke that indicates that the letter itself is
finished and subsequent motion is for the completion of a
word. A rapid and natural subgesture is a small “pigtail
loop” like the one used in Scriboli [4].

When a loop is detected, the stroke is recognized and the
result serves as the prefix to potential completions. In

addition, a bounding box is imposed around the stroke. The
box’s sides represent crossing boundaries that are used for
the selection of words. Thus, a stroke serves as its own
frame of reference for selecting completions (Figure 1).

If no pigtail loop is detected, the entire stroke is processed
as a regular character-level unistroke. Thus, letter strokes
remain unchanged.

Figure 1. Extending a Graffiti “t” to produce the word
“the”. Dashed lines represent the stroke’s bounding box.

In Figure 1a, the user has written a Graffiti unistroke for the
letter “t”. If the user were to lift his stylus at this point, a “t”
would be produced. However, in Figure 1b, the user
continues the stroke by making a pigtail loop. In Figure 1c,
the system detects this loop and imposes an appropriately
sized bounding box around the stroke. The “t” is recognized
and the system presents the four most common words
beginning with “t” at each side of the box. The sides on
which the words appear are fixed such that the same word
always appears on the same side for a given stroke,
allowing users to reliably enter words in single strokes. In
Figure 1d, the user fluidly continues the gesture to perform
a crossing task, which selects the word “the” across the
penetrated boundary. Studies have shown crossing to be
faster than pointing for short-range selection tasks [1].
Thus, when the user lifts, the word “the” is entered.
Importantly, the same stroke always produces the word
“the”.

For less common words, users can enter the appropriate
number of letters to serve as a prefix before selecting a
completion. For example, once a user has entered a “t”, a
subsequent “o” stroke will produce “to-” completions like
“to”, “told”, “too”, and “today”. Long prefixes are rarely
needed, as a surprising amount of language coverage is
achieved by showing just four words per entered letter.
Figure 2 shows the coverage of the 17,805 most common
English words [6] for 1-5 letter prefixes with just four
English frequency-based completions per letter. According
to the graph, a user has a 49.0% chance of being able to
enter the word they desire in just one fluid stroke.

The difference between the top and bottom lines in Figure 2
indicates a design decision: if the user enters a “t”, one of
the words shown is “the”. If the user then enters an “h”,
should “the” be re-shown, even though the user did not
select “the” already? In our studies, we found that novices
sometimes entered letters past the initial presentation of the
desired completion, losing sight of that completion since
the word was not re-shown. Because the gain when not re-
showing is minimal, we currently opt to reshow words.

Figure 2. Coverage of the 17,805 most common English
words [6] with four completions shown per entered letter.

Stroke Cancellation and Completion Undo

Good user interfaces allow users to abort actions underway.
A user may cancel a word-level stroke in Fisch by simply
retreating over the crossing boundary and terminating the
stroke in the interior of the bounding box (Figure 3a).
Depending on the application, designers can elect to have
this enter the character-level result, or enter nothing at all.
In our implementations, we prefer the latter. In contrast, if a
stroke ends outside the box, the completion that had its
boundary crossed last will be the one that is selected
(Figure 3b). Note that crossing boundaries extend arbitrarily
far beyond the bounding box.

Figure 3. (a) Word-level stroke cancellation and (b) a
change in selection.

After a completion is entered, users can quickly undo it by
performing a special backspace stroke. In most unistroke
methods, a single stroke from right-to-left enters a
backspace. Thus, a right-to-left double-swipe or some other
backspace variant may be used to undo the most recent
selection and restore the former prefix and its completions.

Thus far, we have described how users can extend
character-level unistrokes to complete words. However, in
the early stages of exposure, users do not fluidly complete
words, but instead stop after each stroke and look at the
completions. Therefore, Fisch leaves completions displayed
after each letter is entered until a new stroke of a sufficient
length begins. While words are displayed, users can also
simply tap on them to enter them. We call such a tap a
direct word selection.

FISCH IN EDGEWRITE
Stylus EdgeWrite

In Stylus EdgeWrite [13], a plastic template bounds the
input area to provide physical stability and higher accuracy,
particularly for users with motor impairments. Therefore,
the Fisch design as described is not tenable, since users
cannot cross boundaries due to the plastic template. As a
result, it is necessary to adapt Fisch to Stylus EdgeWrite.

The adaptation consists of three parts. First, we no longer
use a “floating” bounding box that is determined by the
location of the stroke. Instead, the bounding box is assumed
to be the fixed square defined by the plastic template.
Second, we map word completions to EdgeWrite’s corners
instead of to the sides of the box, since corners trap a
moving stylus [13]. Third, instead of detecting pigtail loops,
we detect corner re-entries, which amount to a similar
thing. As before, users can cancel a stroke, now by lifting
outside any corner. Figure 4 shows an EdgeWrite “t” and
word-level strokes for “the” and “they”.

Figure 4. EdgeWrite unistrokes for “t”, “the”, and “they”.
As an informal test of “record speed” [5], the first author
chose a random phrase from [8] for repeated entry. The
phrase was, “for your information only”, which in Fisch can
be entered in 6 fluid strokes. The phrase was entered 33
times in 7 minutes. Over the first 5 times, speed averaged
18.0 WPM. On the 10th try, speed was 31.0 WPM; on the 15th,
it was 55.7 WPM. The speed on the final try was 63.3 WPM.
There were no errors left in any of these entered phrases.

Trackball and Isometric Joystick EdgeWrite

In contrast to Stylus EdgeWrite, Trackball EdgeWrite [12]
and Isometric Joystick EdgeWrite [2] do not allow for
corner re-entries. Therefore, an adaptation of Fisch requires
users to first segment their letter strokes and then enter the
corner of the desired completion. This means a slight pause
replaces corner re-entry loops.

Our evaluation of Fisch in Trackball EdgeWrite was
conducted with a motor-impaired trackball user with a
spinal cord injury. His log files over 11 weeks showed a
total of 15,629 entered characters, 6855 of which were from
completions, or about 43.9% (Figure 5). The average
number of characters entered per completion was 3.11. This
includes an automatic space entered after each completion.

In EdgeWrite, completions can be undone using a stroke
across the bottom of the square. The percentage of word
completions undone was 7.7%. In contrast, a stroke across
the top of the square is a character backspace, and 16.5% of
characters were erased this way. Although this seems high,

prior research shows that backspace is the second most
common keystroke in general desktop text entry [9].

In a short lab study, the same subject entered 8 phrases in
Trackball EdgeWrite with and without Fisch. His character-
level speed was 8.22 WPM with no uncorrected errors. His
word-level Fisch speed was 12.09 WPM with no uncorrected
errors, a 47.1% improvement.

Figure 5. Log file results from one subject over an 11
week period of intermittent Trackball EdgeWrite use.

Our evaluation of Fisch in Isometric Joystick EdgeWrite
was conducted with four able-bodied mobile phone users.
After embedding an IBM TrackPoint isometric joystick in a
Red•E SC 1100 Smartphone [2], we first had subjects enter
8 phrases per session for 30 sessions with character-level
EdgeWrite. We then enabled Fisch and conducted 6
additional sessions. The mean speed for the first 30 sessions
was 9.39 WPM with 1.01% uncorrected errors. The peak
session average was 12.32 WPM in session 29. With Fisch,
the mean speed increased to 12.81 WPM with 0.54%
uncorrected errors, a 36.4% speed improvement from the
mean character-level speed. The peak session average was
14.27 WPM in session 35, a 15.8% improvement from the
peak character-level speed. The fastest subject for a single
session was subject 1 at 17.70 WPM in session 35. After
only entering 48 phrases in 6 sessions with Fisch, subjects
showed no signs of leveling off. Thus, more sessions would
almost certainly produce higher speeds.

FUTURE WORK

As with SHARK [5,15], a laboratory study using expanded
rehearsal interval (ERI) would allow us to measure how
many word-level strokes subjects are able to learn in, say,
one hour. Also, a formal study of Fisch in Stylus EdgeWrite
is in order, since the “record speed” of one phrase cannot be
generalized. A formal study could assess the effect of
English word frequency on learning. More frequent words
may be easier to learn since they can be entered in fewer
strokes. Still, the most interesting questions concern Fisch’s
utility in the real world without concentrated practice. To
assess this, further logging of users’ text entry is necessary.

CONCLUSION

Too often, word completion systems slow people down
because they involve visual scanning and separate actions
for word selection. Fisch is a design for in-stroke word

completion that allows users to fluidly complete words by
minimally extending their letter unistrokes. Over the last
decade, unistrokes have represented an important
contribution to mobile computing. As users demand higher
performance, word-level strokes may be embraced by those
who are tired of plodding along one character at a time.

Acknowledgements
The authors thank Thi Truong Avrahami and Brandon Rothrock.
This work was supported by Microsoft, General Motors, and the
National Science Foundation under grant UA-0308065. Any
opinions, findings, conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily reflect
those of the National Science Foundation.

REFERENCES
1. Accot, J. and Zhai, S. (2002) More than dotting the i’s:

Foundations for crossing-based interfaces. Proc. CHI

2002, 73-80.
2. Chau, D.H., Wobbrock, J.O., Myers, B.A. and Rothrock, B.

(2006) Integrating isometric joysticks into mobile phones
for text entry. Ext. Abs. CHI 2006, 640-645.

3. Goodenough-Trepagnier, C., Rosen, M.J. and Galdieri, B.
(1986) Word menu reduces communication rate. Proc.

RESNA 1986, 354-356.
4. Hinckley, K., Baudisch, P., Ramos, G., and Guimbretiere, F.

(2005) Design and analysis of delimiters for selection-action
pen input phrases in Scriboli. Proc. CHI 2005, 451-460.

5. Kristensson, P. and Zhai, S. (2004) SHARK
2
: A large

vocabulary shorthand writing system for pen-based
computers. Proc. UIST 2004, 43-52.

6. Kucera, H. and Francis, W.N. (1967) Computational

Analysis of Present-Day American English. Providence,
Rhode Island: Brown University Press.

7. Kurtenbach, G. and Buxton, W. (1994) User learning and
performance with marking menus. Proc. CHI 1994, 258-264.

8. MacKenzie, I.S. and Soukoreff, R.W. (2003) Phrase sets
for evaluating text entry techniques. Ext. Abs. CHI 2003,
754-755.

9. MacKenzie, I.S. and Soukoreff, R.W. (2002) Text entry
for mobile computing: Models and methods, theory and
practice. Human-Computer Interaction 17 (2), 147-198.

10. Mankoff, J. and Abowd, G.D. (1998) Cirrin: A word-level
unistroke keyboard for pen input. Proc. UIST 1998, 213-214.

11. Perlin, K. (1998) Quikwriting: Continuous stylus-based
text entry. Proc. UIST 1998, 215-216.

12. Wobbrock, J.O. and Myers, B.A. (2006) Trackball text
entry for people with motor impairments. Proc. CHI 2006,
479-488.

13. Wobbrock, J.O., Myers, B.A. and Kembel, J.A. (2003)
EdgeWrite: A stylus-based text entry method designed for
high accuracy and stability of motion. Proc. UIST 2003,
61-70.

14. Zhai, S., Hunter, M. and Smith, B.A. (2002) Performance
optimization of virtual keyboards. Human Computer

Interaction 17 (3), 229-269.
15. Zhai, S. and Kristensson, P. (2003) Shorthand writing on

stylus keyboard. Proc. CHI 2003, 97-104.

