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ABSTRACT 

We present the design and implementation of a word-level 
stroking system called Fisch, which is intended to improve 
the speed of character-level unistrokes. Importantly, Fisch 
does not alter the way in which character-level unistrokes 
are made, but allows users to gradually ramp up to word-
level unistrokes by extending their letters in minimal ways. 
Fisch relies on in-stroke word completion, a flexible design 
for fluidly turning unistroke letters into whole words. Fisch 
can be memorized at the motor level since word 
completions always appear at the same positions relative to 
the strokes being made. Our design for Fisch is suitable for 
use with any unistroke alphabet. We have implemented 
Fisch for multiple versions of EdgeWrite, and results show 
that Fisch reduces the number of strokes during entry by 
43.9% while increasing the rate of entry. An informal test 
of “record speed” with the stylus version resulted in 50-60 
WPM with no uncorrected errors. 
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INTRODUCTION 

Along with the advent of new mobile devices has come a 
variety of new input techniques. Among these are stylus-
based text entry methods, including unistroke methods and 
stylus keyboards. However, stylus text entry generally 
remains slower than touch-typing, ranging from 15-40 
WPM. Recent attempts to address this limitation for stylus 
keyboards include optimized key layouts [14] and 
keyboards that support word-level gestures [5,10,11,15]. 
Such gestures may be called word-level unistrokes, which 
enable higher entry rates than character-level ones. But 
stylus keyboards consume screen real estate, making them 
unsuitable for many of the smallest devices on the market 

today (e.g. PDA wrist watches). In contrast, unistroke 
letters are written on top of each other in the same space, 
and therefore may be suitable for particularly small devices. 
But unistrokes are inherently character-level, which limits 
their speed. To our knowledge, there have been no word-
level stroking solutions for character-level unistroke 
methods like Graffiti, Jot, and EdgeWrite [13]. 

We therefore present a design for extending character-level 
unistrokes to word-level strokes using a new technique 
called in-stroke word completion. The idea is neither to 
define overly verbose strokes that stand for complete 
words, nor to use an add-on word completion list, since list-
based word selection can slow users down [3]. Instead, the 
idea is to allow character-level entry to remain unchanged 
while providing minimal extensions to character-level 
unistrokes that change them into words. Users begin word-
level strokes by stroking a word’s first letter, and then, 
without lifting, fluidly complete their stroke to write an 
entire word. The same stroke always produces the same 
word, enabling users to memorize strokes and ramp from 
character-level entry to word-level entry. Since natural 
language follows Zipf’s law, learning even a small number 
of common word-level strokes may produce an increase in 
overall entry rates. For example, the word “the” represents 
over 6% of the British National Corpus, and the most 
common 100 words account for over 46% of it [15]. 

The principles outlined above are similar to those behind 
the SHARK stylus keyboard [5,15]. We therefore dub our 
design for word-level unistrokes Fisch, for fluid in-stroke 
completion shorthand. Whereas SHARK uses a stylus 
keyboard, Fisch uses only a little more space than that 
required for letter unistrokes. With SHARK and now Fisch, 
stylus keyboards and unistroke alphabets can both support 
character-level and word-level entry, better serving novices 
and experts alike. 

RELATED WORK 

Word-level unistrokes appeared previously in Cirrin [10] 
and Quikwriting [11], but these methods require users to 
access each letter within the word being entered. Although 
these methods utilize a single stroke for each word, their 
strokes tend to be rather long and “swoopy,” lacking 
similarity to Roman letters or words. 
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As stated, SHARK [5,15] is the most relevant prior method. 
SHARK supports high-performance stylus-based text entry. 
It differs from Fisch in its dependence on stylus keyboards, 
which Fisch does not have. This may make SHARK 
unsuitable for particularly small devices. Also, SHARK 
relies on a touch-screen for collocated input and output, 
since strokes are made directly on top of a stylus keyboard. 

Marking menus [7] are also related to Fisch in that both 
designs encourage users to transition from reliance on 
visual information to reliance on non-visual motor 
execution. However, marking menus are commonly 
triggered by “pressing-and-waiting” [7], and although a 
stylus-dwell could be used in Fisch, we prefer a more 
explicit delimiter like the “pigtail loop” used in Scriboli [4]. 
Another difference is that if marking menus were used in 
Fisch, they would obscure the unistrokes themselves. 
Instead, Fisch places words along the edges of a stroke’s 
bounding box and uses crossing to select [1]. 

Word prediction and completion systems are also relevant 
to Fisch. However, unlike Fisch, most systems supply 
candidate words as part of a graphical list, which requires 
visual scanning and separate actions for selection. Studies 
show that list-based word selection can slow users down 
[3]. Also, having separate actions for selection from a list 
breaks the fluid motor patterns users may develop for 
making word-level strokes. In contrast, allowing words to 
be completed in a single non-lifting stroke has potential 
benefits for eyes-free mobile use. 

THE FISCH DESIGN FOR WORD-LEVEL STROKES 

The Fisch design for word-level strokes can be applied to 
any character-level unistroke method, such as Graffiti, Jot, 
or EdgeWrite [13]. In this section, we describe Fisch in 
general terms, later showing its adaptation to EdgeWrite. 

Fisch Design Requirements 

Fisch integrates word-level strokes into prior unistroke 
methods without altering existing character-level strokes. 
The explicit design goals of Fisch are that: 

1. Character-level strokes remain unchanged. 

2. Character-level strokes are minimally extended to 
produce words. 

3. The same stroke always produces the same word, 
enabling memorization through motor repetition. 

4. Users can gradually transition from character-level 
entry to word-level entry as they become proficient. 

In-Stroke Word Completion 

The core idea in Fisch is that users make a “subgesture” 
within a letter stroke that indicates that the letter itself is 
finished and subsequent motion is for the completion of a 
word. A rapid and natural subgesture is a small “pigtail 
loop” like the one used in Scriboli [4]. 

When a loop is detected, the stroke is recognized and the 
result serves as the prefix to potential completions. In 

addition, a bounding box is imposed around the stroke. The 
box’s sides represent crossing boundaries that are used for 
the selection of words. Thus, a stroke serves as its own 
frame of reference for selecting completions (Figure 1). 

If no pigtail loop is detected, the entire stroke is processed 
as a regular character-level unistroke. Thus, letter strokes 
remain unchanged. 

 

Figure 1. Extending a Graffiti “t” to produce the word 
“the”. Dashed lines represent the stroke’s bounding box. 

In Figure 1a, the user has written a Graffiti unistroke for the 
letter “t”. If the user were to lift his stylus at this point, a “t” 
would be produced. However, in Figure 1b, the user 
continues the stroke by making a pigtail loop. In Figure 1c, 
the system detects this loop and imposes an appropriately 
sized bounding box around the stroke. The “t” is recognized 
and the system presents the four most common words 
beginning with “t” at each side of the box. The sides on 
which the words appear are fixed such that the same word 
always appears on the same side for a given stroke, 
allowing users to reliably enter words in single strokes. In 
Figure 1d, the user fluidly continues the gesture to perform 
a crossing task, which selects the word “the” across the 
penetrated boundary. Studies have shown crossing to be 
faster than pointing for short-range selection tasks [1]. 
Thus, when the user lifts, the word “the” is entered. 
Importantly, the same stroke always produces the word 
“the”. 

For less common words, users can enter the appropriate 
number of letters to serve as a prefix before selecting a 
completion. For example, once a user has entered a “t”, a 
subsequent “o” stroke will produce “to-” completions like 
“to”, “told”, “too”, and “today”. Long prefixes are rarely 
needed, as a surprising amount of language coverage is 
achieved by showing just four words per entered letter. 
Figure 2 shows the coverage of the 17,805 most common 
English words [6] for 1-5 letter prefixes with just four 
English frequency-based completions per letter. According 
to the graph, a user has a 49.0% chance of being able to 
enter the word they desire in just one fluid stroke. 

The difference between the top and bottom lines in Figure 2 
indicates a design decision: if the user enters a “t”, one of 
the words shown is “the”. If the user then enters an “h”, 
should “the” be re-shown, even though the user did not 
select “the” already? In our studies, we found that novices 
sometimes entered letters past the initial presentation of the 
desired completion, losing sight of that completion since 
the word was not re-shown. Because the gain when not re-
showing is minimal, we currently opt to reshow words. 



 
Figure 2. Coverage of the 17,805 most common English 
words [6] with four completions shown per entered letter. 

Stroke Cancellation and Completion Undo 

Good user interfaces allow users to abort actions underway. 
A user may cancel a word-level stroke in Fisch by simply 
retreating over the crossing boundary and terminating the 
stroke in the interior of the bounding box (Figure 3a). 
Depending on the application, designers can elect to have 
this enter the character-level result, or enter nothing at all. 
In our implementations, we prefer the latter. In contrast, if a 
stroke ends outside the box, the completion that had its 
boundary crossed last will be the one that is selected 
(Figure 3b). Note that crossing boundaries extend arbitrarily 
far beyond the bounding box. 

 

Figure 3. (a) Word-level stroke cancellation and (b) a 
change in selection. 

After a completion is entered, users can quickly undo it by 
performing a special backspace stroke. In most unistroke 
methods, a single stroke from right-to-left enters a 
backspace. Thus, a right-to-left double-swipe or some other 
backspace variant may be used to undo the most recent 
selection and restore the former prefix and its completions. 

Thus far, we have described how users can extend 
character-level unistrokes to complete words. However, in 
the early stages of exposure, users do not fluidly complete 
words, but instead stop after each stroke and look at the 
completions. Therefore, Fisch leaves completions displayed 
after each letter is entered until a new stroke of a sufficient 
length begins. While words are displayed, users can also 
simply tap on them to enter them. We call such a tap a 
direct word selection. 

FISCH IN EDGEWRITE 
Stylus EdgeWrite 

In Stylus EdgeWrite [13], a plastic template bounds the 
input area to provide physical stability and higher accuracy, 
particularly for users with motor impairments. Therefore, 
the Fisch design as described is not tenable, since users 
cannot cross boundaries due to the plastic template. As a 
result, it is necessary to adapt Fisch to Stylus EdgeWrite. 

The adaptation consists of three parts. First, we no longer 
use a “floating” bounding box that is determined by the 
location of the stroke. Instead, the bounding box is assumed 
to be the fixed square defined by the plastic template. 
Second, we map word completions to EdgeWrite’s corners 
instead of to the sides of the box, since corners trap a 
moving stylus [13]. Third, instead of detecting pigtail loops, 
we detect corner re-entries, which amount to a similar 
thing. As before, users can cancel a stroke, now by lifting 
outside any corner. Figure 4 shows an EdgeWrite “t” and 
word-level strokes for “the” and “they”. 

 

Figure 4. EdgeWrite unistrokes for “t”, “the”, and “they”. 
As an informal test of “record speed” [5], the first author 
chose a random phrase from [8] for repeated entry. The 
phrase was, “for your information only”, which in Fisch can 
be entered in 6 fluid strokes. The phrase was entered 33 
times in 7 minutes. Over the first 5 times, speed averaged 
18.0 WPM. On the 10th try, speed was 31.0 WPM; on the 15th, 
it was 55.7 WPM. The speed on the final try was 63.3 WPM. 
There were no errors left in any of these entered phrases. 

Trackball and Isometric Joystick EdgeWrite 

In contrast to Stylus EdgeWrite, Trackball EdgeWrite [12] 
and Isometric Joystick EdgeWrite [2] do not allow for 
corner re-entries. Therefore, an adaptation of Fisch requires 
users to first segment their letter strokes and then enter the 
corner of the desired completion. This means a slight pause 
replaces corner re-entry loops. 

Our evaluation of Fisch in Trackball EdgeWrite was 
conducted with a motor-impaired trackball user with a 
spinal cord injury. His log files over 11 weeks showed a 
total of 15,629 entered characters, 6855 of which were from 
completions, or about 43.9% (Figure 5). The average 
number of characters entered per completion was 3.11. This 
includes an automatic space entered after each completion. 

In EdgeWrite, completions can be undone using a stroke 
across the bottom of the square. The percentage of word 
completions undone was 7.7%. In contrast, a stroke across 
the top of the square is a character backspace, and 16.5% of 
characters were erased this way. Although this seems high, 



prior research shows that backspace is the second most 
common keystroke in general desktop text entry [9]. 

In a short lab study, the same subject entered 8 phrases in 
Trackball EdgeWrite with and without Fisch. His character-
level speed was 8.22 WPM with no uncorrected errors. His 
word-level Fisch speed was 12.09 WPM with no uncorrected 
errors, a 47.1% improvement. 

 

Figure 5. Log file results from one subject over an 11 
week period of intermittent Trackball EdgeWrite use. 

Our evaluation of Fisch in Isometric Joystick EdgeWrite 
was conducted with four able-bodied mobile phone users. 
After embedding an IBM TrackPoint isometric joystick in a 
Red•E SC 1100 Smartphone [2], we first had subjects enter 
8 phrases per session for 30 sessions with character-level 
EdgeWrite. We then enabled Fisch and conducted 6 
additional sessions. The mean speed for the first 30 sessions 
was 9.39 WPM with 1.01% uncorrected errors. The peak 
session average was 12.32 WPM in session 29. With Fisch, 
the mean speed increased to 12.81 WPM with 0.54% 
uncorrected errors, a 36.4% speed improvement from the 
mean character-level speed. The peak session average was 
14.27 WPM in session 35, a 15.8% improvement from the 
peak character-level speed. The fastest subject for a single 
session was subject 1 at 17.70 WPM in session 35. After 
only entering 48 phrases in 6 sessions with Fisch, subjects 
showed no signs of leveling off. Thus, more sessions would 
almost certainly produce higher speeds. 

FUTURE WORK 

As with SHARK [5,15], a laboratory study using expanded 
rehearsal interval (ERI) would allow us to measure how 
many word-level strokes subjects are able to learn in, say, 
one hour. Also, a formal study of Fisch in Stylus EdgeWrite 
is in order, since the “record speed” of one phrase cannot be 
generalized. A formal study could assess the effect of 
English word frequency on learning. More frequent words 
may be easier to learn since they can be entered in fewer 
strokes. Still, the most interesting questions concern Fisch’s 
utility in the real world without concentrated practice. To 
assess this, further logging of users’ text entry is necessary. 

CONCLUSION 

Too often, word completion systems slow people down 
because they involve visual scanning and separate actions 
for word selection. Fisch is a design for in-stroke word 

completion that allows users to fluidly complete words by 
minimally extending their letter unistrokes. Over the last 
decade, unistrokes have represented an important 
contribution to mobile computing. As users demand higher 
performance, word-level strokes may be embraced by those 
who are tired of plodding along one character at a time. 
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