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1 INTRODUCTION

End-user elicitation studies, in which the results of a system function (e.g., zoom in on a map)
are demonstrated, and the user is asked for the action (e.g., gesture, voice command) or symbol
(e.g., icon, button label, command-line term) that would bring about that result, have become ex-
ceptionally popular since their advent in 2005 by Wobbrock et al. [140] with the initial phras-
ing of “guessability studies.” Gesture elicitation, in particular, has been the most popular focus
of end-user elicitation studies, with Wobbrock et al.’s 2009 paper [141] about uncovering users’
preferences for hand gesture input on tabletops being cited nearly 1,300 times, and the original
method [140] replicated nearly 300 times; see [57, 69, 120, 124, 127] for overviews of published
gesture elicitation studies and their results. A core component of end-user elicitation is the notion
of agreement, which indicates when actions or symbols proposed by the study participants are,
essentially, the same or at least substantially similar [3]. Agreement is vital both in the grouping of
similar actions or symbols and in the calculation of an agreement score that quantifies how much
agreement participants have exhibited in their proposals. If conceptualized and calculated incor-
rectly, agreement can mislead designers, system creators, and usability specialists [114] and, ulti-
mately, bring about poor user interface and interactive system designs. Miscalculated agreement
could also lead researchers interested in understanding human behavior with interactive technol-
ogy to draw false conclusions about the proclivities and preferences of end users of interactive
systems.
Recently, established measures of agreement in end-user elicitation, such as the agreement

score A [140, 141] and agreement rate AR [32, 120, 121], have come under fire for failing to take
into account agreement occurring by chance. Statistical inference tests proposed for elicitation
data [120, 121] have been criticized as well. An article by Tsandilas [108], especially, has called into
question these established agreement calculations by connecting to the literature and practice of
inter-rater reliability studies [21, 22, 34, 40, 59], and called out large Type I error rates for analo-
gous statistical tests [120, 121] by modeling bias in gesture elicitation according to the premises
and assumptions employed in inter-rater reliability. Other authors have highlighted concerns for
end-user elicitation, such as the problem of legacy bias that may cause elicitation studies to get
caught in local minima [43, 76], or problems getting reproducible results with the original elicita-
tion method [82, 114]. To add to these, the theoretical landscape of end-user elicitation studies has
been rapidly changing due to new formalizations, algorithms and software tools, and variations of
the initial method [2–4, 43, 76, 114].

Consequently, the body of work on end-user elicitation studies can appear confusing and even con-
flicting for researchers and practitioners that wish to apply this method to inform the design of
their user interfaces, devices, prototypes, and interactive systems, but also to educators disseminat-
ing this method to students.1 Against this backdrop, our work attempts to clarify fundamental as-
pects of end-user elicitation by providing (1) examined perspectives, (2) supporting mathematical
theory and results, (3) connections to other fields, and (4) recommendations for conducting general
end-user elicitation studies in HCI, which subsume popular gesture elicitation studies [140, 141].
To this end, we alleviate and clarify specific concerns (SC) [76, 82, 103, 108], unify recent comple-
mentary perspectives [3, 114], and provide a theoretically sound foundation for end-user elicitation.
For example, our close examinations reveal that Tsandilas’ [108] concerns about chance agreement
in end-user elicitation studies are assuaged by proportional chance disagreement, an aspect over-
looked in Tsandilas’ work, which, we argue, focused on and was overly influenced by the theory
and practice of inter-rater reliability studies. This omission prevented Tsandilas from observing the

1Such as the “3DUser Interfaces” Computer Science course delivered at Colorado State University, Fall 2019, which includes

gesture elicitation as part of its syllabus; see https://www.online.colostate.edu/courses/CS/CS567.dot.
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subtle, yet key differences between inter-rater reliability and end-user elicitation that, upon close ex-
amination, are based on fundamentally different assumptions, as we show. Consequently, end-user
elicitation studies need distinct models, methods, measures, and tools for agreement calculation
and analysis. To this end, we present both theoretical arguments and practical evidence from exper-
iments conducted on multiple public gesture datasets. In a similar manner, we debunk and clarify
other concerns as well. But first, we clearly articulate the SC that researchers and practitioners,
and especially newcomers to the method, are likely to find conflicting and potentially a barrier to
applying end-user elicitation in their own work. Then, we identify research questions (RQ) and
corresponding practical aspects for conducting end-user elicitation studies, for which we provide
corresponding clarifications.

1.1 SC from the Scientific Literature of End-User Elicitation That This Article Clarifies

We outline, in chronological order, seven Specific Concerns ([SC1]–[SC7]) that were formulated in
the literature [76, 82, 103, 108, 114] regarding various practical aspects of conducting user stud-
ies with the elicitation method [140, 141] and its variations for calculating and analyzing agree-
ment [32, 120, 121], which we believe are important to clarify for researchers and practitioners
wishing to employ this method in their own work:

[SC1] Stern et al. [2008] [103]: claim that eliciting proposals by having participants actually
performing them, as proposed in Wobbrock et al. [140, 141], may be a less suited ap-
proach compared to other ways to elicit end users’ preferences for actions, commands,
or symbols, such as the “coded gesture entry” method.

[SC2] Nebeling et al. [2014] [82]: claim that the end-user elicitationmethod should be extended
toward reproducible and implementable user-defined interaction sets.

[SC3] Morris et al. [2014] [76]: claim that legacy bias, i.e., the potential pitfall of users’ propos-
als to be biased by their experience with prior interfaces and technologies, is a limitation
of the original end-user elicitation method [140, 141].

[SC4] Tsandilas [2018] [108]: claims that the established measures of agreement calculation,
A and AR, advocated by Wobbrock et al. [140, 141], Findlater et al. [32], and Vatavu and
Wobbrock [120, 121], do not take into account chance agreement.

[SC5] Tsandilas [2018] [108]: claims that the guidelines proposed by Vatavu and Wobbrock
[120] for interpreting the magnitude of agreement can lead to overoptimistic conclu-
sions about the true level of agreement reached by the participants of end-user elicita-
tion studies.

[SC6] Tsandilas [2018] [108]: claims that theVrd andVb test statistics proposed by Vatavu and
Wobbrock [120, 121] yield high Type I error rates.

[SC7] Vatavu [2019] [114]: claims that the criteria used to evaluate the similarity of proposals
elicited from the participants of end-user elicitation studies can make the magnitude
of agreement scores irrelevant, because of the dependency between agreement and the
criteria employed. Instead, a holistic approach in which agreement is interpreted as
a function of the criteria used to judge the similarity of elicited proposals should be
preferred to using specific, possibly subjective criteria.

For some of these SCs, the literature already contains potential improvements on the end-user
elicitation method, such as ways to reduce legacy bias [43, 76, 94] and improve the learnability
and memorability of user-elicited input [2], measures of agreement that are independent of the
criteria used to cluster end-users’ proposals according to their similarity to each other [114, 115],
or new procedures to perform statistical inference tests for elicitation data [108]. Other concerns,
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such as chance agreement potentially occurring in end-user elicitation studies [108], different pos-
sible ways to elicit proposals from participants [103], and aspects regarding the reproducibility of
end-user elicitation studies [82, 114], are still open, creating a state of uncertainty for practitioners
that wish to apply the end-user elicitation method in their own work. Therefore, it is important to
clarify such concerns. To this end, our article provides a close re-examination of agreement calcula-
tion and analysis as a core component of end-user elicitation studies, offering numerous contributions,
unifications of formulae and current practices, connections to other fields, and many clarifications for
researchers and practitioners. We start by outlining a series of fundamental RQ and corresponding
practical aspects for end-user elicitation to which we will refer in the rest of this article.

1.2 Fundamental RQ for End-User Elicitation

We outline four fundamental Research Questions ([RQ1]–[RQ4]) important for the theoretical foun-
dation and further methodological development of the end-user elicitation method. Together, they
subsume nine practical aspects with which researchers, designers, and practitioners are likely to
be confronted when running end-user elicitation studies:

[RQ1] How do end-user elicitation studies compare to inter-rater reliability studies?

The following practical aspects are subsumed:

[RQ1.1] Should the measures of agreement employed in end-user elicitation studies, such
as A and AR, be corrected for chance agreement, just like in inter-rater reliability
studies? If so, how?

[RQ1.2] Is end-user elicitation the same thing as an inter-rater reliability study?

[RQ2] What is agreement in end-user elicitation? With the following practical aspects:

[RQ2.1] How do various measures of agreement relate to each other?

[RQ2.2] Which measure(s) of agreement should one use for end-user elicitation studies?

[RQ2.3] How to interpret the magnitude of agreement in end-user elicitation studies?

[RQ3] Can end-user elicitation be modeled formally? In particular:

[RQ3.1] Are there viable models for the analysis of elicited proposals?

[RQ3.2] Which model should one adopt for the analysis of elicited proposals?

[RQ4] What statistical procedures best apply to elicitation data?The following practical
aspects are subsumed:

[RQ4.1] Which statistical test should one use for analyzing agreement data for end-user
elicitation studies with between-subjects experimental designs?

[RQ4.2] Which statistical test should one use for analyzing agreement data for within-
subjects experimental designs?

1.3 Research Contributions

In this work, we address all of the fundamental RQ outlined above, and clarify all of the specific
concerns discussed at the outset. To this end, our article offers many contributions, both theoretical
and practical, to end-user elicitation:

(1) We introduce a formal operational model for end-user elicitation studies in HCI, which in-
clude the popular gesture elicitation studies [140, 141], representing the most comprehen-
sive description of general end-user elicitation provided to date. In this context, we identify
three distinct models of agreement analysis: the expert, codebook, and computer models, for
which we describe numerical procedures to characterize bias based on the Zipf–Mandelbrot,
Bernoulli, and Gaussian distributions and using the Minkowski, squared Euclidean, and Lin
dissimilarity functions, thus covering all known variants of end-user elicitation studies.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 1, Article 5. Publication date: January 2022.
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(2) We show that the notion of agreement employed in elicitation studies can be formalized
mathematically as a tolerance relation [145] that generates a tolerance space [102, 145]
over the set of proposals elicited from end users. To this end, the concepts of dissimilarity
functions [114], classification [114], and clustering [3] are key to agreement calculation.
Furthermore, we show how formalizing agreement calculation with dissimilarity functions
and tolerances connects directly to the complete-link method [130], a hierarchical clustering
method known for the internal cohesion of its partition and homogeneous clusters.

(3) We review current measures for calculating agreement in end-user elicitation studies,
which we evaluate from the perspective of four quality properties. We determine that all
those measures can be computed from the agreement graph, a concept that we employ to
(i) show how those measures are facets of one single, all-purpose agreement rate, and (ii) to
deliver a key insight about AR [120], one of the most popular measures of agreement in
elicitation studies, which camouflages as a measure of central location (the mean).

(4) In response to Tsandilas’ [108] criticism, we show that chance agreement represents an
issue solely for inter-rater reliability studies [21, 22, 34, 40] and not for end-user elicitation,
where it is proportionally opposed by “chance disagreement,” i.e., for every bit of chance
agreement, there is a corresponding amount of chance disagreement to oppose it. We use the
concepts of false positives and false negatives to properly describe and quantify this aspect.

(5) We conduct extensive simulations of 16 statistical inference tests for within- and between-
subjects designs for end-user elicitation studies, and report estimations of Type I error
rates and statistical power. To this end, we introduce new Monte Carlo procedures that
can simulate populations of exact agreement rates, an unprecedented level of simulation
accuracy in end-user elicitation [108, 121]. We use these simulations to clarify recent
concerns [108] regarding the Vrd [120] and Vb [121] test statistics.

(6) We provide recommendations for practitioners of end-user elicitation by encouraging
numerical representation and acquisition of proposals elicited from end users, and we
introduce a five-level hierarchy for end-user elicitation studies by considering aspects of
recording data computationally, open data, open software, reproducibility, and validation
of results. We also distill our theoretical elaborations and empirical findings into readily
applicable guidelines for researchers and practitioners regarding what measures of agree-
ment and statistical inference tests to use in their own end-user elicitation studies. The next
subsection summarizes these practical guidelines.

1.4 Practical Guidelines for Conducting End-User Elicitation Studies

Our contributions lead to a number of guidelines for the practice of end-user elicitation studies,
which are discussed at length in Section 10. A summary is given below:

(1) End-user elicitation studies following the original method [140, 141] are fundamentally dif-
ferent from inter-rater reliability studies: The list of categories is not defined a priori in
end-user elicitation, the agreement relation is not necessarily transitive, and the measures
of agreement A [140, 141] and AR [32, 120, 121] should not be corrected for chance agree-
ment [108]. These differences are discussed in detail in Section 4, while the distinctive prop-
erties of the agreement relation in end-user elicitation are scrutinized in Sections 3 and 5.

(2) The traditional measures to evaluate agreement in end-user elicitation, A [140, 141] and
AR [32, 120, 121], deliver the same ranking order of referents and compute both in the unit
interval. Thus, they are interchangeable for analysis purposes, but AR conveniently evalu-
ates to 0 when there is no agreement, whereas A evaluates to a number greater than zero
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dependent upon the number of elicited proposals. TheARϵ measure, introduced in this work
following [114], encapsulates A and AR under one mathematical formulation; see Sections 6
and 7.

(3) There are three possible models for evaluating the results of end-user elicitation studies:
the expert, the codebook, and the computer model, which we discuss in Section 8. Of these,
the codebook model has been the most used in published elicitation studies. We recommend
using the computer model whenever possible for reasons of efficiency and replicability of
results, but also due to straightforward transfer of study results to actual systems. Our new
ARϵ measure is compatible with the computer model for automated agreement analysis.

(4) We recommend the percentile bootstrap [132, pp. 332–335] statistical test for the analysis
of agreement in end-user elicitation studies with between-subjects experimental designs,
which seems to control the Type I error rate very well under a variety of testing conditions;
details follow in Section 9.1.

(5) We also recommend the percentile bootstrap [132, p. 411] statistical test for end-user elicita-
tion studies using within-subjects experimental designs; details follow in Section 9.2.

To assist practitioners in adopting these guidelines, we provide open-source R code implement-
ing measures of agreement and statistical tests; see details in Section 11.

2 FUNDAMENTALS OF END-USER ELICITATION STUDIES

We review the procedure of conducting end-user elicitation studies [140, 141] to clarify the steps
involved, their theoretical support, and key issues for agreement calculation. We use this opportu-
nity to propose an operational model of general end-user elicitation in HCI, representing the most
comprehensive and clarifying description to date regarding how end-user elicitation studies work.

2.1 From Participatory Design and Maximizing Guessability of Symbolic Input

to Gesture Elicitation Studies

Participatory Design is the practice where designers and users work together to improve the qual-
ity of working life, often through technology design [37, 41, 78, 97]. Applied to HCI [125, 126],
participatory design aims at informing and improving the features of interactive systems and
user interfaces by involving end-users in the early stages of the design process. In this context,
Wobbrock et al. [140] were interested in the “guessability” of symbolic input as “that quality of
symbols which allows a user to access intended referents via those symbols despite a lack of knowl-
edge of those symbols” (p. 1869). To that end, they proposed a procedure to maximize guessabil-
ity, in their case of stroke gestures for letters and numbers, by asking end users to propose sym-
bols, based on which agreement was calculated for individual referents. This procedure was then
applied by Wobbrock et al. [141] to understand users’ preferences for touch gestures on inter-
active tabletops, the first hand-gesture elicitation study. Since then, gesture elicitation has been
growing in popularity, being applied to a variety of contexts of use and applications of gesture
input [9, 26, 28, 32, 36, 73, 75, 82, 87, 91, 93, 114, 117, 123], with over 300 studies published to
date [124].2 In these studies, participants propose “gestural signs” in response to “referents” repre-
senting actions and system functions, or user behaviors and their effects, respectively [141].

2.2 Toward Formalizing the Steps of a Gesture Elicitation Study

Tsandilas [108] provides the first mathematical formalization of the overall procedure involved in
running a gesture elicitation study, highlighting three main steps: (1) recording gesture proposals

2Papers available in ACM DL, IEEExplore, Scopus, or ScienceDirect.
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from participants via notes, videos, logs, or actual digital representations provided by a gesture ac-
quisition device; (2) classification, where gesture descriptions are interpreted, either automatically
by a computer or manually by the experimenter, into a set of signs; and (3) agreement analysis
enabled by the resulting sign vocabulary. This formalization is articulate in the distinction that it
makes between gesture descriptions (i.e., the actual representations of elicited gestures, such as a
set of touch points delivered by a smartphone in response to the user’s finger drawing a circle on
the touchscreen) and signs (i.e., the interpretation of the gesture description for the assignment of
a label, e.g., “circle” or “swipe left”).
This three-step description of a gesture elicitation study is useful, but leaves out key aspects

regarding the formation of agreement and implementation of the classification step. The cause
of these omissions lies in the fact that some of those missing key aspects were not available
when Tsandilas [108] introduced his formalization [2018], as they were revealed only recently
by two advances in gesture elicitation methods and tools: (i) the dissimilarity–consensus method
for end-user agreement analysis [114] and (ii) new algorithmic approaches to compute agree-
ment based on unsupervised machine learning [3]. The notion of a dissimilarity measure [114]
and the use of unsupervised classification [3] are especially important to clarify and complete
the formal description of what elicitation studies are and how they should be conducted for
best results. In the following, we provide an improved description of end-user elicitation by in-
troducing an operational model with six components that formalize the steps for conducting
such studies, from the presentation of referents to the classification of elicited proposals into
signs.

2.3 From Gesture Studies to an Operational Model of General End-User Elicitation

for Human–Computer Interaction

Tsandilas [108] makes an important distinction between the description of a gesture and the sign
assigned to that gesture as the result of the classification step. This distinction is helpful to under-
stand why two gestures, despite inherent variation in their articulations (e.g., a small and a large
circle, or a clockwise and a counter-clockwise circle), may be assigned to the same sign (i.e., the
“circle” sign) and, thus, be considered in agreement.

However, there are more aspects at work than first meet the eye in the process leading from
referent presentation to the sign assignment for elicited gestures or, in general, for elicited propos-
als. In the following, we extend Tsandilas’ [108] distinction between descriptions and signs into
a complete model of the elicitation process. Figure 1 illustrates our operational model for general
end-user elicitation studies in HCI, highlighting the following steps and components:

(1) Upon the presentation of a referent, the participant, through reflection and deliberation,
forms a mental model of the system effect corresponding to that referent. For example, upon
witnessing amap displayed on a tabletop zoom in, the user forms amental model of zooming,
recognizing that the effect on the system of some hypothetical command is to make objects
on the map look bigger with greater detail.

(2) The mental model of the system effect is instantiated into a mental model of the command
that the participant is asked to propose in order to effect the referent just demonstrated.3 For
example, a two-finger model for zooming in and out might be instantiated into either one
hand touching the screen (which represents a mental model of single-hand input) or two
hands being used at the same time (bimanual coordinated input).

3By “command,” we mean an action, such as a gesture or voice command, or a symbol, such as an icon, button label,

command-line term, or hyperlink.
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Fig. 1. A model for general end-user elicitation studies in HCI, including gesture elicitation studies [141]:
referents presented to participants trigger creation of mental models of the interaction (1) that are instan-
tiated into mental models of the command (2), which is articulated into a specific form of a proposal (3)
captured by an actual device or via the experimenter’s notes and video recordings (4), and finally grouped
and classified into a sign (5) when the goal is the identification of a consensus set of signs and/or compared
against other descriptions for characterization purposes (6) when the goal is understanding people.

(3) The command is articulated into an actual proposal. Let us assume that the participant chose
to zoom by pinching two fingers on one hand. The articulation of the commandmay take the
specific form of using the thumb and the index finger to perform zoom out or even all five
of the fingers touching the tabletop. Usually, participants are also asked to evaluate various
qualities of their proposals, such as how easy it was to perform a gesture or how well the
gesture matched the presented referent [141].

(4) The proposal articulated by the participant is captured by some acquisition device, such as
the tabletop in our example, or is logged by the experimenter using notes and video record-
ings. The result is a description of the proposal.

(5) A classifier, including perhaps a human experimenter, distills a set of signs based on the
similarity and dissimilarity among the descriptions of all elicited proposals. Proposals are
grouped, and canonical representations of each group are held up as their sign. A sign can
be thought of as a class label, where individual proposals are instances of that class.

(6) Following, complementary to, or independent of step (5), when the goal of the end-user
elicitation study is not just the compilation of a consensus set of signs, a characterization
procedure is used to compare descriptions of the elicited proposals either with each other,
e.g., to quantify the variance, diversity, or consistency of participants’ proposals, or against
canonical forms in order to understand differences between the elicited proposals and the
status quo, such as user-defined vs. designer-defined interactions.

This six-step model is helpful to understand that variation in the elicited proposals and, conse-
quently, in the magnitude of agreement between those proposals has various sources, ranging
from differentmental models of the system effect to instantiations of thosemodels as commands, to
different articulations of the proposals, different technologies, devices, and tools to capture the pro-
posals, and finally different criteria to cluster together similar proposals. Steps 5 and 6 lead to the
practical outcomes of any end-user elicitation study, including gesture elicitation studies [140, 141]:
a set of selected, consensus-driven signs to inform design for guessability [140], the most common
application of the method, and empirical results that tell us about how people use, are able to
use, or would like to use an interactive system. Next, we provide a mathematical formalization of
step 5, classification, which is key for determining agreement and identifying signs, and examine

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 1, Article 5. Publication date: January 2022.
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step 6, characterization, by highlighting other, diverse purposes and goals of end-user elicitation
studies. But first, we present an existing formalization from Tsandilas [108] regarding classification
of proposals into signs and exemplify current practices employed to classify gestures as signs.

2.3.1 Previous Formalization of the Classification Step. Tsandilas [108] looks at the classifica-
tion step of a gesture elicitation study from the perspective of “a functionC that takes as input a set
of gesture descriptions {дi j } and produces a set of sign assignments {дi j → σk | k = 1 . . .q}, such that
each gesture description дi j is assigned a sign σk that belongs to a sign vocabulary of size q” (p. 18:4).
This formulation is useful as it represents the starting point toward a mathematical formalization
of the classification step. However, since no other details are provided in [108], this formulation re-
mains too general and, thus, unclear in terms of how the classification step should be implemented.
For example, Tsandilas’ function C could be implemented in the context of either supervised or

unsupervised classification, the twomain paradigms of pattern recognition [130]. In the former case,
proposals are classified based on an existing set of signs, an approach that resembles how inter-
rater reliability studies are conducted, where participants (called raters) select categories from a
predefined list [21, 34]. This approach to implementing function C matches very well the medical
doctors example provided by Tsandilas [108, p. 18:9] while, overall, the influence of the practice of
inter-rater reliability studies is prominent in Tsandilas’ approach to gesture elicitation. Admittedly,
the set of signs does not exist prior to the elicitation study, but instead is constructed during the
classification step, i.e., if the proposal does not match any of the existing signs, the set is expanded
with a new sign. (This aspect is also true in inter-rater reliability studies, because the set of codes
that are generated, i.e., the codebook, is usually built inductively from the text of interviews or ob-
servations obtained. In the popular grounded theory approach [104], for example, the open coding
phase generates codes from the data itself.) This type of supervised approach was implemented
before for end-user elicitation, for instance, in a study by Mauney et al. [73], who described their
classification procedure of gestures into signs as follows: “To promote consistency, the moderators
created an online gesture glossary that contained pictures and textual descriptions of unique gestures.
If a participant made a gesture that was in the glossary, the moderator simply referenced it. If a par-
ticipant made a unique gesture that was not yet in the glossary, the moderator created a new entry,
thereby making that new gesture available to all subsequent moderators to reference” (p. 4019). Ac-
cording to this procedure, a set of signs is already available to compare against, which makes the
classification process supervised [130].

The second approach is to look at the functionC as a clustering procedure, where all the elicited
proposals are grouped into classes of similar types, an option that is equally permitted by Tsandilas’
formalization of the classification step: “In most cases, however, sign vocabularies are open-ended,
i.e., they are not known or fixed in advance. Instead, they are defined indirectly through an identity or
a similarity measure that determines whether any two gestures correspond to the same or two different
signs” [108, p. 18:5]. Although not stated explicitly, this quote suggests a clustering procedure.
There are important differences between the two possible approaches permitted by the function

C and, unfortunately, Tsandilas [108] does not continue his formalization to clarify them. Although
credit is due for starting this formalization process, Tsandilas leaves unresolved a state of uncer-
tainty that existed well before him. For example, when introducing the guessability method, Wob-
brock et al. [140] described the classification step as follows: “symbols are tested for equality and
grouped [...] After grouping, the different referents within each group are identified and the number
of referring symbols counted,” remarking that “it is essential for conflict resolution [...] that captured
symbols be testable for equality. Testing equality may be trivial, as in the case of keyword symbols,
or more complex, as in the case of (x, y) point traces for unistrokes. For more complex symbols, de-
signers may already have software to interpret them. Human judgment can also determine equality
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among, for example, sketches of icons” (p. 1870). This description is general and essentially leaves the
implementation of the classification step to designers. Four years later, in the first hand-gesture
elicitation study, Wobbrock et al. [141] again described the classification step at a general level:
“After all 20 participants had provided gestures for each referent for one and two hands, we grouped
the gestures within each referent such that each group held identical gestures” (p. 1087). One of the
first gesture elicitation studies that explicitly stated a clustering approach was Ruiz et al.’s [93]:
“For each participant, a transcript of the recorded video was created to extract individual quotes and
classify and label each motion gesture designed by the participant. The quotes were then clustered to
identify common themes using a bottom-up, inductive analysis approach” (p. 199). Soon after, the
GECKo tool [6], originally introduced to quantify user consistency in stroke-gesture articulation
on touchscreens, implemented an automated hierarchical clustering procedure to identify similar
gesture articulations and compute agreement (or consistency) rates.
This history shows that clarifications are needed to aid users of the method in the classification

step.We argue that both the supervised and unsupervised approaches are useful to understand elic-
itation data. To this end, we draw inspiration from the 8-stage iterative approach to data analysis
from pattern recognition [130, pp. 3–4], from which we adopt the following stages: (1) formulation
of the problem, (2) data collection, (3) initial examination of the data to get a feel for the structure,
(4) clustering, (5) discrimination, and (6) assessment of results and interpretation. Our operational
model from Figure 1 addresses stages 1 and 2, and visualizations of the proposals implements
stage 3. Next, we provide the necessary mathematical formalism to implement stages 4–6.

2.3.2 Formalization of the Classification Step. Let P be the set of all possible proposals for ref-
erent r . Let δ be a dissimilarity function defined over the Cartesian product P × P with values
in R+.4 Higher values of δ indicate proposals that are less similar. For example, δ may be the Dy-
namic Time Warping (DTW) function employed in many application domains [54, 79, 106] or
the result of the experimenter’s judgment on whether two proposals can be assigned the same
sign [141]. Note that we do not require any special properties of δ other than non-negativity, i.e.,
δ (x ,y) ≥ 0 for all x ,y from P. Functions δ that respect symmetry, i.e., δ (x ,y) = δ (y,x ), and the
identity of indiscernibles, δ (x ,x ) = 0 for all x ∈ P, are referred to as dissimilarity coefficients in
the pattern recognition literature [130, p. 419]. Furthermore, dissimilarity coefficients that satisfy
the triangle inequality, i.e., δ (x ,y) ≤ δ (x , z) + δ (y, z) for all x ,y, z from P, are called distances
or metrics [130, p. 419]. For example, the Euclidean distance is a metric, but the DTW function,
popular for gesture classification [106, 143], is not [54]. A special class of metrics, called ultramet-
rics, satisfy the stronger ultrametric inequality δ (x ,y) ≤ max (δ (x , z),δ (y, z)) [130, p. 363]. It is
important not to confound dissimilarities with distances because they imply different properties
of the computations they perform; for example, some clustering techniques, such as hierarchical
methods, employ ultrametric transformations of the dissimilarity values in order to compute the
clustering partition [130, p. 363]. This brief overview of dissimilarities and distances/metrics is
useful to appreciate our few requirements on the properties of δ ’s, which makes our formalization
of the classification step very general and encompassing of a variety of ways to implement step 5
from Figure 1.
Following the dissimilarity–consensus approach [114], we consider the following rule to decide

whether two proposals pi and pj , elicited from two participants Pi and Pj , are similar with respect
to the dissimilarity function δ :

pi α pj ⇔ δ (pi ,pj ) ≤ ϵ, (1)

4Note that our formalism is general and applies to any domain of investigation/elicitation, not just gesture input. However,

gesture elicitation [124] has been the most popular application of the end-user elicitation method to date in HCI.
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where ϵ is a positive value representing the tolerance at or below which two proposals are consid-
ered sufficiently similar to be assigned the same sign, and symbol α denotes the agreement relation.
For example, δ can be the DTW function as in [114] and ϵ chosen in physical units, such as all
whole-body movement for which the difference in the tracked points on the torso, legs, and arms
is cumulatively less than 0.5meters is considered equivalent. Or, δ can be defined as the number
of properties for which two proposals are different, e.g., type of kinematic impulse, dimension, or
complexity label for motion gestures [93], and ϵ set to 1. We use �α to denote the situation when
two proposals are not in agreement, i.e., pi �α pj . Our notations for elicited proposals follow the
original formalization from Wobbrock et al. [140], according to which proposals are denoted by
lowercase letters, e.g., pi represents the ith proposal collected for some referent during the study.
Also, we consider that each participant provides just one proposal for any given referent, and we
denote participants with uppercase letters, e.g., proposal pi comes from participant Pi .

5 Thus, the
cardinality of the set of elicited proposals {pi } for some referent is equal to the number of par-
ticipants from the study. Although specific instances of end-user elicitation studies have elicited
multiple proposals from the same participant [75, 114], we restrict our discussion to one proposal
per participant only, according to the original method introduced by Wobbrock et al. [140, 141].
This premise is particularly convenient since it presents the advantage that all proposals for a
given referent are independent of each other, ensuring the independent and identically distributed
trials assumption required by the statistical tests that we evaluate in Section 9.
On first look, it may appear that the use of the δ formalism restricts the application of Equa-

tion (1) to numerical measures only. However, δ ’s are defined in our approach with minimal con-
straints, i.e., all that our formalism requires from δ ’s is their non-negativity. Therefore, δ ’s can be
dissimilarity coefficients, distances, or even ultrametrics that have explicit mathematical formu-
lations, such as the Euclidean distance between two points in space, but they can also represent
any judgment about the dissimilarity of the two proposals being compared, made by a human in
a way that is tacit and, perhaps, difficult to explain. Note that, in order to evaluate Equation (1),
only two values are needed: how dissimilar the two objects are and how much dissimilarity can be
tolerated. The explicit part uses formulas for δ . The implicit part, where a human judges dissimilar-
ity, embeds the formalism. For example, in their elicitation study of ear-based interactions, Chen
et al. [18] noted: “we simply separated gestures that used two or more fingers from those that used
only one finger [...] But there was one exception, when the gesture was a metaphor (e.g., using two
fingers to perform the scissor), not abstractly used, we would not follow the aforementioned criteria.
Loosening the restriction from ‘gestures must be identical within each group’ to ‘gestures must be sim-
ilar within each group’ made this classification better represent the thought underlying the gestures”
(p. 186:10). The δ , operating at an implicit level in Chen et al. [18], is clearly observable.

Equation (1) enables us to define the ϵ-Agreement Rate (ARϵ ) given a set of proposals
{
pi
}
for

referent r :

ARϵ (r ) =

∑
i

∑
j�i [δ (pi ,pj ) ≤ ϵ]

N (N − 1) × 100%, (2)

where N is the number of participants or proposals, pi and pj are the proposals of participants Pi
and Pj (1 ≤ i, j ≤ N ), and [·] represents Kronecker’s function [50, p. 240] that evaluates to 1 when
the inner expression is true and to 0 when false.
At this point, it is beneficial to see how Equations (1) and (2) connect to clustering techniques in

order to formalize step 5 from Figure 1, where the set of descriptions of the participants’ proposals

5Note that in Wobbrock et al. [140], Pi was used to denote the ith subset of identical proposals for some referent. Since we

refer frequently to participants in this article, and we also consider that just one proposal is elicited from each participant,

it is more convenient for our purpose to use notation Pi to denote the participant from which proposal pi was elicited.
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is partitioned so that representative signs emerge, i.e., the consensus set. There are many methods
to implement clustering. In their textbook on statistical pattern recognition, Webb [130] discusses
hierarchical methods (e.g., the single-link or the complete-link method), mixture models (e.g., max-
imum likelihood procedures), and sum-of-squares methods (e.g., k-means) as common choices for
clustering data. In the following, we focus on hierarchical clustering methods since the other ap-
proaches, with some exceptions [42], require the number of clusters to be specified in advance
as a general rule, which is less suitable for end-user elicitation studies for which the number of
clusters (corresponding to signs) is to be determined. Hierarchical methods construct hierarchical
trees, called dendrograms, which represent nested set of partitions, in which individual clusters
merge or are divided iteratively, according to the bottom-up or top-down principles. For example,
the single-link hierarchical method [130, p. 364] puts two objects into the same cluster if there ex-
ists a chain of intermediate signs linking them such that all the intermediate pairwise comparisons
are less than a threshold; the complete-link method [130, p. 367] considers the maximum dissimi-
larity between all the objects from the two clusters; and the general agglomerative algorithm [130,
p. 368] produces dendrograms by employing various cluster dissimilarities, e.g., based on centroids
or medians. However, no matter how the dissimilarity between two clusters that merge during the
construction of the dendrogram is defined, a transformation of the dissimilarities δ (pi ,pj ) to a new
set of values that satisfy the ultrametric inequality is performed [130, p. 363], and the dendrogram
is sectioned with a threshold to obtain a specific partition of clusters: the result of the clustering.
In the following, we show the connection between Equations (1) and (2) and complete-link clus-

tering, a method that concentrates on the internal cohesion of the clusters [130, p. 367] producing
homogeneous, compact clusters [130, p. 370].6 We illustrate this connection with an example. Say
that a study has elicited five proposals P = {p1,p2,p3,p4,p5}, for which the dissimilarity values
δ are illustrated in Figure 2, left. Note than δ is not a metric since the triangle inequality is not
met.7 If we choose ϵ = 25, then the agreement rate is 4/(5·4) = .20; if we choose ϵ = 65, then the
agreement rate is 12/(5·4) = .60. We now compute the dendrogram for this data (Figure 2, right)
as follows: at step one, proposals p1 and p2 are identified to be the closest in terms of dissimilarity
(δ (p1,p2) = 10) so they are grouped to form the first cluster; then, proposals p3 and p4 form the
second cluster since they have the smallest dissimilarity (20); at step three, clusters

{
p1,p2

}
and{

p3,p4
}
merge with a dissimilarity of 60 (the maximum dissimilarity between their members ac-

cording to the complete-link method); and, finally, proposal p5 joins at δ = 100. If we section the
dendrogram from Figure 2 at ϵ = 25, we obtain the partition {{p1,p2}, {p3,p4}, {p5}}; if we section
at ϵ = 65, we obtain {{p1,p2,p3,p4}, {p5}}. Thus, the decision that researchers or practitioners need
to make with hierarchical clustering (i.e., where to cut the dendrogram) is equivalent to using a
tolerance level, as in Equation (1), to evaluate how dissimilar two objects are. More importantly, for
each cluster produced with the complete-link method, the dissimilarities between the proposals
falling into that cluster is always less than the chosen tolerance, e.g., when ϵ = 25, δ (p1,p2) ≤ 25
and δ (p3,p4) ≤ 25; and, when ϵ = 65, δ (p1,p2) ≤ 65, δ (p1,p3) ≤ 65, δ (p1,p4) ≤ 65, δ (p2,p3) ≤ 65,
δ (p2,p4) ≤ 65, and δ (p3,p4) ≤ 65; see the dissimilarity matrix from Figure 2, left. In general, in
each cluster of the partition delivered by the complete-link method, one that is recommended for
the internal cohesion and homogeneous structure of the resulting clusters [13, 130], we will have
proposals pi for which the dissimilarity δ with respect to all the other proposals from the same

6Other methods, such as single-link clustering, are subject to the chaining effect, generating long straggly groups, while

the centroid and median methods may lead to inversions, making the dendrogram difficult to interpret, as well as to

multiple solutions when ties are present in the dissimilarities; see Webb [130, pp. 370–371]. Other authors [13, p. 420] also

give preference to the complete-link method (as well as Ward’s method that minimizes the total within-cluster variance)

compared to single-link, centroid, and average link clustering.
7For example, δ (p2, p4) = 60, δ (p1, p2) = 10, δ (p1, p4) = 40.
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Fig. 2. An example with five proposals illustrating the connection between Equations (1) and (2) and the
complete-link clustering method [130]. On the left, the dissimilarity matrix is shown. On the right, the den-
drogram computed by the complete-link method.

cluster is less than ϵ , i.e., those proposals will be considered in agreement according to the partition
delivered by complete-link clustering, which is exactly what our Equation (1) defines. Therefore,
Equation (1), which specifies agreement as pairwise comparisons between individual proposals, is ver-
ified by the result of the complete-link clustering method, while computing agreement based on the
clustering partition leads to the same result as when Equation (2) is employed.
At this point, it is important to anticipate an important result: Equation (2) matches the con-

sensus rate measure of Vatavu [114] and reduces to the AR measure of agreement of Vatavu and
Wobbrock [120] or, respectively, to the AgreementS formulation of Findlater et al. [32] of the A
score [140, 141], once the [·] expressions have been evaluated to 0 or 1. In Sections 6 and 7 of this
article, we will come back to these measures of agreement to show how they relate to each other
in order to clarify research question [RQ2].
This formalization of calculating agreement using a dissimilarity function alsomakes sense from

the perspective of real-world application of end-user elicitation studies including gesture recog-
nition, where practitioners wish to implement an actual user interface or interactive system that
would recognize the types of proposals (e.g., gestures, voice commands) revealed by the end-user
elicitation study in the first place. In that case, a recognizer is needed, which implies the implemen-
tation of a dissimilarity function δ , e.g., the Euclidean distance of the $1 recognizer [143] or the
point-cloud distance of the $P recognizer [116] in the case of stroke-gesture input, and possibly a
threshold ϵ to implement a rejection rule [25]. From this perspective, if the dissimilarity function
implemented by the target application cannot ignore the differences between two proposals pi and
pj , i.e., δ (pi ,pj ) > ϵ , then it is reasonable to consider that the two proposals should not be declared
in agreement during the elicitation stage, i.e., our Equations (1) and (2). For example, after compil-
ing the consensus gesture set, Vogiatzidakis and Koutsabasis [129] found that implementing it in
an actual system led to conflicts in gesture recognition since the Kinect-based recognizer could not
distinguish between some of the gestures. As a result, the authors refined the consensus gesture
set by changing some gestures and simplifying others to match the capabilities of the recognition
technology used to implement those gesture commands. This example is revelatory for the need
to incorporate a dissimilarity function, used for both recognition and clustering proposals into
signs, into the formalism of elicitation studies. Unfortunately, only a few papers (of more than
200 elicitation studies published to date [124]) have followed the results of their studies into an
actual implementation of a gesture recognizer or actual system [53, 61, 83, 105, 144]. This problem
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has been noted before, such as by Nebeling et al. [82], but unfortunately to no avail: “most stud-
ies thoroughly adopt Wobbrock et al.’s [..] methodology in order to obtain a user-defined interaction
set, but without considering implementation issues” [82, p. 15]. The sad result is that the literature
on gesture elicitation has been disconnected from that on gesture recognition. Our formalization
of the classification step using dissimilarity functions (Equations (1) and (2)) sets the foundation
for addressing research questions [RQ1]–[RQ2] listed at the outset of our article. It should also
help reconnect the two sides (elicitation study vs. implementation of the study results) and encour-
age a practice of evaluation of gesture recognizers and system implementation following end-user
elicitation.

2.3.3 End-User Elicitation as a Scientific Method That Tells Us about People. So far, the scientific
literature has primarily reported applications of the end-user elicitation method to compile sets of
signs having consensus to inform “design for guessability” [140] for interactive systems, e.g., what
users’ most common preferences are for gestures to effect specific tasks on touchscreens [141],
smartphones [93], interactive television [111], deformable displays [107], smart rings [36], ear-
pieces [18], and so on; see Villarreal et al. [124] for an overview of gesture elicitation studies.
However, a less common pursuit, yet nevertheless key result, of an end-user elicitation study is
the empirical data that enables new findings and development of knowledge for understanding
people, i.e., what we call traits in Figure 1, step 6. For instance, the trait of preferring symmetric
signs for dichotomous referents [111, 141], or the trait of people who are blind to prefer edge-
based gestures as well as gestures that involve tapping on a virtual keyboard for touchscreen
input [53].

Several studies have employed the end-user elicitation method to unveil, quantify, and analyze
differences in the mental models and/or the proposals elicited from various user groups and even
for individual users. For example, Malu et al. [70] conducted a gesture elicitation study to under-
stand accessible smartwatch gestures for people with upper body motor impairments. They noted:
“Unlike the goal of Wobbrock et al.’s original study method [141], we did not compute agreement, as
our goal was not to create a highly guessable gesture set but to characterize the range of gestures
created and to compare preferences for touchscreen and non-touchscreen gestures” (p. 488:7). The au-
thors characterized the gestures proposed by the participants with motor impairments in terms of
gesture nature and rationale, gesture properties (e.g., number of fingers for gesture articulation),
and locations chosen on the smartwatch to articulate those gestures. The key observation here,
which highlights step 6 in our model (Figure 1) as independent of the identification of signs, is that
Malu et al. were not driven in their scientific investigation by the goal of compiling a consensus
set of smartwatch gestures, but by their desire to unveil the preferences for accessible gesture in-
put on smartwatches, and to document and characterize those preferences in various ways. In this
context, the end-user elicitation method was employed to conduct science that informs us about
people and, in particular, about the traits of gestures that people with motor impairments would
like to use.
The end-user elicitation method is therefore a scientific tool to conduct science that tells us

about people and is not just a means to arrive at a consensus set of signs [108]. Another practical
example is Kane et al. [53], who conducted a gesture elicitation study to analyze and report the
differences between touchscreen gestures proposed by blind and sighted participants, which the
authors characterized in terms of the number of strokes, on-screen location, nature, ratings of eas-
iness, and other measures, but were not looking for a consensus set of gestures. Also, Vatavu [114]
characterized whole-body gestures naturally articulated by small children, between 3 and 6 years
old. At that age, children’s motor and cognitive skills are still in development and a consensus
gesture set is hardly the goal for such users. Instead, elicitation serves the goal of understanding
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human movement and gesture production, e.g., the findings from [114] showed that consensus in
whole-body gesture articulation increases with age. Other examples of end-user elicitation studies
further show that a consensus set of signs is not the only or ultimate goal of applying the elicitation
method. For instance, in their study about how user-defined gestures for flatscreens generalize to
spherical displays, including both adults and children, Soni et al. [101] noted: “Our first analysis
goal was to understand the characteristics of the participants’ gestures for spherical displays, so we
analyzed all the gestures for our full set of 16 referents ... Our second goal was to understand how
user-defined spherical display gestures differ from those identified for tabletop,” while a consensus
set of gestures was not reported. We refer interested readers to other examples as well: Rädle
et al.’s [90] gesture elicitation study to understand preferences for cross-device gestures, where
the focus was on the traits of proposed interactions and their labeling as synchronous, spatially
aware, or spatially agnostic; Lee et al.’s [62] exploration of hand-to-face gestures, where the au-
thors saw the diversity of elicited proposals as more suitable to their goal than high agreement
scores for consensus sets; or Pham et al.’s [86] use of the end-user elicitation method to character-
ize differences in themes underlying participants’ gestures proposed to interact with holograms
in Mixed Reality according to the scale of the projected hologram, a scientific approach that was
deemed more insightful than coding the observed gestures into signs.
These examples demonstrate an interest in the community toward using end-user elicitation as

a means to understand people rather than as a tool to arrive at a consensus set of signs. This charac-
terization feature of end-user elicitation has not been explicitly acknowledged in the community
so far. One reason is probably the strict focus on eliciting gestures [108], with the practical goal of
controlling systems, whereas gesture elicitation represents just one particular instance of general
end-user elicitation [120, 121]. Also, steps 5 and 6 from our Figure 1, classification and characteri-
zation, are independent, but they need not be. For example, the set of signs resulted from classifi-
cation at step 5 can represent the input for characterization at step 6 instead of characterizing the
descriptions themselves.

3 THE NON-TRANSITIVE NATURE OF AGREEMENT

An interesting implication that results from formalizing the classification step using a dissimilarity
function relates to the transitivity of agreement. Previous work [108, 120, 121] assumed agreement
to be transitive and operated with this property, which means that if the proposal pi elicited from
participant Pi is in agreementwith the proposalpj elicited fromparticipant Pj for referent r , and the
proposal of Pj is in agreement with proposal pk of participant Pk , then it must be that participants
Pi and Pk also agree over the same referent, i.e., the following implication is always true:

(pi α pj ) ∧ (pj α pk ) ⇒ pi α pk . (3)

For example, Vatavu andWobbrock [121] noted that “transitivity of agreement means that the prob-
ability of observations that may turn out to be dependent on previous ones is 1.00” (p. 3393) and
Tsandilas [108] relied on this property to criticize the independence assumptions of theVrd statis-
tic of Vatavu and Wobbrock [120]: “this solution is problematic because agreement pairs are highly
interdependent, which is against the independence assumption of Cochran’s Q test [...] if participant
Pa agrees both with participant Pb and participant Pc , we can safely deduce that participants Pb and
Pc agree with each other. Similarly, if Pa agrees with participant Pb but disagrees with participant Pc ,
then we can deduce that participants Pb and Pc disagree” [108, p. 18:25].
However, we are about to show that the transitivity of agreement is not a valid assumption for

end-user elicitation studies. Let us consider the example of voice commands elicited for controlling
a remote display [75] and the Levenshtein distance [63], popular for measuring the difference
between text strings [81]. This distance will compute a score of 4 for the commands “turn TV on”
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Fig. 3. A simple dissimilarity function for multi-touch gestures, inspired by the Finger-Count [8] technique,
is the difference in the number of touches, e.g., δ (p1, p2) = 2, δ (p1,p3) = 3, and δ (p2,p3) = 1 for the hand
poses illustrated in this figure. However, for a tolerance of 2, transitivity is not met.

and “turn on TV”; 5 for “turn TV on” and “TV on”; and 7 for “turn on TV” and “TV on.”8 If we set
ϵ = 8, then all these commands are in agreement according to Equation (1). However, if we choose
ϵ anywhere in the real interval [5, 7), transitivity is no longer met. Consider another example,
where hand poses are used to select options on a multitouch display using a finger-count menu
technique [8], and proposals elicited from participants include a two, four, and five finger tap to
effect some referent as illustrated in Figure 3. A simple dissimilarity function could compare two
hand poses by the difference in the number of touches simultaneously detected. If the tolerance ϵ
is 2, transitivity is not met. To force even this simple dissimilarity function to behave transitively
when used to define a relation, one must ignore information, such as the number of fingers in
this example, as in the case of Chen et al. [18], who separated gestures that used two or more
fingers from those that used only one finger. To verify the invalidity of the transitivity property
assumed by prior work [108, 120, 121] for the agreement relation in end-user elicitation studies,
we conducted three experiments using 19 publicly available gesture datasets.

3.1 Experiment #1: Observing the Non-Transitive Nature of the Agreement Relation

We employed the gesture elicitation dataset of Vatavu [114] consisting of 1,312 gestures acquired
with the Microsoft Kinect sensor from 30 participants in response to 15 referents. To our best
knowledge, this dataset is the only publicly available elicitation data with gestures collected in
a numerical representation, e.g., in this case, as a series of 3-D points representing joints on the
human body.9 These gestures represent body movements produced by small children, between 3
and 6 years old, in response to short verbal commands delivered by a toy teddy bear, such as “fly
like a bird.” While the goal of this study was not to compile a consensus set of signs (step 5 in our
model from Figure 1), the gestures that were elicited were compared for agreement in order to
report how agreement between children’s gestures increases with age, as children develop their
motor and cognitive skills (e.g., step 6 from Figure 1). Furthermore, this dataset is likely to be free
of legacy bias [75, 108] due to the young age of the participants.
We computed two measures of a non-transitivity rate (NTR):

(1) NTR1 is the rate of non-transitive triples out of all the triples of N participants. For example,
if 552 triples (pi ,pj ,pk ) do not exhibit transitivity (i.e., pi α pj and pj α pk , but pi �α pk ) and
N = 30, then NTR1 is 552/(

30
3 ) = 552/4060 = 13.6%.

(2) NTR2 is the rate of non-transitive triples of all the triples (pi ,pj ,pk ) for which the transitivity
premises are satisfied, i.e., there are at least two agreement relations in the triple (pi ,pj ,pk ).
Resuming the previous example, assume that the number of triples with at least two agree-
ment relations is 1024. In this case, NTR2 evaluates to 552/1024 = 53.9%.

8See an online implementation of the Levenshtein distance at https://planetcalc.com/1721 that produces the numerical

results that we use in our example.
9Other papers announced public release of the datasets they elicited, such as [82], but only software was finally released;

see the source code of KinectBrowser at https://github.com/michaelnebeling/kinectbrowser.
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Fig. 4. Agreement rate AR (blue color) and non-transitivity rates NTR1 (black) and NTR2 (gray) function of
the tolerance ϵ for the children gesture elicitation dataset [114].

We use two measures because assessing non-transitivity can be done in various ways. NTR1 com-
putes values that are normalized with respect to all the possible triples of participants and, thus,
it represents an intuitive measure to compare across δ and ϵ ’s. However, since its denominator
considers all triples, including those for which the transitivity premises are not met (i.e., less than
two agreement relations observed in a triple), the extent of non-transitivity is underestimated, es-
pecially for studies with a large number of participants N . To correct for this aspect, NTR2 uses a
denominator that considers only those triples of participants that satisfy the premises for transi-
tivity to occur, but results are now overestimated when there is little transitivity, such as when ϵ
is small. To characterize thoroughly the phenomenon of non-transitivity in agreement formation,
we report both measures for now, and later we focus on the peak value of NTR1 as a compromise
between NTR1 and NTR2.
Figure 4 shows the ARϵ growth curves (in blue) as a function of ϵ computed using Equation (2)

and the normalized DTW dissimilarity for whole-body gestures from Vatavu [114]. The two NTR
measures are shown superimposed: NTR1 (black curve) increases with ϵ up to some point, after
which it decreases to 0%, and NTR2 (gray curve) decreases from 100% to 0% as the tolerance ϵ
increases. These results show that when the criterion used to assess the similarity of gestures is
too conservative (i.e., ϵ is small), few proposals will be in agreement according to Equation (1), and
the number of non-transitive triples is large compared to transitive ones, resulting in large values
for NTR2. At the same time, NTR1 will be small. As the tolerance ϵ increases, more proposals
will be evaluated in agreement, creating more transitive triples and, thus, decreasing NTR2 and
increasing NTR1 with respect to all possible triples. When the criterion is too liberal (i.e., ϵ is large),
both NTR measures will approach 0%. Since a compromise will be made in practice between too
conservative and too liberal criteria, we focus in the rest of this article on the peak values of NTR1

as an estimation of the non-transitivity rate. For the gesture elicitation dataset of Vatavu [114], peak
NTR1 varied between 16.2% and 28.6% across all the 15 referents, and was normally distributed
(Shapiro–Wilk’sW = .910, p = .134) with a mean of 20.5% and standard deviation (SD) of 3.5%.
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Fig. 5. Agreement rate AR (blue color) and non-transitivity rates NTR1 (black) and NTR2 (gray) function of
the tolerance ϵ for the memorability gesture elicitation dataset [38, 80].

3.2 Experiment #2: Observing the Non-Transitive Nature of the Agreement Relation

for Nominal Data

The previous experiment employed gestures represented in a computational form delivered by an
actual gesture acquisition device, for which DTW, a popular dissimilarity function for gesture clas-
sification, could be easily applied. However, this has been hardly the norm for end-user elicitation
studies, where researchers have often employed codebooks to represent the elicited proposals from
their analyses [70, 93, 107], proposals that were usually logged as video recordings of their partici-
pants. In the following, we show that nominal data, resulting from codebook-based descriptions of
elicited proposals, present non-transitivity under a variety of dissimilarity measures. To this end,
we employ thememorability dataset10 consisting of 366 gestures collected from 18 participants [80]
that were coded along 12 dimensions [38, p. 28]: localization, number of hands, hand form, addi-
tional hand form, hand pose and path, gesture path, relation to action, relation to workspace, and
gesture nature. For example, according to the localization dimension, a gesture can be “in air,” “on
surface,” or “mixed”; while hand form has the following four categories: “spread,” “flat,” “mixed,”
and “other.” Regarding this dataset, Grijincu et al. [38] noted: “the dataset [is] amenable to classi-
fication algorithms that might be able to provide additional insight into the factors that affect mem-
orability. The starting point is the 43-dimensional feature vector for each gesture, where each value
is binary and represents each of the possible gesture classifications of the taxonomy” [38, p. 30], and
employed machine learning models, such as support vector machines (SVMs), to predict the
memorability of each gesture from its representation as a set of binary features. In the following,
we use the same binary representation for our analysis, where 1 denotes that the gesture has a
given property (e.g., its localization is “on surface”) while 0 denotes that it does not (e.g., its lo-
calization is not “in air”). To evaluate non-transitivity for nominal data coded in a binary form,
we implemented four similarity functions, described in Webb [130, p. 424]: the Simple Matching

Coefficient (SMC), Russel & Rao, Jaccard, and Czekanowski. For example, SMC computes the
number of properties presented by both gestures (e.g., both gestures were performed “in air” and
both gestures were not using the “spread” hand pose), divided by the total number of properties
that are being evaluated. Since these measures are actually similarity measures, we convert them
into dissimilarities by computing their complement to 1, e.g., δ (pi ,pj ) = 1 − SMC (pi ,pj ). For each
dissimilarity function, we computed 366·365 = 133,590 pairwise comparisons by including all 366
gestures from the memorability dataset in our analysis. Figure 5 shows our results with NTR1 in-
creasing to a peak and then decreasing and NTR2 decreasing to zero while ϵ approaches 1 (the
maximum value for all the dissimilarity functions employed for this experiment). Peak NTR1 was
29.2% for this dataset regardless of the dissimilarity measure.

10https://udigesturesdataset.cs.st-andrews.ac.uk/.
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3.3 Experiment #3: Consolidating Observations about the Non-Transitive Nature

of the Agreement Relation

Our previous experiments showed that non-transitivity is present and quite large when evaluating
agreement for elicited gestures. This finding is already sufficient to acknowledge fundamental dif-
ferences between end-user elicitation and inter-rater reliability studies (research question [RQ1.2]),
where transitivity is implicit in the latter and, consequently, to question the validity of adapting
measures of agreement from inter-rater reliability to end-user elicitation [108] (research question
[RQ1.1]). We will return to clarify this aspect below in the article, as we accumulate more empiri-
cal evidence in this regard and build theoretical support. At this point, it is useful to see whether
other types of gestures and dissimilarity functions lead to results similar to those reported in our
first experiment. Unfortunately, we are not aware of other publicly available elicitation data be-
sides [38, 114]. There are, however, several public datasets that were collected for evaluating the
classification accuracy of stroke-gesture recognizers, such as $1 [143], $N [7], HHReco [48], and so
on. To understand more about the non-transitivity of agreement, we decided to use this available
data, which we reinterpreted from an elicitation perspective, as follows.
Let D be a dataset where N participants provided samples for a set of distinct gesture types.

To simulate elicitation for a given referent, we used one sample from each participant and con-
sidered various target AR values from 0% to 100%. For example, assume a target AR of 25%. This

level of agreement can be easily obtained with q = 0.25
1
2 · N of the participants’ proposals in

agreement.11 Thus, we randomly picked gesture samples of the same type for the first q ≤ N
participants, while for the rest we picked different gestures from the dataset. We repeated this
process 100 times for each distinct gesture type (referent); e.g., there were 16 × 100 = 1,600 trials
for the $1 dataset [143]. By adopting this procedure, we look at these gesture collection experi-
ments as gesture elicitation studies, where participants are prompted with instructions regarding
the shape of the gesture to articulate, e.g., an asterisk sign [7], and in some cases how to per-
form the gesture, e.g., faster or slower [143], but what is actually elicited is participants’ specific
ways of articulating gestures. Understanding how different participants (or, the same participant
across trials) choose [6] or are able [16] to articulate gestures is key for informing the design
of gesture recognizers that would prove tolerant to such differences in articulation compared to
the canonical examples from their training sets. In fact, by highlighting “articulation” as the fea-
ture that is elicited in gesture collection experiments, previous work [6, 16] has employed the
agreement rate measures of the end-user elicitation method to analyze consistency in gesture
articulation.
Table 1 reports the peak NTR1 for 18 gesture datasets, comprising a total of 87,316 gestures of

various types12 collected from 447 participants, and using three dissimilarity measures (Euclidean,
DTW, and point-cloud distance) compatible with all of these gesture types [106, 113, 114, 143].
The mean peak NTR1 across all datasets varied between 18.6% and 29.5% (M = 25.2%, SD = 3.4%),
reconfirming our previous results from the first experiment on whole-body gestures.

4 THE PROBLEM OF CHANCE AGREEMENT

Tsandilas [108] argued that agreement measures used in elicitation studies, such as A [140, 141]
and AR [32, 120, 121], were defined without considering agreement occurring by chance and, thus,
their values are artificially large, as they reflect both intrinsic (i.e., true) and chance agreement.

11AR =
q (q−1)
N (N−1) =

0.25
1
2 N (0.25

1
2 N−1)

N (N−1) ≈ 0.25.
122-D unistrokes [119, 143], 2-Dmultistrokes performedwith the stylus [7, 48, 135] and the finger [117, 118], 3-D accelerated

motion of the hand captured using the Wii Remote controller [17, 44, 65], and whole-body Kinect gestures [35, 113, 114].

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 1, Article 5. Publication date: January 2022.



5:20 R.-D. Vatavu and J. O. Wobbrock

Table 1. The Peak Non-Transitivity Rate NTR1 (Mean and Standard Deviation) Evaluated for Various
Dissimilarity Functions, Gesture Datasets, and Gesture Types

�The Hausdorff distance is computed for whole-body gestures as in [114], while the $P point-cloud distance [116] is

computed for stroke-gestures and 3-D motion.
†The actual number of gestures that we employed from this dataset differs slightly from the number reported in [48]

(7,410 gestures) and from the number reported on the HHReco homepage (7,791 gestures) due to conversion issues. The

dataset is available from https://ptolemy.berkeley.edu/projects/embedded/research/hhreco/.
‡The actual number of gestures that we employed from this dataset differs from the number reported in [135] (23,641

gestures) and from the one reported on the dataset homepage (26,163 gestures), because only a part of the dataset was

available to us. The dataset used to be available at http://www.unipen.org/.
§Actually, 8 participants provided gestures during 7 days over a period of about 3 weeks [65]; for this dataset, we

considered them as 56 different participants.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 1, Article 5. Publication date: January 2022.

https://ptolemy.berkeley.edu/projects/embedded/research/hhreco/
http://www.unipen.org/


Clarifying Agreement Calculations and Analysis for End-User Elicitation Studies 5:21

The concept of chance agreement comes from inter-rater reliability studies [21, 22, 34, 40, 58, 59],
which have been traditionally implemented using nominal data types and raters assigning subjects
to predefined categories. For example, physicians may assign patients suffering from spinal pain
into the following three categories: “derangement,” “dysfunction,” and “postural.” For such tasks,
and especially when the number of categories is small, Cohen [21] argued that a certain amount of
agreement is to be expected by chance, i.e., if two raters are unclear about the category to choose,
but they still need to make a choice, chance agreement can occur because of their limited options
and potential bias for or against specific categories. Cohen evaluated the amount of chance agree-
ment (pe ) by using the joint probabilities of the marginal proportions [21], which he subtracted
from the percent agreement (pa ):

κ =
pa − pe
1 − pe , (4)

where κ is Cohen’s kappa coefficient of agreement [21]. Other authors proposed other ways to
estimate pe , while using the same form of Equation (4), which resulted in various coefficients of
agreement, such as Fleiss’ κF [34]; Brennan and Prediger’s β family of coefficients [15], including
κ, κn , and κb ; Scott’s π [98]; Holley and Guilford’sG-Index [45]; Krippendorff’s α [58]; or Gwet’s
AC1 [39]. The percent agreement pa is computed using the same formula as the AR measure [32,
120] employed in elicitation studies by dividing the number of pairs of participants in agreement by
the maximum number of pairs that could be in agreement; see Fleiss [34, p. 379]. Although there
seems to be general consensus13 that pa needs to be corrected for inter-rater reliability studies,
how to define and especially how to calculate chance agreement pe is not a trivial problem and
has generated considerable debate [40].
Tsandilas’ [108] approach to end-user elicitation is heavily influenced by the practice of inter-

rater reliability [21, 34, 40, 59], where raters select options from a predefined list of (usually) nom-
inal categories in order to assign statements made by subjects (e.g., in interviews) or observations
about subjects (e.g., during ethnography) to those categories. Tsandilas capitalizes on the concept
of “bias” [76] to model chance agreement with certain probability distribution functions. However,
what Tsandilas most likely proves with his simulations about distributions that model bias (the
two experiments from pages 18:11 and 18:13) is that if one removes from a measure of central
tendency, such as AR,14 its expected value, the result will be near zero and, therefore, the new
measure is not biased. However, the assumption is that the original measure is biased in the first
place and, therefore, removing its expected value based on the probability distribution that models
this bias cannot but confirm this assumption. Therefore, bias exists where it is expected to exist.
The question, however, is whether this expected level of agreement should be removed from the
calculation of agreement measures. In the following, we provide arguments that this should not
happen for end-user elicitation studies. This aspect becomes clear when we start to examine the
differences between end-user elicitation and inter-rater reliability studies and conclude that the
two are fundamentally different in their assumptions (research question [RQ1.2]) and, thus, are in
need of specificmodels, methods, measures, and tools for the calculation and analysis of agreement.
We start highlighting these differences next.

4.1 Inter-Rater Reliability vs. End-User Elicitation Studies

Gwet [40] provides a detailed overview of inter-rater reliability studies and the agreement coef-
ficients employed in those studies to quantify agreement between raters. Among many impor-
tant aspects addressed in Gwet’s critical survey, the difficulty of precisely defining the notions of

13Note, however, that some authors [109] consider the need to perform chance correction unconvincing.
14As we are about to show in Section 7.2, AR can be interpreted as a mean.
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“inter-rater reliability” and “agreement” stands out because of the many forms in which inter-rater
reliability studies have been conducted in the scientific literature [40, pp. 4–21]. Nonetheless, simi-
larities exist between inter-rater reliability and elicitation, especially regarding the units involved,
as remarked by Tsandilas [108]: raters are end-users, subjects are referents, and categories are
signs. At a first look, inter-rater reliability and elicitation studies seem equivalent or at least sim-
ilar. However, there are important differences between them that require calculating agreement
and chance agreement in end-user elicitation very carefully.
One important difference is that inter-rater reliability studies operate with a fixed list of cate-

gories defined before the study. However, the list of categories (or signs) is one outcome of end-user
elicitation studies (according to step 6 from our model in Figure 1) and, thus, is known only after
the end-user elicitation study has completed. As Tsandilas [108] correctly remarks, “this open-
endedness does not affect how Fleiss’ κF coefficient is computed, because the coefficient requires no
prior knowledge or assumption about the number of possible signs q. Equations [..] only depend on
the number of observed signs q_ and their frequencies” (p. 18:12). This observation regarding the
calculation of κF (and κ, for that matter) is correct, but the quantification of the probability of
chance agreement (pe in Equation (4)) is based on the assumptions that accompany these coeffi-
cients, i.e., that a predefined list of categories exists, and that “the categories of the nominal scale
are independent, mutually exclusive, and exhaustive” ; see Cohen [21, p. 38] regarding κ. These as-
sumptions can be verified only when the categories are known, which is only after an elicitation
study. From the perspective of the study participants, when participants make proposals (steps 2
and 3 in Figure 1), they have no idea about the final list of categories or signs; therefore, they are
not picking categories, but rather making proposals without knowing the final categories that will
emerge. From the perspective of the experimenter, when classification starts (step 6 in Figure 1),
categories or signs are again unknown and emerge as the classification progresses. In this con-
text, it is not possible to determine whether the categories are independent, mutually exclusive,
or exhaustive [21] before the study, neither by the participants nor the experimenters. Therefore,
any verification of these assumptions to justify adoption of κ or related coefficients that correct
for chance agreement when analyzing data in end-user elicitation studies can take place only a
posteriori and, consequently, the probability of chance agreement (pe ) is based on categories that
emerge instead of categories that are known a priori, which makes the notion of chance agreement
dependent on categories that do not exist when measurements about agreement are collected. We be-
lieve this perspective makes sense, but we do not wish for it to devolve into the same never-ending
debate as whether and how to estimate pe from Equation (4) in inter-rater reliability studies [40].
Instead, we want to make practitioners aware that, in order to be affected by chance agreement,
the conditions for chance agreement to occur, i.e., the categories and assumptions about those
categories [21], must be fulfilled a priori to the study. In most elicitation studies, they are not.

Another important difference between inter-rater reliability and end-user elicitation studies is
how agreement is defined. Having a fixed set of predefined categories on a nominal scale [21, 34]
makes the transitivity of agreement a consequence of agreement formation in inter-rater reliability
studies, whereas we showed that transitivity should not be assumed for end-user elicitation. For
example, Cohen’s κ and Fleiss’ κF (also employed by Tsandilas [108] to analyze elicitation data by
correcting for chance agreement) assume that categories are defined on a nominal scale. When the
scale is ordinal, Cohen’s weighted κ [22] as well as other measures was proposed to account for
situations of partial agreement when selected categories are close on the ordinal scale. However,
when the scale is interval or ratio, the recommendation is not to use these indices (unless the rat-
ings are predetermined before the experiment; see Gwet [40, p. 24]), but rather to report intraclass
correlations. In fact, Gwet [40] notes that for interval or ratio data, “the very notion of agreement
must be revised. Given the large number of different values a score may take, the likelihood of two
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raters assigning the exact same score to a subject is slim” (p. 17) and “with agreement no longer refer-
ring to an exact match, the notions of chance agreement and percent agreement evaporate” (p. 186).
We illustrate this insight with an example adapted from Fleiss [34, p. 379]. Say that three psychi-

atrists, P1 to P3, diagnose patients into one of five categories: “depression,” “personality disorder,”
“schizophrenia,” “neurosis,” and “other.” If P1 and P2 both pick “personality disorder” for a given
patient, then we say that they are in agreement. If P3 picks the same category, then all pairs of
psychiatrists are in agreement; if P3 assigns the patient to another category, then P3 disagrees
with both P1 and P2. Whenever the list of categories is fixed and their scale of measurement is nomi-
nal, the transitivity of agreement is a mathematical consequence. Put otherwise, while Cohen’s [21]
and Fleiss’ [34] approaches to agreement calculation operate based on the equivalence relation “is
equal to” between categories, end-user elicitation studies implement the tolerance relation “is sim-
ilar to” or “is approximately equal to,” as summarized by Equation (1). The result is a fundamental
difference in how chance agreement can be regarded.
What would happen if one still used κ or κF when the agreement relation was non-transitive,

such as when P1 and P2 agree, P1 and P3 agree, but P2 does not agree with P3? In that case,
Cohen’s [21] assumptions of independent and mutually exclusive categories are note met because
of the conflict generated by P2 and P3. Or, in an attempt to salvage those two assumptions, one
could consider that the category on which P2 and P3 do not agree was not available when P1 and
P2 made their choice, but that scenario would break Cohen’s third assumption: exhaustive cate-
gories [21]. In either case, κ (and κF ) and non-transitive agreement relations are incompatible.

4.2 Clarifying Chance Agreement in End-User Elicitation Studies

Our mathematical formalism enables us to express the probability of two participants Pi and Pj
being in agreement about their proposals for referent r , as follows:

P (Pi α Pj | r ) =
∑
p1∈Pi

∑
p2∈Pj

[
δ (p1,p2) ≤ ϵ

]
|Pi | · |Pj | , (5)

where Pi and Pj represent the pools of all possible proposals available to participants Pi and
Pj according to their mental models of the system effect, and their developing mental models of
possible commands to issue to bring about that effect; see Figure 1. In theory, sets Pi and Pj are
infinite,15 but for practical purposes, we can consider them finite. Moreover, because of inherent
differences between participants, it is reasonable to assume that Pi and Pj are not identical, i.e.,
participant Pi might have access to different mental models leading to different types of commands
or proposals not necessarily accessible to Pj and vice versa. In support of this argument, we refer
readers to cultural differences highlighted by previous gesture elicitation studies [28, 73].

Equation (5) can be used both when referent r is specified, but also when r is not known in order
to express the probability of two participants being in agreement when they are ignorant of the
referent or metaphorically blindfolded, a situation considered by Tsandilas [108]. In the latter case,
sets Pi and Pj should be larger than in the former. Various forms of bias, such as legacy bias [76]
or performance bias [94], may affect both the size and structure of sets Pi and Pj . Equation (5)
shows that the probability of any two participants being in agreement depends on the models to
which they have access, but also on the dissimilarity function δ and tolerance ϵ . Considering the
classification perspective that we adopted in this article for end-user elicitation, there are four
possible outcomes for proposals elicited from two participants when presented with referent r :

(1) True agreement. Both participants develop the same mental model of the system effect and of
the command, and they present proposals for which the descriptionsA andA′ are evaluated

15Because any of their elements can be composed indefinitely many times, thus generating new elements [108].

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 1, Article 5. Publication date: January 2022.



5:24 R.-D. Vatavu and J. O. Wobbrock

Fig. 6. Proposal A elicited from the participant on the left generates four possible outcomes when compared
to proposals A′ and B of the participant on the right.

as similar by the dissimilarity function, i.e., δ (A,A′) ≤ ϵ . In this case, there is true agreement
between the two proposals; see Figure 6, top.

(2) True disagreement. The two participants develop different mental models of the system effect
or of the command, which results in different articulations A and B, and the difference is
detected correctly. In terms of the δ and ϵ formalism, we can write δ (A,B)>ϵ . The outcome
is true disagreement, where the two participants and, correspondingly, their proposals for
the referent genuinely disagree; see Figure 6, bottom.

(3) False agreement. The two participants develop different mental models, but the dissimilar-
ity function fails to discriminate between the corresponding descriptions, i.e., δ (A,B) ≤ ϵ ,
althoughA andB are different. This is a case of false agreement or a Type I error, i.e., the agree-
ment hypothesis between participants is confirmed, whereas it should have been rejected.

(4) False disagreement. The two participants develop the same models, but δ fails to confirm
the similarity of their corresponding descriptions, i.e., δ (A,A′)>ϵ , although A and A′ are
actually sufficiently similar. In this case, we have false disagreement or a Type II error, i.e.,
the agreement hypothesis is rejected, where it should have been accepted.

False agreement includes chance agreement in inter-rater reliability studies [21, 34, 40]: two
ratings result in agreement although agreement is not justified since, in the absence of suitable
mental models for the task (i.e., an informed rating), random or biased models are applied instead
(i.e., a rating caused by chance, or a rating that is biased by some factor). However, in traditional
inter-rater reliability studies, false disagreement is not threatening for the main purpose of those
studies, which is the assessment of “reliability”: whenever two raters pick their options from a list
of categories, and those options turn out to be different, the two raters are disagreeing with each
other. However, the cause of disagreement, such as both picking categories randomly and it just
happened that the categories were different, is less important because there is no “ground truth” of
what they should have picked−rather, it is about what they did pick and the fact that they did not
agree and, hence, the reliability of them agreeing was not affected. In Cohen’s [21] words, “there is
no criterion for the ‘correctness’ of judgments, and the judges are a priori deemed equally competent
to make judgments” (p. 38). Thus, false disagreement is ruled out directly in inter-rater reliability
by the definition of agreement used in such studies in direct relation to quantifying the reliability
of agreement; see Gwet [40, p. 15]: “With a nominal scale, two raters agree when their respective
ratings assigned to a subject are identical, and are in disagreement otherwise.” Since disagreement
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by chance is not interesting for inter-rater reliability studies that focus on surfacing agreement,
which is corrected by subtracting agreement occurring by chance so that reliability is reflected by
the actual, intrinsic agreement between raters, it was not considered by Cohen [21] nor Fleiss [34]
when defining their coefficients κ and κF , respectively. However, when formalizing the classifi-
cation step of end-user elicitation studies through the prism of a dissimilarity function δ and a
tolerance threshold ϵ (Equations (1) and (2)), implemented either explicitly by a computer or im-
plicitly by a human observer, both false agreement and false disagreement outcomes are relevant.
While the former artificially increases the observed agreement rate, just like chance does for inter-rater
reliability studies, the second artificially decreases it. As a consequence, we believe that agreement
rate measures used in end-user elicitation data analysis should not force corrections in one direc-
tion or the other, unlike what happens in inter-rater reliability for κ and related coefficients. The
κ coefficient reports agreement compared to a baseline represented by agreement occurring by
chance or random allocation and, for some applications, this baseline can prove to be distracting.
For example, in other fields, researchers have advocated for abandoning κ coefficients that focus
on corrected agreement and recommended reporting only disagreement instead [52]. While the
community is still on the fence about such issues, we believe that not correcting measures of agree-
ment in end-user elicitation reflects best the interplay of agreement and disagreement occurring
in the data, regardless of its nature and source.
A similar situation exists in pattern recognition, where sensitivity measures the actual positives

that are correctly identified, and specificity does the same for negatives [30]. A perfect classifier
would be 100% sensitive and specific, leaving no room for false positives or false negatives. In
practice, a tradeoff is sought between specificity and sensitivity, usually represented in the form
of aReceiver Operating Characteristic (ROC) graph [30], a useful tool for visualizing and com-
paring classifiers’ performance. Just like in hypothesis testing with Type I and II errors, classifier
design compromises in terms of minimizing false positive and false negative rates. Note that by
classifier design, wemean awide array of options, from supervised learning to unsupervised proce-
dures, including those employing codebooks for grouping descriptions into signs during end-user
elicitation analysis. For example, the researcher iteratively assigns new proposals to clusters de-
pending on how similar those proposals are to the proposals already included in those clusters or
with the representative “sign” of each cluster, based on the categories of the codebook. Even for
such cases, the possible outcomes of the classification process remain the same as above.
At this point, we have accumulated sufficient empirical evidence and theoretical support to start

clarifying the RQ outlined for end-user elicitation at the outset of this article. The discussion from
this section, specifically, enables us to provide an answer for our first research question, [RQ1.1]:

Research Question [RQ1.1]: Should the measures of agreement employed in end-user elic-
itation studies, such as A and AR, be corrected for chance agreement, just like in inter-rater
reliability studies? If so, how?

Clarification: Chance agreement should be considered and corrected only if the end-user
elicitation study was conducted with a fixed set of nominal categories from which partic-
ipants picked their proposals, i.e., end-user elicitation was implemented in the form of an
inter-rater reliability study, such as in Stern et al. [103]. Otherwise, when elicitation stud-
ies are conducted following the original method [140, 141], agreement by chance is always
opposed by disagreement by chance when agreement calculation is formalized with a dis-
similarity function δ and tolerance threshold ϵ . Consequently, themagnitude of the intrinsic
agreement always lies in the tension of false positives and false negatives, and the measures
of agreement A [140, 141] and AR [32, 120, 121] traditionally employed in end-user elicita-
tion should not be corrected for chance agreement.
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Fig. 7. Illustration of false positive and false negative rates as a function of the tolerance ϵ for the point-cloud
dissimilarity function [116] and the MMG stroke-gestures dataset [7].

Next, we will be addressing the rest of the research questions fundamental to end-user elicita-
tion studies. To this end, we continue our elaboration of theoretical support and presentation of
corresponding empirical evidence.

4.3 Experiment #4: Observing False Positives and False Negatives when Calculating

Agreement in End-User Elicitation Studies

Although the concepts of false positives and negatives should be well known to readers from
the field of pattern recognition [130], inferential statistics [132], or the practice of HCI [137], we
believe it is useful to illustrate them for the specific case of agreement defined as in Equation (2). To
this end, we employ one of our previous gesture datasets: 3,200 samples of 16 distinct multistroke
gestures performed by 20 users [7], and the point-cloud dissimilarity function [116]. Figure 7 high-
lights the point where the false positive rate (increasing with ϵ) and false negative rate (decreasing
with ϵ) curves meet. If ϵ is below this point (i.e., the similarity criteria are conservative), the
agreement rate is underestimated because there are more false negatives than false positives. If ϵ is
above this point (i.e., the similarity criteria are more liberal), the agreement rate is overestimated
because there are more false positives than false negatives. The magnitude of the agreement rate
lies in the tension between false positives and false negatives, but there is a point where the two
cancel each other out, leaving just the true, intrinsic agreement. No methods exist in the literature
of end-user elicitation to locate the ideal ϵ that corresponds to the intrinsic level of agreement,
simply because the community was not aware of this issue before. However, we believe that
methods inspired by ROC analysis from pattern recognition [30] may be useful for this purpose;
more details about potential future developments in this direction are available in the Discussion
section.
We continue our expositionwith specific illustrations from thememorability gesture dataset [38,

80], for which the elicited gestures were coded using a taxonomy composed of 12 dimensions, e.g.,
localization, number of hands, and so on. Since the authors did not compile a consensus set of signs
(their goal was instead to understand memorability of user-defined vs. designer-defined gestures,
i.e., they implemented step 6 instead of step 5 from our model in Figure 1), we do not have access
to the signs for the referents examined in that work as ground truth data to be able to automate
the computation of the false disagreement rate (DR) as in our previous example. However, the
coded proposals, according to the 12-level taxonomy, are available to compute δ ’s. Therefore, we
discuss a few examples that we identified by looking at the videos from this dataset and then com-
puted δ ’s from the code-based descriptions of those videos available in the dataset. Figure 8 shows
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the six gestures proposed by six participants to effect the “Homepage” action for a web browser. It
is straightforward to identify four themes: draw the symbol of a house (proposals 1 and 2), use a
specific hand pose (proposal 3), draw a circle (4 and 5), and draw a corner (proposal 6). However,
executions of these themes are different, e.g., the house symbol proposed by the first participant
is segmented, whereas the one drawn by the second participant is continuous; the circles drawn
by participants 4 and 5 have opposite directions, while participant 5 also places their hand on
the tabletop after completing the circle. The bottom of Figure 8 shows the dissimilarity matrices
computed using four dissimilarity functions (SMC, Russell & Rao, Jaccard, and Czekanowski; see
Section 3) and the corresponding dendrograms generated by the complete-link clustering method.
Although the house symbols illustrate the same mental model, their codebook descriptions dif-
fer on 4 of the 12 dimensions: the path direction (straight vs. flexible), path flow (segmented vs.
continuous), path shape (n/a16 vs. closed), and relation to action (arbitrary vs. iconographic). Con-
sequently, the dissimilarity between these proposals is not zero, but instead 0.15 according to SMC,
0.85 (Russell & Rao), 0.50 (Jaccard), and 0.33 (Czekanowski). Although this is fine (their executions
are different, as we showed above), all the dissimilarity matrices also show that proposal 1 is more
similar to proposal 6 and, indeed, when looking at their codebook-based descriptions, proposals 1
and 6 differ along fewer dimensions.
Now look at proposals 4 and 5: the two circles. According to the codebook, they differ along

four dimensions: gesture nature (metaphorical vs. abstract), relation to action (iconic vs. arbitrary),
hand orientation (n/a17 vs. horizontal), and hand form (other form vs. spread) and, therefore, the
dissimilarity between them is larger than zero. However, just like in the previous case, proposal
2 is more similar to proposal 4 based on the descriptions from the codebook, according to all
the dissimilarity measures. The consequence is that proposals 1 and 6 and, respectively, 2 and 4
will form their own clusters first (see the dendrograms from Figure 8) and the only way to have
them as part of the same cluster (i.e., to denote that they represent the same sign) is to increase
the tolerance ϵ , which also then includes proposals 2 and 4 in that cluster. At least, this is what
the data from the codebook tells us for a variety of dissimilarity measures. If, at this point, the
researcher decides to form a cluster with 1 and 2 and another with 4 and 5, they would go against
their own codebook, whereas classification based on other criteria, independent of the codebook,
would make the codebook pointless in the first place.

Having established this example, we see how false agreement and false disagreement interplay:
while clustering together proposals 1 and 6 is an example of false agreement, not clustering 1 and 2
is false disagreement. We acknowledge that the 12-level taxonomy employed by Grijincu et al. [38]
was not necessarily developed with the goal to emerge signs from proposals, and other, more rel-
evant dimensions could be employed for that purpose and work much better for the “Homepage”
gestures. However, the codebook determines the dissimilarity matrix and, as the pattern recog-
nition literature has been showing, false agreement and false disagreement are outcomes of any
classification process. Since such codebook-based approaches have been used by researchers to
characterize participants’ proposals in end-user elicitation studies, when clustering is based on a
codebook, situations of both false agreement and disagreement will emerge.

16In the memorability dataset, the value “n/a” is present for the path shape dimension to characterize the house symbol

gesture produced by the first participant from Figure 8. Another possible coding could have been “open” to contrast the

closed articulation of the house symbol produced by the second participant.
17In the memorability dataset, the value “n/a” is present for the hand orientation dimension to characterize the gesture

produced by the fourth participant from Figure 8. Another possible coding could have been “index finger pointed” to

contrast the flat horizontal hand employed by the fifth participant to mark the ending of their gesture.
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Fig. 8. Top: examples of gestures elicited from six participants in the memorability study [38, 80] to effect the
“Homepage” action for a web browser. From top to bottom and left to right: (1) and (2) draw a house symbol,
(3) lay flat hand on the tabletop, (4) draw a circle, (5) draw a circle and place the hand on the tabletop, and (6)
small drawing in the top-right corner of the web browser. Our annotations, in white, show the geometrical
shape of each gesture.Middle and bottom: dendrograms computedwith the complete-link clusteringmethod
and four distinct dissimilarity functions.

These results strengthen our previous clarification regarding research question [RQ1.1] about
not correcting measures A and AR for chance agreement in end-user elicitation studies. Moreover,
at this point, our analysis of chance agreement (and disagreement, respectively) should be put
in a larger context to gain perspective. According to Gwet’s [40] critical survey on inter-rater
reliability studies, “the idea of adjusting the percent agreement pa for chance agreement is often
controversial, and the definition of what constitutes chance agreement is part of the problem”
(p. 32). As we have shown, end-user elicitation studies are fundamentally different in their
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assumptions from inter-rater reliability studies. Moreover, our previous analysis unveiled two
important aspects: the non-transitive nature of the agreement relation and the existence of chance
disagreement (i.e., false negatives). The first aspect is not present in inter-rater reliability, where
transitivity is a consequence of raters picking their options from a codebook of fixed and usually
nominal categories. The second aspect is not considered when applying inter-rater reliability
coefficients to end-user elicitation [108], since those coefficients focus on chance agreement
alone. However, both false positives and false negatives represent the basis for computing the
sensitivity and specificity measures of performance of recognizers, which offer an overall view
on the recognizers’ discrimination capabilities. From this perspective, Uebersax [109] argues that
“in measuring accuracy of a diagnostic test, we don’t correct sensitivity or specificity for the effects
of chance; why do so in measuring rater agreement?” as well as “by considering both sensitivity and
specificity together, there is no obvious, compelling need to correct for possible effects of chance.”
At this point, we have sufficient empirical and theoretical support to clarify research question

[RQ1.2], as follows:

Research Question [RQ1.2]: Is end-user elicitation the same thing as an inter-rater relia-
bility study?

Clarification:Despite apparent similarities, inter-rater reliability studies and end-user elic-
itation are fundamentally different in their goals, methods, and measures with respect to
calculating agreement. Unlike inter-rater reliability studies, however, the list of categories
or signs is not defined a priori in end-user elicitation, the agreement relation is not necessar-
ily transitive, and the measures of agreement A [140, 141] and AR [32, 120, 121] incorporate
both chance agreement and chance disagreement, where for every bit of chance agreement,
there is a corresponding amount of chance disagreement to oppose it.

In the next section, we focus on the properties of the agreement relation in end-user elicitation
studies, for which we provide further theoretical support.

5 TOLERANCE RELATIONS AND SPACES

We showed so far that (i) there are many causes for the differences observable in the proposals
elicited from end users as revealed by our operational model (Figure 1), (ii) agreement can be
reached in ways that are not always intuitive, because of the limited previous understanding of
agreement formation in elicitation studies, and that incorporate the effects of both false positives
and false negatives, and (iii) that the agreement relation is not necessarily transitive. These findings
enabled us to clarify research questions [RQ1.1] and [RQ1.2] listed at the outset of our article.

In the following, we show that agreement can be further formalized in terms of tolerance rela-
tions and tolerance spaces [102, 145], and that the process of agreement formation is just one part
of a bigger picture regarding our scientific understanding of human perception and action [85].

5.1 From Human Perception to a Mathematical Theory of Tolerance Relations

Our starting point is the concept of “tolerance,” already hinted at in Equation (1) with our variable
ϵ , which we connect in this section to the mathematical theory of “tolerance spaces” [102, 145].

At the end of the 19th century, Henri Poincaré [88, 89] formalized “sets of sensations” to
characterize the physical spectrum of human perception, and concluded that similar perceptions
can be described using a mathematical space where the concept of tolerance plays a key role.
Poincaré made a distinction between l’espace géométrique and l’espace représentatif [88] or
between le continu mathématique and le continu physique [89], where the latter, in both cases,
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indexes human representations and sensations and is limited in resolution compared to the
descriptive power of the former. However, the projection of the physical onto the mathematical
continuum led to logical contradictions for Poincaré [89]: “It has, for instance, been observed that
a weight A of 10 grammes and a weight B of 11 grammes produced identical sensations, that the
weight B could no longer be distinguished from a weight C of 12 grammes, but that the weight A was
readily distinguished from the weight C. Thus the rough results of the experiments may be expressed
by the following relations: A = B, B = C, A < C, which may be regarded as the formula of the physical
continuum” (pp. 27–28). By characterizing this fact as an “intolerable disagreement with the law of
contradiction, and [a] necessity of banishing this disagreement” [89], Poincaré conceptualized the
existence of regions in the mathematical continuum mapped to sets of sensations that aggregate
perceptually indistinguishable objects. Even before Poincaré, Weber [131] had already noticed
the imprecision of human senses to detect differences in the intensities of stimuli that are smaller
than specific thresholds, referred to today as “difference limens” or “just noticeable differences.”
Weber formalized his observations in his eponymous law stating that the difference threshold
divided by the original intensity of the stimulation is constant, i.e., the Weber constant.
However, Poincaré’s insight represented the foundation for tolerance theory [102], and it was

Zeeman [145] who properly defined the notion of a “tolerance relation” on a given set as a binary
relation on the Cartesian product of that set that is reflexive and symmetric. Following this defi-
nition, a “tolerance space” is the set supplied with a tolerance relation. Moreover, a “perceptual
tolerance space” applies tolerance spaces to the study of resemblances between perceived objects
and sensations. In their overview of tolerance spaces applied to human perception, Peters and
Wasilewski [85] defined “[the] tolerance on a set [as a] mathematical structure that formalizes the
idea of resemblance, i.e., the idea of being the same within some tolerance. Put another way, objects
are considered near each other up to a small, allowable error” (p. 211). Overall, the tolerance the-
ory formalizes the idea of resemblance between objects up to some error [102], which is ϵ in our
Equation (1) for proposals elicited from participants in end-user elicitation studies.

5.2 Agreement in End-User Elicitation is Indeed a Tolerance Relation

Our previous empirical results from Section 3 showed that the agreement relation α is not transi-
tive [108, 120, 121]. Using tolerance theory, we can now enunciate that the agreement relation is
a tolerance with reflexive and symmetric properties only, as follows:

(1) Reflexivity of agreement: pi α pi ∀pi ∈ P
(2) Symmetry of agreement: pi α pj ⇔ pj α pi ∀pi ,pj ∈ P

Together with the set P, the agreement relation α generates a tolerance space < P,α >. Similar
to Poincaré’s [89] mapping between the physical and mathematical continuum, < P,α > contains
sets of descriptions (i.e., signs) that are indistinguishable given the dissimilarity function δ and
tolerance level ϵ (see Equation (1)), although their descriptions may be different.
Our previous use of the dissimilarity function δ did not impose any constraints on its properties.

Our only assumption was that δ could be defined in a reasonable way to compute a small value
when two proposals are similar and a larger value when they are less similar. A more proper
way to define δ is to require that it holds the properties of a metric,18 although this might be too
constraining for some dissimilarity functions, such as DTW [54, 79, 106]. According to Sossin-
sky [102], any metric space determines tolerance relations with respect to some positive threshold
ϵ . Thus, if < P,δ > is a metric space and ϵ a real, positive value, then the relation α defined by

18δ is a metric if it satisfies the identity, symmetry, and the triangle inequality properties [99].
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our Equation (1) represents a tolerance over P and generates the tolerance space < P,α >. This
mathematical result provides theoretical support for the definitions used by the dissimilarity-
consensus approach to agreement analysis in the end-user elicitation work by Vatavu [114], which
is reflected in Equation (1). Moreover, Sossinsky [102] presents several examples of tolerance
spaces, including one about information structured in graphs: if X is the set of vertices of a
(nonoriented) graph, the relation “x and y are vertices of the same edge” is a tolerance, which
connects the tolerance theory to a recent method from Ali et al. [3] for computing agreement
based on clustering nodes to form subgraphs within larger fully connected graph structures.

Clarification (continuation): In the previous section, we clarified research questions
[RQ1.1] and [RQ1.2] in that measures of agreement A [140, 141] and AR [32, 120, 121] do not
need to be corrected for chance agreement ([RQ1.1]) and that inter-rater reliability and end-
user elicitation studies make fundamentally different assumptions ([RQ1.2]). The insight of
this section regarding the agreement relation being a tolerance relation strengthens further
the differences between the two types of studies: where agreement in inter-rater reliability
is an equivalence relation, agreement in end-user elicitation takes the form of a tolerance
relation.

The discussion so far has showed that end-user elicitation is different from inter-rater reliability
studies and, consequently, needs specific measures to calculate and report agreement. Below, we
continue our discussion with an overview of the measures of agreement that have been widely
employed in end-user elicitation studies, highlighting their specific advantages and shortcomings
in the light of our finding from this section that agreement is a tolerance relation.

6 AN OVERVIEW OF AGREEMENT CALCULATION IN END-USER ELICITATION

Agreement has been evaluated in various ways in the practice of end-user elicitation. Probably the
simplest measure of quantifying agreement has been to count the frequency of proposals elicited
from participants [51, 72, 103, 110, 112]. Other, more elaborate measures include the Jaccard sim-
ilarity coefficient [73], Kendall’s coefficient of concordance [123], and measures tailored to the
specifics of the topic under examination [19, 75, 114, 128]. The latter category includes, for exam-
ple, the popularity of user-defined techniques for associating smart devices [19] or measures de-
vised to characterize agreement when multiple proposals are elicited from each participant, such
as the max-consensus and consensus-distinct ratio [75] and aggregator functions [114]. Recently,
Tsandilas [108] advocated the use of coefficients of agreement traditionally employed in inter-rater
reliability studies, such as Cohen’s κ [21], Fleiss’ κF [34], or Krippendorff’s α [59], to report the
magnitude of agreement in end-user elicitation studies. The literature on inter-rater reliability en-
compasses a wide variety of such coefficients; see Gwet [40] for a critical survey on when and
how to apply them. However, since inter-rater reliability studies operate on fundamentally differ-
ent assumptions than end-user elicitation, directly adopting coefficients of agreement from inter-
rater reliability to elicitation studies is debatable; see our in-depth discussion of this aspect in
Section 4.

6.1 Quality Properties for Measures of Agreement

In the following, we review measures of agreement widely employed in end-user elicitation stud-
ies [120, 140, 141], and we offer a way to generalize them into one single, “all-purpose” measure.
But first, we establish criteria to assess the quality properties of any measure of agreement:
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(1) Lower bound (LB): The measure admits a fixed lower bound that corresponds to perfect dis-
agreement (e.g., 0) that is independent of the number of end users from which proposals are
elicited and also independent of the actual proposals.

(2) Upper bound (UB): The measure admits a fixed upper bound that corresponds to perfect
agreement (e.g., 1 or 100%), independent of the number of end users and their proposals.

(3) Interpretation (IN): The measure admits a simple and intuitive interpretation of its values.

(4) Non-Transitivity (NT): The measure can be employed to compute agreement between the
elicited proposals when the agreement relation turns out to be non-transitive.

Ideal measures of agreement have fixed lower and upper bounds, intuitive interpretations, and
are applicable to both transitive and non-transitive data. Next, we briefly overview the measures
of agreement most used in end-user elicitation studies, in chronological order, and discuss their
compliance with our quality properties.

6.2 2005: The Agreement Score A

The most widely used measure of agreement in end-user elicitation studies is probably the Agree-
ment score A proposed by Wobbrock et al. [140] in 2005 as a practical way to evaluate numerically
the guessability of symbolic input; see the first row of Table 2 for its formula and quality prop-
erties. The A measure was also employed in the first hand-gesture elicitation study published by
Wobbrock et al. [141] in 2009. One strength of A is that it is remarkably easy to understand and
calculate, even by hand. For example, if from a group of 20 elicited proposals, four subgroups of
similar proposals of sizes 8, 6, 4, and 2 emerge such that all the proposals of each subgroup are in
agreement, then A is the sum ( 8

20 )
2 + ( 6

20 )
2 + ( 4

20 )
2 + ( 2

20 )
2 = .300. A is upper bounded by 1, which

is the case of perfect agreement when all the participants’ proposals are the same or substantially
similar [140]. The components of the sum represent the squared ratios of the size of each sub-
group to the total size of the group. These ratios can be interpreted as the probabilities pi that a
new end user, not part of the study, would “guess” the same proposal as the participants forming
the ith subgroup, e.g., p1 is

8
20 = 40% and p4 is

2
20 = 10% in our example. (It is easy to verify that∑

pi = 1.) Thus, it is more likely that a new user will think of a command similar to what the eight
participants of the first subgroup proposed than to the proposal of the subgroup of two. Although
Wobbrock et al. [140, 141] did not present this interpretation of A, we believe it represents a useful
clarification for practitioners.
Wobbrock et al. [140, 141] did not provide a theoretical basis for their A formula, but its straight-

forwardness and wide popular adoption offer a clue about its instinctual origins. In the support of
this argument, we quote Good, who affirmed in a comment19 to a 1982 paper [84] on the topic of
evaluating diversity that “if p1, p2, . . . ,pt are the probabilities of t mutually exclusive and exhaustive
events, any statistician of this century who wanted a measure of homogeneity would have taken about
two seconds to suggest

∑t
i=1 p

2
i , which I shall call ρ” (p. 561). Furthermore, Ellerman [29] argues that

the quantity
∑
p2i represents the probability of getting non-distinct values in two independent sam-

plings of the random variable for which the probability distribution is
{
pi
}
(p. 129) and, thus, the

sum is a measure of homogeneity or concentration. In his work, Ellerman was interested in logical
entropy,20 defined as h(p) = 1 − ∑t

i=1 p
2
i , which is the complementary of A. Ellerman [29] also

presents a history of h(p) and A being employed in various scientific fields with applications in
cryptography, biostatistics, economics, and so on; see, for example, Gini [1992] or Friedman [1922]

19The comment was published together with Patil and Taillie’s article [84] on page 561.
20Ellerman’s article was brought to our attention by Tsandilas’ work [108].

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 1, Article 5. Publication date: January 2022.



Clarifying Agreement Calculations and Analysis for End-User Elicitation Studies 5:33
Ta
b
le
2.

A
n
O
ve
rv
ie
w
o
f
A
g
re
em

en
t
C
al
cu
la
ti
o
n
F
o
rm

u
la
e
F
re
q
u
en
tl
y
E
m
p
lo
y
ed

in
E
n
d
-U

se
r
E
li
ci
ta
ti
o
n
S
tu
d
ie
s

M
e
a
su

re
R
e
fc
e
re
n
ce
(s
)

O
ri
g
in
a
l
fo
rm

u
la
†

A
g
re
e
m
e
n
t
g
ra
p
h

Qu
a
li
ty

P
ro
p
e
rt
ie
s‡

N
u
m
e
ri
ca
l

e
q
u
iv
a
le
n
t
fo
rm

u
la

L
B

U
B

IN
N
T

e
x
a
m
p
le
§

M
e
a
su

re
s
o
f
a
g
re
e
m
e
n
t
fo
r
si
n
g
le

e
li
ci
ta
ti
o
n
(o
n
e
p
ro
p
o
sa
l
p
e
r
p
a
rt
ic
ip
a
n
t,
a
cc
o
rd

in
g
to

th
e
o
ri
g
in
a
l
im

p
le
m
e
n
ta
ti
o
n
o
f
e
n
d
-u
se
r
e
li
ci
ta
ti
o
n
st
u
d
ie
s
[1
4
0
,
1
4
1
])

1
A
g
re
em

en
t

sc
o
re

(A
)

W
o
b
b
ro
ck

et
al
.

[2
00
5]

[1
40
];
W
o
b
b
ro
ck

et
al
.[
20
09
]
[1
41
]

∑ P
i
⊆P

( |P
i
|

|P|
) 2

1 N
2

N ∑ i=
1

� � �

N ∑ j=
1

a
i,
j
+
1� � �

−
�

�
−

( 8 20

) 2 +
( 6 20

) 2 +
( 4 20

) 2 +
( 2 20

) 2 =
.3
00

2
A
g
re
em

en
t
ra
te

(A
R
)

S
te
rn

et
al
.[
20
08
]
[1
03
];

F
in
d
la
te
r
et

al
.[
20
12
]

[3
2]
;V

at
av
u
&

W
o
b
b
ro
ck

[2
01
5]

[1
20
]

∑ P
i
⊆P

1 2
|P i
|(|

P
i
|−1

)
1 2
|P
|(|

P
|−1

)

∑ N i=
1

∑ N j=
1
a
i,
j

N
(N
−1

)
�

�
�
−

8·(
8−

1
)

2
+
6·(

6−
1
)

2
+
4·(

4−
1
)

2
+
2·(

2−
1
)

2
20
·(2

0−
1
)

2

=

.2
63

3

A
g
re
em

en
t
ra
te

(A
R
),

al
te
rn
at
iv
e

fo
rm

u
la
ti
o
n

V
at
av
u
&
W
o
b
b
ro
ck

[2
01
6]

[1
21
]

∑ |G
i
|

p
=
1

∑ |G
i
|

q
=
p
+
1
δ
p
,q

1 2
|G

i
|(|

G
i
|−1

)

∑ N i=
1

∑ N j=
1
a
i,
j

N
(N
−1

)
�

�
�

�
10
0

20
·19
=
.2
63

4
C
o
n
se
n
su
s
(C
)

V
at
av
u
[2
01
9]

[1
14
]

∑ N i=
1

∑ N j=
i+

1
[δ

(д
i
,д
j
)≤
τ
]

1 2
N

(N
−1

)
·1
00
%

∑ N i=
1

∑ N j=
1
[a
i,
j
≤τ

]

N
(N
−1

)
·1
00
%

�
�

�
�

D
ep
en
d
s
o
n
δ
;s
ee

[1
14
]
fo
r

ex
am

p
le
s.

5
G
ro
w
th

ra
te

( r
)

V
at
av
u
[2
01
9]

[1
14
]

T
h
e
g
ro
w
th

ra
te

o
f
th
e
g
ro
w
th

cu
rv
e
o
f
C
as

a
fu
n
ct
io
n

o
f
τ
u
si
n
g
a
lo
g
is
ti
c
m
o
d
el

−
−
−
−

�
N
o
t
ca
lc
u
la
te
d
b
y
h
an

d
;n

ee
d
s
a

co
m
p
u
te
r;
se
e
[1
14
]
fo
r
ex
am

p
le
s.

M
e
a
su

re
s
o
f
a
g
re
e
m
e
n
t
fo
r
re
p
e
a
te
d
e
li
ci
ta
ti
o
n
(m

u
lt
ip
le

p
ro
p
o
sa
ls
p
e
r
p
a
rt
ic
ip
a
n
t,
e
.g
.,
p
ro
d
u
ct
io
n
[7
7
]
o
r
e
li
ci
ta
ti
o
n
u
si
n
g
m
u
lt
ip
le

in
p
u
t
m
o
d
a
li
ti
e
s
[7
5
])
¶

1
M
ax
-c
o
n
se
n
su
s

M
o
rr
is
[2
01
2]

[7
5]

P
er
ce
n
t
o
f
p
ar
ti
ci
p
an

ts
su
g
g
es
ti
n
g
th
e
m
o
st
p
o
p
u
la
r

p
ro
p
o
se
d
in
te
ra
ct
io
n

C
ar
d
in
al
it
y
o
f
th
e
la
rg
es
t
co
n
n
ec
te
d

co
m
p
o
n
en
t¶

d
iv
id
ed

b
y
N

�
�

�
−

32
%
fo
r
“o
p
en

b
ro
w
se
r”
[7
5]

2
C
o
n
se
n
su
s-

d
is
ti
n
ct

ra
ti
o

M
o
rr
is
[2
01
2]

[7
5]

P
er
ce
n
t
o
f
th
e
d
is
ti
n
ct

in
te
ra
ct
io
n
s
th
at

ac
h
ie
ve
d
a

g
iv
en

co
n
se
n
su
s
th
re
sh
o
ld

N
u
m
b
er

o
f
co
n
n
ec
te
d
co
m
p
o
n
en
ts
¶

w
it
h
ca
rd
in
al
it
y
g
re
at
er

th
an

th
e

co
n
se
n
su
s
th
re
sh
o
ld

d
iv
id
ed

b
y
th
e

to
ta
l
n
u
m
b
er

o
f
co
n
n
ec
te
d
co
m
p
o
n
en
ts

�
�

�
−

.3
00

fo
r
“s
el
ec
t
U
R
L
”
[7
5]

3
C
o
n
se
n
su
s
( C

)
V
at
av
u
[2
01
9]

∑ N i=
1

∑ N j=
i+

1
[ζ
(δ

(д
i,
t
,д
j,
u
)∀
t,
u
)≤

τ
]

1 2
N

(N
−1

)
·1
00
%

∑ N i=
1

∑ N j=
1
[a
i,
j
≤τ

]

N
(N
−1

)
·1
00
%
¶

�
�

�
�

D
ep
en
d
s
o
n
δ
;s
ee

[1
14
]
fo
r

ex
am

p
le
s.

4
G
ro
w
th

ra
te

( r
)

V
at
av
u
[2
01
9]

[1
14
]

T
h
e
g
ro
w
th

ra
te

o
f
th
e
g
ro
w
th

cu
rv
e
o
f
C
as

a
fu
n
ct
io
n

o
f
τ
u
si
n
g
a
lo
g
is
ti
c
m
o
d
el

−
−
−
−

�
N
o
t
ca
lc
u
la
te
d
b
y
h
an

d
;n

ee
d
s
a

co
m
p
u
te
r;
se
e
[1
14
]
fo
r
ex
am

p
le
s.

† W
e
u
se
d
th
e
sa
m
e
n
o
ta
ti
o
n
s
as

th
e
o
ri
g
in
al
au
th
o
rs
:
|P
|d
en
o
te
s
th
e
ca
rd
in
al
it
y
o
f
th
e
se
t
o
f
p
ro
p
o
sa
ls
in

[1
40
];
P
i
[1
40
]
an
d
G
i
[1
20
]
d
en
o
te

th
e
it
h
su
b
g
ro
u
p
o
f
p
ro
p
o
sa
ls

th
at

ar
e
in

ag
re
em

en
t;
д
i
an
d
д
j
re
p
re
se
n
t
tw

o
p
ro
p
o
sa
ls
el
ic
it
ed

fr
o
m

tw
o
p
ar
ti
ci
p
an
ts
fo
r
so
m
e
re
fe
re
n
t
[1
14
];
p
an
d
q
d
en
o
te

p
ar
ti
ci
p
an
ts
in

[1
21
];
δ
p
,q

is
K
ro
n
ec
k
er
’s

sy
m
b
o
l
th
at

ev
al
u
at
es

to
ei
th
er

1
o
r
0,
d
ep
en
d
in
g
w
h
et
h
er

p
ar
ti
ci
p
an
ts
p
an
d
q
ar
e
in

ag
re
em

en
t
o
r
n
o
t
[1
21
];
Δ
is
a
d
is
si
m
il
ar
it
y
fu
n
ct
io
n
an
d
τ
d
en
o
te
s
th
e
to
le
ra
n
ce

le
v
el

in
[1
14
];
ζ
is
an

ag
g
re
g
at
in
g
fu
n
ct
io
n
,s
u
ch

as
m
in
,m

ax
,o
r
m
ea
n
[1
14
].

‡ L
B
-
ad
m
it
s
fi
x
ed

lo
w
er

b
o
u
n
d
;U

B
-
ad
m
it
s
fi
x
ed

u
p
p
er

b
o
u
n
d
;I
N
-
si
m
p
le
in
te
rp
re
ta
ti
o
n
;N

T
-
fo
rm

u
la
w
o
rk
s
fo
r
n
o
n
-t
ra
n
si
ti
v
e
ag
re
em

en
t
re
la
ti
o
n
s.

§ T
h
e
n
u
m
er
ic
al
ex
am

p
le
is
p
ro
v
id
ed

fo
r
a
se
t
o
f
N
=
20

p
ar
ti
ci
p
an
ts
o
r,
eq
u
iv
al
en
tl
y,
|P
|=

20
p
ro
p
o
sa
ls
fo
rm

in
g
fo
u
r
su
b
g
ro
u
p
s
o
f
si
ze
s
8,
6,
4,
an
d
2
p
ar
ti
ci
p
an
ts
/p
ro
p
o
sa
ls
in

ag
re
em

en
t.

¶ I
n
th
is
w
o
rk
,w

e
ad
d
re
ss

si
n
g
le
el
ic
it
at
io
n
o
n
ly
,f
o
ll
o
w
in
g
th
e
o
ri
g
in
al
im

p
le
m
en
ta
ti
o
n
o
f
W
o
b
b
ro
ck

et
al
.[
14
0,
14
1]
.F
o
r
re
p
ea
te
d
el
ic
it
at
io
n
,f
u
rt
h
er

w
o
rk

is
n
ee
d
ed

to

fo
rm

al
iz
e
th
e
ag
re
em

en
t
g
ra
p
h
.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 1, Article 5. Publication date: January 2022.



5:34 R.-D. Vatavu and J. O. Wobbrock

referenced in [29]. From this perspective, A can be viewed as the degree of order in the set of pro-
posals elicited from the participants of the study as opposed to the disorder-like interpretation
commonly accepted for entropy.

6.3 2015: The Agreement Rate AR

An inconvenience of the A measure [140, 141] is that it never reaches 0, even when all partic-
ipants are in disagreement with each other. The minimum value attainable by A is 1

N
, which

depends on the number of proposals put forward by participants. This aspect is inconvenient,
because a study with N= 20 participants in full disagreement leads to A = .050, while the same
study with N = 40 participants also in full disagreement will yield A = .025. Wobbrock et al. [140]
challenged this discrepancy with the fact that “the lower bound [of A] is non-zero because even
when all proposals disagree, each one trivially agrees with itself” (p. 1871). By using our inter-
pretation of the agreement relation as a tolerance (see Section 5), we can now formally assert
that Wobbrock et al. [140] incorporated the reflexivity property directly into their definition of
the A measure. Unfortunately, this approach led to a measure with an unstable zero-agreement
level.
However, there is a simple way to make agreement fall exactly in the closed interval [0, 1],

shown by Vatavu andWobbrock [120] and referred to as the Agreement Rate (AR); see the 2nd row
of Table 2. AR is the ratio between the number of pairs of participants in agreement and the total
number of pairs that could be in agreement. Considering our previous example with the partition

20 = 8 + 6 + 4 + 2, the first subgroup contains
8·(8−1)

2 pairs of proposals in agreement, the second

one 6·(6−1)
2 pairs, and so on, which makes AR = 28+15+6+1

190 = .263. Another advantage of AR is that it
admits a simple interpretation as a percentage, i.e., 26.3% pairs of proposals are in agreement. This
straightforward interpretation alleviates problems caused by reporting A incorrectly, e.g., May et
al. [74] reported A scores as percentages, where they should not be interpreted as such.21

Just like for the A measure [140, 141], the straightforwardness of defining agreement in the
manner advocated by Vatavu and Wobbrock [120] was intuited before 2015. Findlater et al. [32]
used theAR formula in a 2012 elicitation study for touchscreen keyboards (but without making the
explicit mathematical connection between AR and A), and Stern et al. [103] employed it, among
other measures, in a 2008 paper regarding the intuitiveness of hand gestures (but the denominator
was not fixed to N · (N − 1)/2, but rather varied according to the specific proposals elicited from
the participants; see Stern et al. [103, p. 100] for an example). In fact, the AR formula seems to have
been employed in many other fields.22 In his comment23 to Patil and Taillie [84], Good referred to
the AR formula as an unbiased estimate of A (p. 561).
AR has inspired the invention of other measures to characterize agreement, such as the DR [120,

121] and the Coagreement Rate (CR) between referents for within-subjects designs [120] and for
independent groups of participants [121]. AR has also inspired adaptations, such as a measure of
the consistency of users interacting on multiple devices in contrast to multiple users employing a
single device [128]. Both A and AR were implemented by GECKo [6], a software tool that reports
users’ consistency of stroke-gesture articulation on touchscreens.

21Note that although the initial definition of the A measure employed percentages [140], subsequent uses of A removed

them [3, 141].
22A conscientious observation from Tsandilas [108].
23The comment was published together with Patil and Taillie’s article [84] on page 561.
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6.4 2016: An Alternative Definition for AR

Both the original formulations of A and AR [32, 120, 140, 141] have assumed the transitivity
property for the agreement relation, which we debunked in Section 3. For example, when A com-
putes ( 8

20 )
2, it is implied that all the participants forming the subgroup of size 8 are in agreement

with each other [140]. And when AR computes 8·(8−1)
2 , the same assumption is implied [32, 120].

However, our analysis above showed that the agreement relation is not transitive and it should
be viewed as a tolerance relation [102, 145] that generates a tolerance space over the set of
distinct proposals elicited from participants. In other words, the agreement relation is reflexive
and symmetric, but not transitive. This finding limits the application of the A and AR formulae just
to those situations where transitivity can be verified due to some specificity of the study, analysis
process, or application domain; e.g., when ϵ is always zero and the similarity test is actually a
test for equality, as it was for the design of EdgeWrite stroke-gestures [140, 142], which encoded
letters as sequences of corners represented as integers. Inter-rater reliability studies with nominal
categories are another example.
However, AR allows for a different expression that computes the same numerical results as the

original formula [120], but without assuming transitivity. Vatavu and Wobbrock [121] introduced
this alternative formula in 2016 in the context of formalizing between-subjects designs for end-user
elicitation studies; see the 3rd row of Table 2. Instead of computing the pairs of proposals in agree-

ment from a subgroup by employing multiplication (e.g., 8·(8−1)
2 ), the alternative formula counts

how many pairs of proposals are in agreement. This alternative formulation makes it possible to
use AR even when the agreement relation is not transitive.

6.5 2019: The Consensus Rate C

Vatavu [114] introduced the concept of a dissimilarity function to compute agreement and defined
the Consensus Rate (C). The reasoning behind C is that a dissimilarity function δ can be applied
to all pairs of proposals and the result compared to a tolerance value τ (which we call ϵ in this
article). If the dissimilarity value is less than the tolerance, then one pair of proposals in agree-
ment gets counted. Just like AR, C is obtained by dividing the total number of pairs in agreement
to the total number of pairs of proposals that could be in agreement; see the 4th row of Table 2.
One advantage of C is that it enables great flexibility (in terms of δ and τ ), while keeping all the
properties of AR: fixed lower and upper bounds 0 and 1, simple interpretation as a percentage,
and independence of the assumption of transitivity of agreement. Moreover, Vatavu [114] was in-
terested in calculating agreement beyond any fixed set of criteria (represented by τ ) and defined
C as a function of τ , which he modeled using growth curves and logistic functions. The growth
rate r of the logistic model was used as a measure of agreement to analyze whole-body move-
ments [114] and touchscreen stroke-gestures [115]; see the 5th row of Table 2. Because C and
r use dissimilarity functions, they cannot be easily calculated by hand, but software was made
available.24

6.6 Measures of Agreement for Repeated Elicitation

Some implementations of end-user elicitation studies, especially those that employ production as
a practical way to reduce the influence of legacy bias [77], elicit multiple proposals per participant,
i.e., interaction synonyms, in some cases using different input modalities [75]. We refer to
these cases as repeated elicitation to differentiate them from the original method introduced by

24http://www.eed.usv.ro/~vatavu/projects/DissimilarityConsensus.
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Wobbrock et al. [140, 141], where one proposal was elicited per participant. Morris’ [75] “web on
the wall” elicitation study and Vatavu’s [114] examination of whole-body gestures produced by
young children are two relevant examples of repeated end-user elicitation.
To correctly analyze and report agreement when multiple proposals are elicited per participant,

new measures have been introduced. For example, Morris [75] defined the max-consensus metric
as the percent of participants suggesting the most popular proposed interaction for a given
referent and the consensus-distinct ratio as the percent of the distinct interactions proposed for a
given referent that achieved a given consensus threshold among participants. These two metrics
offer practitioners flexibility in informing the design of possible interactions in their prototypes,
i.e., “if the goal is to design a system with a single, highly guessable command per referent, then
max-consensus may be more important, whereas if the goal is to understand diversity of opinion
surrounding a referent, or conceptual complexity of a referent ... consensus-distinct ratio may be more
helpful” [75, p. 98]. Vatavu [114] introduced aggregate dissimilarity functions ζ that applied a
dissimilarity function δ for all pairs of proposals elicited from the same participant to compute an
aggregate statistic, such as the minimum, maximum, or average of the dissimilarity values com-
puted by δ . The numerical result computed by ζ was employed in the formula of the consensus rate
C [114].

Note that in our approach to formalizing the classification step presented in Section 2.3.2,
we considered one proposal elicited per participant, following the original end-user elicitation
method [140, 141]. This approach is convenient since all proposals for a given referent are in-
dependent of each other, ensuring the independent and identically distributed trials assumption
required by the statistical tests that we evaluate in Section 9. In the following, we continue with
this premise (one proposal per participant), and leave aggregate measures of agreement and the
corresponding form of the agreement graph for detailed examination in future work. Nevertheless,
we include the measures fromMorris [75] and Vatavu [114] in Table 2 (the repeated elicitation sec-
tion) to offer readers the complete perspective on measures of agreement calculation.

6.7 Summary

So far, we discussed in this section the most influential measures of agreement employed in end-
user elicitation studies, addressing their limitations and improvements over the years, up to their
most recent formulations involving dissimilarity functions. In this context with several measures
of agreement available, it may be difficult for practitioners to determine which one to use in their
work. For example, as we have shown, Tsandilas [108] criticized the fact that “the A and AR in-
dices do not take into account that agreement between participants can occur by chance” (p. 18:2)
and suggested the use of coefficients of agreement from inter-rater reliability to correct for chance
agreement. Du et al. [27] favored AR to A since when “compared to the widely used agreement score
introduced by [Wobbrock et al., 2005], the agreement rates are more accurate measures of agreement.”
Felberbaum and Lanir [31] acknowledged that while “there are several ways to calculate agreement
scores [..], we followed the original method presented in [Wobbrock et al., 2009].” Magrofuoco and
Vanderdonckt [69] reported both A and AR in their Gelicit platform for conducting gesture elici-
tation studies. Ali et al. [3] used the originalA formula [140] on the basis that “subsequent variations
to this formula have been published but all are similar” (p. 178). Moreover, the various notations
from Table 2 can be confusing to newcomers to end-user elicitation. In this context, clarifications
are needed regarding what measure of agreement to use. To address this aspect, we discuss next
“agreement graphs,” a useful concept that we employ to show that A, AR, and C are multiple facets
of one single, all-purpose measure of agreement.
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Fig. 9. An agreement graph can be represented as an adjacency matrix with 0 and 1’s (left) or as a cost
matrix with real values (right). Note: the adjacency matrix from the left was obtained by thresholding the
cost matrix shown on the right with the tolerance ϵ = 45.

7 THE AGREEMENT GRAPH

The agreement graph is a simple, yet useful concept to visualize agreement between elicited pro-
posals, where vertexes correspond to proposals and edges implement the agreement relation, i.e.,
an edge connects vertexes i and j of the agreement graph if the proposals pi and pj elicited from
participants Pi and Pj are in agreement over some referent.
Let A = {ai, j } be a square matrix of size N · N , where N is the number of participants and ai, j

quantifies the agreement between proposals pi and pj elicited from participants Pi and Pj . When
ai, j values are restricted to 0 (disagreement) and 1 (agreement), A takes the form of an adjacency
matrix; see Figure 9, left for an example. However, ai, j can also take any value from R, in which
case the graph is weighted and the A matrix is referred to as a cost matrix; see Figure 9, right. In
that case, the values ai, j represent the dissimilarity between the proposals of participants Pi and
Pj . A cost matrix can be easily transformed into an adjacency matrix by applying a tolerance ϵ to
its weights, i.e., if ai, j ≤ ϵ , the result is 1 and 0 otherwise.

It is worth noting that all the measures of agreement from Table 2 (except the growth rate r ) can
be expressed in terms of the agreement matrix A; see the corresponding definitions from Table 2.
For example, the number of edges of the agreement graph corresponds to the number of pairs of
proposals in agreement and, by dividing that number to the total number of edges in a complete
graph, we get the AR measure [32, 120]. This ratio is referred to in graph theory under the name
“graph density” [95, p. 29].

7.1 An All-Purpose ARMeasure: The ϵ-Agreement Rate (ARϵ )

We stress that our definition of ARϵ , introduced in Equation (2) from Section 2 to operationalize
the five-step model for general end-user elicitation studies in HCI, represents a generalization of
all previous measures of agreement outlined in Table 2, as follows. The connection to C [114] is
direct. (The difference in notations, i.e., τ from [114] becomes ϵ , comes from the new connection
between end-user elicitation studies and the mathematical theory of tolerance spaces [102], where
the notation “ϵ” has been traditionally used.) Once the [·] expressions from Equation (2) have
been evaluated to either 1 or 0, ARϵ reduces to the non-transitive expression of AR [121], which
computes the same numerical values as the original AR formula [32, 120]. Finally, AR and A are
linearly related:

AR =
N

N − 1 · A −
1

N − 1 . (6)

For example, for our previous example, AR = 20
19 · .300− 1

19 = .263. Based on these insights, we can
now clarify research questions [RQ2.1] and [RQ2.2]:
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Research Question [RQ2.1]: How do various measures of agreement relate to each other?

Clarification: Measures of agreement A [140, 141] and AR [32, 120] are linearly related.
Overall, AR is less optimistic compared to A (i.e., the inequality AR ≤ A is always true),
but it has a stable zero-agreement level and admits an expression [121] that can be used
to compute the degree of agreement even when the agreement relation is non-transitive.
The consensus rate C and growth rate r [114] belong to a different class of measures of
agreement: while A and AR need the similarity criteria to be available and agreed upon
beforehand, C and r are criteria-independent. Finally, ARϵ encapsulates all these previous
measures under one single mathematical formulation.

Research Question [RQ2.2]:Which measure(s) of agreement should one use for end-user
elicitation studies?

Clarification: Both A [140, 141] and AR [32, 120] are simple to understand and straight-
forward to calculate by hand, and can be employed when the similarity criteria to judge
whether two proposals are identical, equivalent, or similar can be unambiguously defined
and applied. AR has the advantage of a stable zero-agreement level that does not depend on
the number of proposals put forth for each referent in the study.When the similarity criteria
are not straightforward or are loosely defined and, thus, subjective to misinterpretation, C,
r , and growth curve modeling [114] should be employed. When the elicitation study takes
the form of an inter-rater reliability study (i.e., participants choose from predefined list of
proposals or categories), the coefficients of agreement κ [21], κF [34], or others [40] are
recommended along with confidence intervals [108]. C and ARϵ were specifically designed
to compute agreement for proposals stored in a computational representation, which is one
of our recommendations for future end-user elicitation studies, when possible.

7.2 The Agreement Rate as a Mean

We continue our discussion about the measures of agreement frequently employed in end-user
elicitation, and prove in the following that the AR measure [32, 120, 121], an extension of A [140,
141] and an instance of ARϵ (Equation (2)), represents a measure of location, i.e., a mean. We start
our proof by defining the agreement score ai of the proposal elicited from participant Pi as the
number of other proposals with whom Pi ’s proposal is in agreement. For example, if participant
P3 from a set of N = 20 is in agreement with P1, P7, P12, and P19 over some referent, then the
agreement score of P3 is a3 = 4. For convenience, we normalize ai in the [0, 1] interval by dividing
it by N−1, which is the maximum number of participants with whom Pi could potentially be in
agreement. We use âi to denote this normalized score. For our example, â3 = 4/(20 − 1) = .211.
Consider now the set of values âi for all participants Pi , i = 1..N :{

â1 =
a1

N − 1 , â2 =
a2

N − 1 , . . . , âN =
aN

N − 1
}
.

A practical problem of interest is to characterize the level of agreement for the group of N par-
ticipants from their individual agreement scores, for which the immediate option is to take the
average of values âi . This approach leads to the formula of AR exactly:∑N

i=1 âi

N
=

∑N
i=1

ai
N−1

N
=

∑N
i=1

∑N
j=1 δi, j

N · (N − 1) = AR. (7)

To the best of our knowledge, this is the first time that this derivation of AR has been presented
from the perspective of elicitation studies, despite its multiple origins [32, 103, 114, 120]. (Instead,
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AR has been interpreted as the percentage of pairs of participants in agreement out of all pairs
of participants [120, 121].) In reality, however, AR is an arithmetic mean, as the leftmost part of
Equation (7) clearly shows. This insight has implications for agreement analysis, which we dis-
cuss in Section 8. But first, we provide clarifications regarding the qualitative interpretation of the
agreement rate.

7.3 How to Interpret the Magnitudes of Agreement Rates?

Vatavu and Wobbrock [120] proposed recommendations for the qualitative interpretation of the
magnitude of the AR measure, as follows: values less or equal to .10 can be interpreted as “low
agreement”; values between .10 and .30 as “medium agreement”; between .30 and .50 as “high
agreement”; and values larger than .50 as “very high agreement” [120, p. 1332]. Observing an
agreement rate above the .10 margin means that at least 10% of all the pairs of participants’ pro-
posals are in agreement or, according to our ϵ formalism, at least 10% of the pairwise comparisons
between proposals are less than the tolerance ϵ . Observing an agreement rate above .50 means
that more than 50% of the pairwise comparisons between participants’ proposals are less than
the tolerance. These recommendations were inspired by Cohen’s [23] guidelines for interpreting
effect sizes for the most common statistical inference tests used in psychological research—see
Table 1 from [23, p. 157]—but also by an analysis of the magnitudes of agreement rates reported
by published end-user elicitation studies, for which the average AR value was .261 and by a prob-
abilistic analysis of the AR distribution; see [120, p. 1332]. To simplify their analysis, Vatavu and
Wobbrock [120] assumed partitions of agreement equally probable, while acknowledging that their
assumption may not hold for all referents because of legacy bias. In a follow-up work, Vatavu and
Wobbrock [121] provided a formalism on which to compute the frequency of occurrence of each
partition, i.e., there are 35 ways in which 7 participants can form two groups of sizes 3 and 4 in
agreement and 105 different ways in which the same 7 participants can form three groups of 4, 2,
and 1 participants in agreement.
Tsandilas [108] criticized the use of these guidelines in the practice of end-user elicitation by

claiming that they can lead to overoptimistic conclusions about the true level of agreement reached
by the participants of an end-user elicitation study. Also, Tsandilas criticized the probabilistic
framework that was used to arrive at these guidelines because that framework did not incorpo-
rate bias (an assumption acknowledged in [120]; see above) and because of the assumption of
equally probable partitions (later addressed in [121]). Unfortunately, Tsandilas did not provide an
alternative solution to interpret the magnitude of agreement rates. This unresolved state of rec-
ommendations from Vatavu and Wobbrock [120] and criticisms from Tsandilas [108] warrants
clarification for practitioners that wish to interpret agreement rates.
To clarify this issue, we must understand what influences the magnitude of the agreement rate

measure. So far in this article, we showed that the criteria used to evaluate the similarity between
proposals elicited from participants (implemented in Equation (1) by the variable ϵ) have a direct in-
fluence on the magnitude of the agreement rate (Equation (2)). Figure 4 illustrated this dependency
between ϵ and ARϵ for the 15 referents of the public gesture elicitation dataset of Vatavu [114]:
as ϵ increased (i.e., criteria are more permissive), ARϵ increased as well until it reached 100%.
Vatavu [114] notes that practitioners of end-user elicitation compromise somewhere between the
extremes of 0% and 100%, “favoring some criteria and dismissing others, but it is evident ... how
the choice of the clustering criteria affects the magnitude of reported consensus” (p. 224:3). An ob-
servation from Tsandilas [108] complements this perspective: “comparing agreement rates across
different studies can be misleading because chance agreement can be high for some studies and low
for others” (p. 18:22), although it brings into consideration only chance agreement and not chance
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disagreement; see Section 4. Tsandilas [108] also argues that “agreement and disagreement do not
generally occur with the same probability. For example, full agreement [...] is very unlikely to occur
when participants randomly choose from a very large set of possible signs. Full disagreement [...] is far
more likely to occur in this case.” (p. 18:21). This observation is contained by the more general result
characterizing the dependency between ϵ and ARϵ , e.g., if the criteria are strict and conservative,
full agreement has less probability to occur, but when criteria are more liberal, full disagreement
is less likely. So far, the facts are that (i) different end-user elicitation studies use different criteria
to evaluate the similarity of proposals elicited from the study participants, (ii) the criteria influ-
ence the magnitude of the agreement rate and, furthermore, (iii) the criteria themselves are often
not stated a priori, but are intuited emergently and inductively from the proposals that arise. In
this context, Vatavu [114] proposed a holistic approach in which agreement is interpreted as a
function of the criteria (ϵ) used to judge the similarity of elicited proposals. While this option is
recommendable for advanced models of end-user elicitation and agreement analysis, as we elabo-
rate on in Section 8 and recommend in our guidelines from Section 10, what should practitioners do
regarding the opposing views of Vatavu and Wobbrock [120] and Tsandilas [108]? To understand
more about the use of guidelines to interpret agreement rates, we turn to Cohen [23].
Cohen [23] was motivated to suggest qualitative scales, which he characterized as subjectively

defined (p. 156). In the history of statistics, several recommendations to interpret the magnitude
of test statistics have been proposed and employed for turning quantitative numerical results into
qualitative interpretations. For instance, Landis and Koch [60] recommended using the thresh-
old .20 to denote “slight” agreement for Cohen’s κ, the interval [.21, .40] to denote “fair” agree-
ment, [.41, .60] for “moderate” agreement, and so on. However, the overall answer to the question
“When is κ big enough?” seems to be that “’No one value of κ can be regarded as universally ac-
ceptable” ; see Bakeman [10, p. 1]. This answer has come up frequently in the literature [5, 11, 12].
However, despite contrasting recommendations in the statistics literature, interpreting κ coeffi-
cients and effect sizes based on Cohen’s guidelines represents common practice; even Cohen [23]
noted that “although the definitions [for small, medium, and large effect sizes] were made subjec-
tively, with some early minor adjustments, these conventions have been fixed since the 1977 edi-
tion of SPABS [Statistic Power Analysis for the Behavioral Sciences] and have come into general
use” (p. 156).
In this context, what should practitioners of end-user elicitation do? Should they not inter-

pret any longer the magnitudes of agreement rates? Or, are there perhaps other margins more
suited to this purpose? Our view is that the margins .10, .30, and .50 are nevertheless con-
venient and useful,25 but their adoption should not be done blindly, but rather used in an in-
formed manner, just like the clustering criteria by which proposals are grouped into signs are
selected in an informed manner. The bottom line is that researchers and practitioners need to
make responsible decisions for their studies based on the magnitudes of the agreement values
they measure, decisions that should be consistent with the particulars of their studies and anal-
ysis approaches, e.g., the criteria used to cluster similar proposals into signs [114]. At this point,
we have accumulated sufficient information to provide the following clarification for research
question [RQ2.3]:

25Note that Vatavu and Wobbrock [120] did not just derive their margins from Cohen’s .10, .30, and .50 thresholds, but

they also surveyed the magnitudes of agreement rates reported by 18 gesture elicitation studies published until 2015 and

used the results to support these margins. For example, the average AR values of the studies examined was .261; only 3 out

of the 18 average AR values (16%) were above .40, 12 out of 18 (66%) were under .30, and 2 were near .10.
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Research Question [RQ2.3]: How to interpret the magnitude of agreement in end-user
elicitation studies?

Clarification: The margins .10, .30, and .50 proposed by Vatavu and Wobbrock [120] for
low, medium, and high agreement are reasonable guidelines for interpreting the agreement
results of end-user elicitation by connecting to the practice of interpreting effect sizes for
a variety of test statistics [23]. Nevertheless, these margins should be used with care, as in-
dicated by Tsandilas [108], to prevent drawing incorrect and misleading conclusions. Espe-
cially when it is the same practitioners that set the criteria to judge the similarity of elicited
proposals and that employ those criteria to calculate and report agreement. The margins
.10, .30, and .50 can be used as rough guidelines for the qualitative interpretations of agree-
ment rates, but not necessarily to draw final conclusions about the outcomes of end-user
elicitation studies or to compare the agreement rates reported by different studies. Those
conclusions should consider the particularities of the specific investigations, application
domains, contexts of the studies (e.g., participants, criteria, bias), and agreement analysis
approaches.

We continue our discussion regarding how to calculate and report agreement by identifying
models for agreement analysis in end-user elicitation studies.

8 MODELS FOR AGREEMENT ANALYSIS

In a 2008 paper, Stern et al. [103] intuited that acquiring gestures from participants is not a triv-
ial process, and considered three methods, which they called “Direct Video Capture” (i.e., gestures
performed by participants are recorded on camera), “Gesture Image Database” (gestures are picked
by participants from an existing catalog), and “Coded Gesture Entry” (participants generate ges-
tures by manipulating some parameters, such as the flexion of the fingers to form a specific hand
pose). From these approaches, Stern et al. [103] decided to go with “the coded gesture entry method
[..] as one combining reasonable time demands, and accuracy in gesture labeling” (p. 98). Later, in a
2014 paper on replicating gesture elicitation studies, Nebeling et al. [82] found value in discrim-
inating between the “human” and “system recognizers”, i.e., “dividing the elicitation process into
two parts, first using a human recogniser and then a system-based recogniser. This mixed-initiative
design allowed participants to first think without any technological constraints, but then also get a
feel for the technology and perhaps reconsider their interaction proposals to make them feasible for
implementation” (p. 23). Thus, there are several ways in which prior work has approached agree-
ment analysis, some of which we have already hinted to in our discussion so far. In this section,
we identify precisely and discuss models for agreement analysis in end-user elicitation studies.

8.1 The Expert, Codebook, and Computer Models for Agreement Analysis

Based on the original guessability maximization method of Wobbrock et al. [140], the approaches
of Stern et al. [103] and Nebeling et al. [82], Tsandilas’ [108] formalization of bias [76], and previ-
ous work on expert [77] and crowd [3] similarity judgments and automatic computation of agree-
ment [114], we propose the following models for agreement analysis in elicitation studies:

8.1.1 The “expert” Model. In this model, the knowledge about which proposals are similar is
defined by an “expert.” The expert evaluates the proposals and determines agreement or disagree-
ment [3]. An interesting recent work showed that experts’ evaluations can be reliably reproduced
from the similarity judgments of a crowd [3]. Grijincu et al. [38] is another example where the
crowd was employed, this time to code individual characteristics of the elicited gestures, e.g.,
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whether the hand pose used during the articulation of a gesture was spread, flat, and so on. In
such cases, the expert model still applies as it is the crowd, as a whole, that embeds the tacit
knowledge regarding which proposals are similar and which are not.

8.1.2 The “codebook” Model. In this model, experts are not available and the task of evaluating
the similarity between proposals and determining agreement or disagreement is left to a non-
expert member of the research or design team (e.g., a study facilitator or data analyst). This model
is by far the most ubiquitous in published elicitation studies, where the authors do the agreement
analysis themselves.
The first step in applying this model consists of creating a codebook that exhaustively enumer-

ates all the properties relevant for the application domain for which proposals are elicited. This
is usually implemented in the form of a taxonomy. For example, Ruiz et al. [93] classified motion
gestures by their physical characteristics using three criteria: (1) kinematic impulse (low, moderate,
and high), (2) dimension (single-axis, tri-axis, six-axis), and (3) complexity (simple and compound).
Each category had a specific definition, e.g., a “moderate” impulse denoted a gesture with jerk
between 3 and 6m/s3 [93, p. 202]. Other taxonomies have been proposed [18, 26, 27, 36, 139],
but they essentially represent variations of the form-nature-binding-flow taxonomy of the first
hand-gesture elicitation study published by Wobbrock et al. [141]. A simpler alternative to using
a full taxonomy is to define a set of characteristics. For example, the coding manual of Troiano et
al. [107] contained definitions of gestures according to the actions that compose the gestures and
the number of fingers used for performing those actions.
In the second step of the codebook model, the experimenter characterizes the properties of the

elicited proposals according to the codebook. Proposals are classified according to the categories
of the taxonomy, usually by two or more persons, and an inter-rater reliability coefficient, such as
κ from Equation (4), is calculated [18] to confirm the reliability of independent ratings. (Note that
this is an intermediate step and it doesn’t relate to agreement calculation between proposals. At
this stage, researchers learn about the traits of their participants’ proposals, i.e., our step 6 from
Figure 1. For example, Chen et al. [18] discovered that nearly 60% of the gestures proposed by their
participants for ear-based input were metaphorical in nature, whereas only 12% were symbolic.)
The codebook can be finite or infinite in terms of the number of distinct proposals that it can
accommodate. For example, the physical characteristics taxonomy of Ruiz et al. [93] mentioned
above allow a number of 3 × 3 × 2 = 18 distinct characterizations for motion gestures. However,
if the first criterion of their taxonomy (kinematic impulse) were numerical instead of ordinal (i.e.,
actual jerk values retained), the number of distinct characterizations would be essentially infinite.
Other examples of criteria measured on the interval or ratio scale generating infinite codebooks
include the production time of a gesture or the amplitude of the gesture movement. A specific case
of a finite codebook employs binary characteristics only, e.g., whether the left hand was used to
produce the gesture, whether the gesture shape is symmetric, and so on. In that case, a proposal
can be represented as a binary array [66, 67].

These two steps allow variations. For example, while it is more sensible to define the codebook
before the study, some studies have created it during the analysis process [73, 107], where the
coding manual was updated each time a new proposal did not match the existing definitions, akin
to open coding in grounded theory [104]. Yet in other studies, the codebook was reduced to a
set of rules of thumb, e.g., Piumsomboon et al. [87] defined similar gestures as “having consistent
directionality although the gesture[s] had been performed with different static hand poses” (p. 958).
Other approaches revisit the original classification as more information becomes available during
the process, e.g., after constructing an affinity diagram, Chen et al. [18] noted that more factors
can impact ear-based interactions and regrouped the elicited gestures.
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8.1.3 The “computer” Model. In this model, a computer program is employed to automati-
cally compute the dissimilarity between any two elicited proposals [114]. This approach saves
considerable time for the analysis of proposals elicited from participants compared to the pre-
vious two models, and also helps reduce human error and subjectivity in deciding which pro-
posals are similar and which are not. This model requires proposals to be captured in a numeri-
cal, computational form (e.g., whole-body gestures captured using Kinect [114], hand poses cap-
tured with the Leap Motion controller [123] or with a numerical glove [122], or strokes captured
by a touch-sensitive surface [143]) as well as a dissimilarity function to be defined and imple-
mented for the specific representation in which proposals are captured (e.g., DTW [106] and point-
cloud matching [116] represent popular examples of dissimilarity functions employed for gesture
classification).
The computer model also applies to situations where testing for agreement is straightforward

due to the way in which eligible proposals are defined, but the acquisition of proposals is imple-
mented by a computer. For example, in the original EdgeWrite system [140, 142], a stroke ges-
ture was defined by an objective sequence of corners within a square, e.g., top-left, top-right,
and bottom-right corresponded to the letter “t”. Thus, stroke gestures could be represented as
a sequence of integers corresponding to those corners, e.g., 124, and testing for agreement was
reduced to merely comparing two integers. In that case, gesture recognition and calculation of
agreement were straightforward once the gesture had been captured, and agreement in this case
was strict integer equality, i.e., ϵ is exactly zero. The computer model applies here not because
two numbers can be compared by a computer in order to recognize a gesture, but because the
acquisition device (formally referred to in this model as the “computer”) detects when a specific
corner has been reached. And this detection process takes place automatically, without any human
intervention.
According to the observations from Nebeling et al. [82], what we refer to as the computer model

implements the best way to transfer the results of an elicitation study into an actual user interface
or interactive system, since the same “computer” (read: sensor, detection method, dissimilarity
function, algorithm, or device) is used for both agreement calculation during the design, prototyp-
ing, and testing stages, but also in the final system that is deployed to end users.
Note that our formalization of the classification step from Section 2.3.2 does not impose any

requirements on the δ function other than non-negativity. Therefore, δ can equally represent the
outcome of an expert’s tacit reasoning, the use of a codebook, and the values computed by a
dissimilarity function devised for gesture recognition in the computer model. Based on the our
discussion thus far, we can now address research questions [RQ3.1] and [RQ3.2]:

Research Question [RQ3.1]:Are there viable models for the analysis of elicited proposals?

Clarification: There are three possible models for evaluating the results of end-user elicita-
tion studies: the expert, the codebook, and the computer model. Of these, the codebook model
has been the most used in published gesture elicitation studies.

Research Question [RQ3.2]: Which model should one adopt for the analysis of elicited
proposals?

Clarification:We recommend the computer model for reasons of efficiency and replicabil-
ity of results, but also due to straightforward transfer of the results of an end-user elicitation
study into an actual system. However, we acknowledge that the computer model is not al-
ways economical, as it might require, for example, the implementation of a working system
in order to effect this model.
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8.2 Bias in End-User Elicitation Studies

An interesting discussion concerns bias that has been observed in end-user elicitation stud-
ies [76, 94, 108], e.g., when participants rely on their past experiencewith user interfaces to propose
commands for new interactive systems and technologies (“It’s a WindowsWorld” [141]), that may
affect the magnitude of reported agreement among participants’ proposals because of agreement
occurring by chance [108]. Morris et al. [76] coined the term “legacy bias” to refer to situations
where users’ proposals in gesture elicitation studies in particular, and in end-user elicitation in
general, are influenced (biased) by their experience with other interfaces and technologies, such
as WIMP interfaces. They noted: “legacy bias limits the potential of user elicitation methodologies
for producing interactions that take full advantage of the possibilities and requirements of emerging
application domains, form factors, and sensing capabilities” [76, p. 42]. To address this aspect, the
authors proposed production, priming, and partners as three techniques aimed at reducing legacy
bias, which were evaluated in [43]. Beyond legacy bias, Ruiz et al. [94] identified “performance
bias” corresponding to the situation where the artificial setting in which the end-user elicitation
study is conducted could prevent users’ consideration of long-term aspects of the interactions they
propose, such as fatigue for gesture input, and argued for the use of “soft constraints” during elic-
itation to make users aware of such aspects. Finally, in the attempt to isolate bias, Tsandilas [108]
connected bias with chance agreement and considered bias as having a central role in his approach
based on inter-rater reliability methods: “a key argument of our analysis is that any kind of bias can
deceive researchers about how participants agree on signs. The agreement measures that we recom-
mend remove the effect of bias” (p. 18:7).
It appears that the community has been concerned that legacy bias (1) could limit the effec-

tiveness of the end-user elicitation method in discovering proposals in whatever new interactive
context is being examined [76], but also (2) that bias may be related to agreement occurring by
chance and, therefore, it should be isolated and removed from the computation of agreement mea-
sures, just like chance agreement is corrected for in inter-rater reliability studies [108]. While the
first concern is appropriate and addressable with changes in the elicitation procedure [76, 94, 136],
the second concern is debatable. Legacy bias means that users rely on their past experience when
acting in a new context, whereas agreement by chance means that users disregard the referent but
still propose something, in the lack of a suitable proposal, that may turn out to be the same answer
as another user doing the same, i.e., the “overall tendency of some signs to appear more frequently
than others independently of the actual referents” [108, p. 18:6] (emphasis ours). Therefore, while

legacy bias identifies exactly the source of a proposal as a match for the prompted referent, agree-
ment by chance ignores any source and considers the effect of chance alone. This distinction is
important because legacy bias is not necessarily a bad thing (remember that its downside is that it
may limit the effectiveness of discovering new commands, but in some cases, familiar commands
might be desirable). In fact, Köpsel and Bubalo [56] argued that designers could benefit from legacy
bias to smooth users’ transition toward new forms of interaction with computing systems. And, in
fact, Dingler et al. [26] noted: “instead of reducing such biases and expectations as proposed by Morris
et al. [76] we can take them into consideration when unifying a gesture set” (p. 10). In that case, legacy
bias was useful to the researchers to discover gestures that were consistent and, thus, transferable
across several types of devices. Williams and Ortega [136] argued that legacy gestures reduce the
learning curve for interactions with new technologies, and pinpointed that legacy gestures are
not effective when they do not match the capabilities of the new interaction space. To address this
downside, the authors proposed “evolutionary gestures,” a technique that supports the design of
gestures that build on the benefits of legacy bias. In their survey of gesture elicitation studies for
mid-air interaction, Vogiatzidakis and Koutsabasis [127] noted: “It becomes apparent that tackling
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or not the legacy bias is a matter of design decision and it mainly depends on whether the end prod-
uct/system is meant to be a walk-up-and-use system or a system that would take full advantage of the
novel interaction techniques” (p. 8). In this context, should legacy bias be connected to agreement
simply occurring by chance (i.e., the participant that is blind to the referent [108]) and its effect
removed from the agreement measure as in inter-rater reliability studies [108]? Or should legacy
bias be seen as an intrinsic part of how users genuinely agree about their proposals for suitable
interactions, even when those proposals are influenced by the users’ past experiences with other
interactive systems?
To address this debate, let us consider what happens with each referent in the original elicitation

procedure [141]: after the user confirms that they understood the effect of the referent, the user
proposes a command for that referent, and is asked to rate, among other things, the suitability of
the proposed command for the effect they have just witnessed as a goodness-of-fit rating [141].
Sometimes, the experiment protocol collects other kinds of ratings, such as about usability and
social comfort [18] or subjective satisfaction [68]. Suppose that the command is legacy biased, but
the users rated it highly suitable for the referent and the same command and rating were observed
for other users as well. Should this effect of legacy bias be removed from the computation of
agreement? Of course not, because those users genuinely agree and believe in the goodness of
fit between their proposals and the referent. And other users, in the future, may likely come up
with the same command, which would make the system intuitive and readily usable, i.e., “design
for guessability” [140, 141]. Suppose now that the users rate their proposals a poor fit for the
effect they witnessed, but still their proposals match. At this point, the experimenter can decide
to find out more about the poor fit ratings and encourage the participants to do better, e.g., via
production or partnering [76], and, in the case when such methods fail to increase the goodness
of fit, the experimenter will need to make a decision about whether these low quality proposals
are actually worth considering for their study or not. The experimenter could ponder at whether
the agreement between the two low quality proposals represents the effect of chance alone [108],
augmented perhaps by legacy bias.However, imagine the reversed situation: Two participants appear
to disagree in their proposals, but the two proposals are rated low again so there is little confidence,
from the part of both participants, in how good a fit those proposals are to effect the referent. Could this
be a situation of disagreement by chance? How could the experimenter tell, without being deceived by
an agreement that appears too high [108] or, as we suggest, one that appears too low? One reasonable
solution would be ignoring low quality proposals according to users’ own ratings of howwell they
did, but this would affect not only situations of chance, either agreement or disagreement, but also
proposals that are simply a less good fit. Instead, focusing on procedural changes to the elicitation
method by encouraging production of multiple variants of proposals for the same referent [76] or
the evolutionary gesture procedure [136] that leverages the legacy bias to arrive at new proposals,
better suited for the new context and technology under study, is the best way to elicit proposals
that users believe represent a good fit for referents. And when goodness of fit is high, there can
be no argument for correcting the level of agreement, since that agreement is likely to generalize
beyond the sample to the larger user population.
In this context, procedural bias (e.g., not giving the correct instructions, an artificial environ-

ment to collect proposals) or classification bias (e.g., experimenters being biased in selecting some
categories from their codebook) should probably receive more focus. Grijincu et al. [38], Ruiz and
Vogel [94], Tsandilas [108], and Vatavu [114] discussed such types of biases. For example, Grijincu
et al. [38] acknowledged classification bias and proposed a crowd-sourcing approach to prevent
it: “In most previous studies that classify user-defined gestures the authors themselves classified the
gesture sets... This approach does not scale well as the number of gestures go up and is also subject
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to a possible strong author bias” (p. 27). Next, we connect these aspects to our three models of
agreement analysis: expert, codebook, and computer.

8.3 Modeling Bias

Tsandilas [108] was the first to model bias numerically in end-user elicitation studies. His discus-
sion considered various sources of bias, including legacy bias [75], performance bias [93] (as one
kind of bias from a larger category called procedural bias [108]), and bias that may be induced
during the classification of proposals into signs. He concluded that “biases are additive, so overall
bias will be observed as an imbalance in the distribution of signs across all referents” [108, p. 18:6]. To
this end, Tsandilas employed two probability functions, the Zipf–Mandelbrot and Discrete Half-
Normal, to model bias for or against specific signs, while affirming that other functions, such as
generated by the interpolation of the former, could be equally employed. A bias function, as used
by Tsandilas, gives the probability of selecting the kth most probable sign when ignoring or hav-
ing no information about the referent. Thus, Tsandilas’ approach to modeling bias applies directly
to signs as the final result, i.e., the “overall tendency of some signs to appear more frequently than
others, independently of the actual referents” (p. 18:6). However, our model of end-user elicitation
(Figure 1), enables localization of these sources of bias: end-user bias [75] occurs at the levels of the
mental model and proposal articulation, from where it should be further picked up in the descrip-
tion of the proposal by the recording apparatus employed in the study. Procedural bias [94, 108]
affects the proposal step (e.g., because of the artificial, out-of-context setup, incomplete or confus-
ing instructions delivered to participants, inadequate sampling of participants) and the description
of the proposal (e.g., because to the choice of a recording apparatus with insufficient capability to
capture the full subtlety of the participant’s proposal). Ultimately, the type of model to be used for
agreement analysis (expert, codebook, and computer) may introduce specific kinds of bias, which
we acknowledge as being distinct in their nature, as follows:

(1) In the expert model, the criteria employed for evaluating the similarity between proposals
are embedded within the expert, and getting access to those criteria may be difficult. For ex-
ample, expert knowledge may prove difficult to articulate explicitly or, in the case of crowd
workers [3], information about their similarity judgments may not be available at fine levels
of detail, but rather in the form of simple yes/no similarity votes [3]. As no other infor-
mation regarding agreement formation is available in the expert model except for the final
set of signs, expert bias toward specific signs can be modeled with monotonically decreas-
ing probability distribution functions, such as Zipf–Mandelbrot or others, as proposed by
Tsandilas [108].

(2) In the codebook model, bias can be present especially if the codebook is finite and has few
categories. In that case, the end-user elicitation study can be modeled as an inter-rater re-
liability study [40], since the data analyst practically “rates” each proposal according to a
predefined set of categories or properties. For each category, bias applies to some extent
and, thus, can be again modeled using monotonically decreasing functions as the ones used
by Tsandilas [108] for the final signs.

(3) However, when the codebook is not finite or when proposals are captured in a numerical,
computational form, as in the computer model, end-user elicitation studies are fundamen-
tally different from inter-rater reliability studies since there is no rating taking place from
predefined categories.

Figure 10 illustrates the various sources of bias in end-user elicitation in relation to Figure 1, the
three models of agreement analysis, and the two types of outcomes of an end-user elicitation study,
signs and traits. Next, we introduce simulation procedures for each model of analysis, extending
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Fig. 10. Various sources of bias in end-user elicitation studies and relation to the end-user elicitation model
(Figure 1) with signs and traits as outcomes.

Tsandilas’ [108] approach from final signs to bias affecting actual proposals (Figures 1 and 10) with
a formalization that accommodates the use of dissimilarity functions:

(1) The expert model. Following Tsandilas [108], we model bias using the Zipf–Mandelbrot dis-
tribution with the exponent s = 2 and using nine distinct values for the B parameter, which
were derived experimentally by Tsandilas to correspond to agreement ratesAR ranging from
.10 to .20, .30, . . . , and .90, respectively; see [108, p. 18:10].

(2) The codebook model. We consider a codebook containing k criteria, where each criterion
takes categorical values, e.g., the kinematic impulse of smartphone motion gestures can be
either low, moderate, or high [93], or the number of fingers touching the screen for gestures
performed on deformable displays can be either one, two, or at least three [107]. Using this
approach, a proposal can be formalized as an array ofk categories,

{
ξ1, ξ2, . . . , ξk

}
, where ξi is

the category corresponding to the ith criterion. We implement bias by using the same Zipf–
Mandelbrot distribution, but this time applied for each criterion individually. The difference
with the previous model is that we now simulate bias for proposals instead of the final signs,
and each criterion can be affected by a different amount of bias corresponding to a different
value of the B parameter of the Zipf–Mandelbrot distribution. We evaluate the dissimilarity
between two proposals using a distance function based on the probabilistic information-
theoretic approach proposed by Lin [64], which seems to be one of the best performing
distances for categorical data [14].

(3) The codebook model (variant). In this variant of the codebook model, we represent proposals
as binary arrays, i.e., ξi ∈ {0, 1}. This specific representation enables us to model bias by sam-
pling from another distribution type, Bernoulli, characterized by the probability of success.
We use Lin’s distance [64] to evaluate the dissimilarity between proposals.

(4) The computer model. We model each proposal as a feature array of size k with values ran-
domly sampled from normal distributions with means zero and varying SDs. We employ the
nine SD values derived by Tsandilas [108] to correspond to AR from .10 to .20, . . . , and .90,
respectively. In this model, bias is the tendency to sample values closer to the mean zero. We
evaluate the dissimilarity between two proposals using several dissimilarity functions: (1)
Euclidean, (2) Manhattan, (3) Minkowski with p = 0.5, and (4) squared Euclidean. This selec-
tion of distances enables a wide range of simulation options that correspond to real-world
scenarios, e.g., the $1 gesture recognizer [143] employs the Euclidean distance; Minkowski
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Table 3. Agreement Rate (AR) Absolute Errors and Peak Non-Transitivity Rate
(NTR1) Results for Our Simulations with 13 Distinct Combinations of Models

of Analysis, Bias, and Dissimilarity Functions

Model/Distribution/Dissimilarity k
|ARtarget−AR|
mean (sd)

Peak NTR1

mean (sd)

Expert/Zipf–Mandelbrot/Identity 1 .038 (.010) 0.0% (0.0%)
Codebook/Zipf–Mandelbrot/Lin 5 .003 (.006) 32.1% (1.9%)
Codebook/Bernoulli/Lin 5 .025 (.013) 34.3% (2.1%)
Computer/Normal/Minkowski (p = 0.5) 5 .000 (.000) 31.9% (1.1%)
Computer/Normal/Minkowski (p = 1) 5 .000 (.000) 28.8% (1.5%)
Computer/Normal/Minkowski (p = 2) 5 .000 (.000) 26.5% (1.9%)
Computer/Normal/Squared Euclidean 5 .000 (.000) 26.9% (1.7%)
Codebook/Zipf–Mandelbrot/Lin 10 .000 (.000) 34.6% (1.4%)
Codebook/Bernoulli/Lin 10 .001 (.001) 37.7% (1.2%)
Computer/Normal/Minkowski (p = 0.5) 10 .000 (.000) 33.6% (0.8%)
Computer/Normal/Minkowski (p = 1) 10 .000 (.000) 30.1% (1.4%)
Computer/Normal/Minkowski (p = 2) 10 .000 (.000) 27.3% (1.6%)
Computer/Normal/Squared Euclidean 10 .000 (.000) 27.6% (1.6%)

In this table, k is the number of criteria from the codebook for the codebook analysis model or

the number of features to represent a gesture in the computer model.

represents a generalization of both the Euclidean (p = 2) and Manhattan (p = 1); Euclidean
and Manhattan are metrics (i.e., they respect the triangle inequality), while Minkowski with
p = 0.5 and squared Euclidean are not.

Except for the expert model, where dissimilarity functions are not explicitly defined but rather
implicitly embedded in the expert, each approach can be used to generate a dissimilarity matrix
A for a population of proposals. For the expert model, this matrix is actually an adjacency matrix
and the agreement rate can be computed directly; see Table 2. For the other models, the matrix can
be transformed into an adjacency matrix by using a tolerance level ϵ equal to the quantile of the
values from A that corresponds to the target AR. We provide an example to illustrate our approach.
Consider that we wish to generate a population of 100 proposals with a target AR of .735 by using
the codebook model. Assume that our codebook contains a number of k = 5 criteria, for which the
probabilities of individual categories are modeled using a Zipf–Mandelbrot distribution specified
by given α and B’s, e.g., α = 0.5 and B = 0.306. We generate a proposal by randomly drawing sam-
ples from each distribution to generate each of the proposal’s k categories. We repeatedly draw
proposals until we reach our target population size. The next step is to compute a dissimilarity ma-
trix based on these proposals using a dissimilarity function, in this case one that applies to nominal
data. (The next section presents results for various such dissimilarity functions.) The dissimilar-
ity matrix is then used to generate an adjacency matrix in order to compute the agreement rate,
as we showed above. To obtain an exact value of the agreement rate, we select ϵ to be the 735th
quantile of the values from the dissimilarity matrix, which assures us than 73.5% of the values
will be less than ϵ . Computing the agreement rate on the resulting adjacency matrix will result in
AR = .735 exactly. The computation is similar for the other models of agreement analysis, where
other probability distributions and dissimilarity measures are used, as indicated above.
Table 3 shows the results of applying each simulation method to generate populations with AR

from .10 to .20, . . . , and .90, and using k = 5 and k = 10 categories for the codebook and computer
models (and k = 1 for the expert model). For codebook, these choices for k are a compromise
between “too few” and “too many” criteria for a practical end-user elicitation study. For instance,
the majority of taxonomies [36, 94, 141] used to characterize the properties of elicited proposals
employ a number of dimensions around k = 5. For the computer model, k = 10 approaches the
number of k = 13 features employed by the popular Rubine gesture recognizer [92].
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Results given in Table 3 are averaged from 11,700 simulation runs: 13 (models) × 9 (target AR
values) × 100 repetitions. Table 3 shows that our simulation procedures are exact (the absolute
errors with respect to the target agreement rates are zero), except for the expert model using the
Zipf–Mandelbrot distribution, which we borrowed from Tsandilas [108] for comparison purposes,
and except the codebook and the Bernoulli distribution with k = 5, for which there were too few
categories (25 = 32) that generated ties, affecting our quantile method; Bernoulli with k = 10
was not a problem, however; see Table 3. Besides being exact, our simulations generate popu-
lations for which the non-transitivity of the agreement relation, measured using Peak NTR1

26

falls between 23.2% and 38.4%, values which are similar to those observed in actual data; see
Table 1.

Our procedure can be applied for any value |P | of the size of the population that one wishes to
generate with an exact agreement rate, e.g., AR = .72, AR = .725, or AR = .7253. The precision of
the target AR, expressed with its number of decimals, depends on how many distinct values are
available in the dissimilarity matrix to compute the quantile corresponding to the required level
of precision, i.e., the 72nd quantile out of 100 for AR = .72 or the 7253rd quantile of 10,000 for
AR = .7253. As |P | gets larger, finer precision can be attained. For practical needs represented by
agreement rates of .10, .20, . . . , and .90, respectively, the results from Table 3 show that |P | = 100
is enough to generate these exact agreement rates. However, the theoretical space and time com-
plexity to generate the dissimilarity matrix, compute the quantile, and generate the corresponding
adjacency matrix isO ( |P |2) and the simulations that we present in the next section need samples
to be drawn from infinite populations, |P | → ∞. Nevertheless, there is a simple way to apply our
method with good results for populations that are infinite. In that case, we estimate the values
of the quantiles that determine exact agreement rates in the infinite population, e.g., AR = .20,
with the quantiles derived for small populations, for which computations are manageable, such
as |P | = 100, as given in Table 3. In practice, we found this approach to work well; see Table 4
that shows the mean agreement rates computed for two independent samples of N = 20 proposals
drawn repeatedly (117,000 times = 9 target AR’s × 13 models × 1,000 repetitions) from infinite pop-
ulations corresponding to the 13 models from Table 3. We expect even better estimations of the
quantiles for the infinite population and, correspondingly, AR values closer to the targets as well
as lower SD for the random samples, when informing those estimations from computations for
finite |P | values larger than 100, but Table 4 already shows good results for practical purposes.27

The next section details our simulation procedures for Type I error rates and power of statistical
tests for agreement rates and within-subjects and between-subjects designs.

9 STATISTICAL TESTS FOR AGREEMENT RATES

Vatavu and Wobbrock [120, 121] were the first to discuss statistical inference for end-user elici-
tation studies, and introduced the Vrd [120] and Vb [121] tests for within- and between-subjects
designs. In end-user elicitation, statistical tests are useful to help the researcher understand the
observed difference in the magnitude of two or more agreement rates corresponding to several
referents (for within-subjects designs) or the same referent and multiple user groups (for between-
subjects designs). The Vrd test was proposed as an adaptation of Cochran’s Q test [20] to elicita-
tion data and addressed within-subjects designs, e.g., to be able to compare the agreement rates
obtained by the participants of an elicitation study with two referents, such as “volume up” and

26Peak NTR1 is defined as the maximum number of tuples of three participants, out of all distinct tuples (
N
3 ) for which

the transitivity property is met for ARϵ , when ϵ varies from 0 to 1; see Section 3.
27Note that the simulations from Tsandilas [108] do not employ populations with exact agreement rates either. However,

for finite-sized populations, our method produces exact agreement rates.
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Table 4. Mean Agreement Rates, AR1 and AR2, For Two
Independent Groups of Size N = 20 Repeatedly Drawn from

Infinite Populations with Various Distributions with
Quantiles for Target Agreement Rates .100 to .900 Estimated

from Populations of Finite Size 100 as in Table 3

Target AR Num. trials
AR1 mean

(sd)
AR2 mean

(sd)
.100 13,000 .105 (.044) .106 (.045)
.200 13,000 .201 (.059) .206 (.059)
.300 13,000 .301 (.076) .304 (.076)
.400 13,000 .402 (.086) .404 (.087)
.500 13,000 .499 (.091) .502 (.090)
.600 13,000 .595 (.093) .602 (.095)
.700 13,000 .700 (.087) .700 (.090)
.800 13,000 .803 (.076) .802 (.079)
.900 13,000 .901 (.059) .901 (.059)

Table 5. Overview of Statistical Tests Proposed for End-User Elicitation Data

Test Reference Scope Example

Vrd [120] within-subjects designs
Vrd (3,N=80) = 121.737,

p = .001
Vb [121] between-subjects designs Vb (2,N=20) = 74.938, p = .028

Confidence intervals (jackknife) [108] within-subjects designs
ΔκF = .04 95%,
CI= [−.06, .14]

Confidence intervals
(bootstrapping)

[108] between-subjects designs
ΔκF = .06, 95% CI
= [−.11, .16]

“volume down.” The Vb test was devised in analogy with Fisher’s exact test [33] and introduced
for between-subjects elicitation study designs, e.g., for comparing the agreement rates achieved by
two independent user groups for “volume up.” Recently,Vrd andVb were re-evaluated by Tsandilas
[108] as having large Type I error rates and, as an alternative, Tsandilas suggested bootstrapping
methods that “can be used to produce variance estimates, standard errors and confidence intervals
for almost any agreement index, including agreement rates, κ coefficients, and agreement specific to
categories” (p. 18:29). Table 5 presents an overview of these tests.

These contrasting results from the literature are very likely to confuse practitioners. Therefore,
we present in this section extensive evaluation results for 16 statistical tests applied to the AR mea-
sure of agreement for both within- and between-subjects experimental designs. Since AR is an
instance of ARϵ for a specific ϵ value (Equation (2)), our results apply to the ARϵ measure as well.
Statistical tests for AR have been evaluated in previous work [108, 121] using Monte Carlo pro-
cedures, where populations of participants were simulated, random samples selected, and Type I
errors estimated. In the following, we discuss practical aspects for such simulations in connection
to our three models: expert, codebook, and computer. Also, beyond previous work [108, 121], we
report results on statistical power as well. Note that, unlike Type I errors that are fixed based on
an alpha threshold, power depends on the size of the sample or the difference that is expected to
be detected.

9.1 Between-Subjects Elicitation Studies

Our Monte Carlo procedure for between-subjects designs is as follows:

(1) LetM be a simulation method represented by a specific model of analysis (e.g., codebook),
a given distribution of the characteristics of the proposals (e.g., Bernoulli for proposals en-
coded as binary vectors), and a dissimilarity function to compare proposals (e.g., Lin [64])
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that is used to generate random samples from an infinite population of proposals. We com-
pute tolerance values ϵ ’s for specified AR’s from the set {.10, .20, . . . , .90} based on a finite
population28 of size |P | = 100 with proposals generated using method M. These ϵ ’s will
be used in the next steps as estimates for the ϵ ’s that determine exact agreement rates
{.10, .20, . . . , .90} in the infinite population, as discussed in Section 8.3.

(2) Sample two independent groups of N = 20 proposals29 from the infinite population speci-
fied by the modelM and use the tolerance values ϵ ’s computed at step (1) to arrive at the
agreement matrices for the two groups.

(3) Compute the agreement rates for the two samples,AR1 andAR2, and run statistical inference
tests. For each test, count a Type I error when the reported p-value is less than the critical
significance levels of .01 and .05, respectively.

(4) Repeat steps 1 to 3 for 100 times.

To evaluate statistical power, we modify step 1 by computing two sets of ϵ ’s from two finite pop-
ulations of |P | = 100 proposals each, having two distinct exact agreement rates with an absolute
difference of at least .10. We modify step 2 by sampling one group of N = 20 proposals from each
of the two infinite populations according to methodM.
Previous work evaluated only one statistical test [121] or two tests at most for AR, e.g., Vb

vs. bootstrapping [108]. However, our revelation from Section 6 that AR is a mean enables us
to consider and evaluate a wide range of statistical tests based on two samples {âi }, such as the
popular t-test or its nonparametric analogs, as follows:

(1) The independent-samples t-test. Since the agreement rate AR represents the mean of {âi }
(Equation (7)), the t-test can be directly used to compare the two means AR1 and AR2. For
this test, we used the R implementation of the t.test function.30 Note that this test assumes
that observations are independent, which does not always occur for the AR measure when
interpreted as a mean, even in the presence of non-transitivity. Therefore, we expect larger
Type I errors for this test, but we include it anyway in our simulations to verify such assump-
tions and to present them in a clear manner to readers.

(2) Welch’s variant of the independent-samples t-test that does not assume homogeneity of vari-
ances. We used the R function t.test with the var.equal argument set to FALSE.

(3) The Wilcoxon–Mann–Whitney test31 implemented by the wmw function from Rand Wilcox’s
“Rallfun” R library of robust statistics [133]. This test computes the probability that a ran-
domly sampled observation âi from the first group is less than a randomly sampled obser-
vation âj from the second group; see Wilcox [132, p. 349].

(4) The Brunner–Munzel version of theWilcoxon–Mann–Whitney test, implemented by the bmp
function from the “Rallfun” library [133], and recommended for situations where tied values
and heteroscedasticity might occur [132, p. 355].

(5) Cliff’s test, implemented by the cidv2 function from the “Rallfun” R library [133]. Cliff’s
test improves on Wilcoxon–Mann–Whitney with a heteroscedastic confidence interval that
applies to situations when the wrong standard error is used by the latter, which results in
poor power [132, p. 352].

28Since we consider one proposal elicited per participant, the size of the population of proposals is also the size of the

population of all possible participants.
29Twenty participants has been the commonly accepted practice in the literature for running end-user elicitation studies.
30https://www.rdocumentation.org/packages/stats/versions/3.6.1/topics/t.test.
31Also known as the the Mann–Whitney U test [71].
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(6) The Kolmogorov–Smirnov test [55, 100] implemented by the ks function from [133]. The test
evaluates the hypothesis that the two groups have identical âi distributions.

(7) The Vb test proposed by Vatavu and Wobbrock [121].

(8) The Vb test with the conditional margins assumption implemented by the AGATe
toolkit [121].32 This test, which we will refer to as V�

b
to differentiate it from Vb , works on

the same probabilistic formalism as Vb , but implements the conditional margins of Fisher’s
exact test [33, pp. 99–101]. (Specifically, the sum from Equation 8 from [121] is restricted to
only those e1, e2, . . . , ek that sum to a1 + a2 + · · · + ak , i.e., the marginal sums of the contin-
gency table are conditioned.) We include this version in our evaluation since Tsandilas [108]
evaluated only Vb ,

33 but AGATe actually reports V�
b

by default.34

(9) The percentile bootstrap method described in Wilcox [132, pp. 332–335], which we imple-
mented in R for âi with B = 2000 bootstrap samples.35 Tsandilas [108] also implemented and
evaluated bootstrapping.

(10) The bootstrap-t method described in Wilcox [132, p. 399], which we implemented in R for âi
and B = 2000 bootstrap samples.

Overall, we report results from 117,000 simulation trials (10 tests × 13 simulation conditions ×
9 AR target values × 100 repetitions) for Type I error rate estimations, and from 468,000 trials (10
tests × 13 simulation conditions × 36 pairs of AR values36 × 100 repetitions) for estimations of
statistical power.
Table 6 shows Type I error rates and power estimations for α = .05 and α = .01. Only the per-

centile bootstrap and bootstrap-t methods seem to control the Type I error rate, with the percentile
bootstrap showing better performance. The other tests have Type I errors between .142 and .338,
most likely explainable by the fact that âi values (Equation (7)) are not completely independent,
even when the transitivity of agreement is relaxed. Detailed simulation results are given in Table 7.
With a minor exception occurring for the expert model, the percentile bootstrap controls the Type
I error rate very well.
A special note concerns theVb test [121], which is criticized in Tsandilas [108]. Our simulations

for Vb show similar Type I error rates for the expert/Zipf–Mandelbrot tested in [108] and slightly
better performance for the other simulation conditions. (This is not surprising, since the Discrete
Half Normal distribution, also evaluated in [108], showed lower Type I errors forVb as well.) How-
ever, V�

b
showed much better performance, ranking third across the 10 tests that we evaluated.

V�
b
, reported by default in AGATe [121], was unfortunately not evaluated by Tsandilas [108]. The

conditional margins versionV�
b
test has better control of the Type I error rate (.153 on average for

α = .05 and .142 for α = .01), but at the cost of low power as well (only 17% and 12%, respectively);
see Table 6.

9.2 Within-Subjects Elicitation Studies

Our simulation procedure to evaluate statistical tests for within-subjects designs of end-user elic-
itation studies is as follows:

32Available from http://depts.washington.edu/acelab/proj/dollar/agate.html.
33According to the implementation available from https://agreement.lri.fr/.
34See http://depts.washington.edu/acelab/proj/dollar/agate.html.
35Wilcox’s [132] implementations use the default value B = 2000.
36For independent groups with different agreement rates, the AR of the first population, AR1, varies from .10 to .80 in

increments of .10. For the second population, AR2 varies from AR1+.10 to .90 in increments of .10. Overall, there are 36

combinations of (AR1, AR2) so that |AR2-AR1| ≥ .10.
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Table 6. Mean Type I Errors and Power for Between-Subjects Designs Reported
across Combinations of Models, Distributions, and Dissimilarity Functions

Test Abbr.
Type I error rate Power
α = .05 α = .01 α = .05 α = .01

1. Independent-samples t-test t .304 .169 .852 .793
2. Welch’s t-test Wt .302 .166 .852 .792
3. Mann–Whitney MW .335 .200 .866 .805
4. Cliff Cliff .327 .194 .863 .802
5. Brunner–Munzel BM .340 .218 .843 .782
6. Kolmogorov–Smirnov KS .314 .195 .849 .780
7. Vb Vb .338 .198 .879 .817
8. Vb with conditional margins V�

b
.153 .142 .174 .127

9. ★percentile bootstrap pb .042 .013 .653 .533
10. ★bootstrap-t bt .061 .061† .675 .675†

For details, see Table 7. Note: stars ★ highlight the best performing statistical tests.
†For α = .05 and α = .01, the Type I error rates and power are identical for the bootstrap-t,

since rejection is based on confidence intervals and no actual p-values are computed.

(1) LetM be a simulation method represented by a specific model of analysis (e.g., computer), a
given distribution of the characteristics of the proposals (e.g., normal for proposals encoded
as numerical features), and a dissimilarity function to compare proposals (e.g., Minkowski
with p = 2) that is used to generate proposals for random referents from an infinite
population of referents. We compute tolerance values ϵ ’s for specified AR’s from the set
{.10, .20, . . . , .90} based on 100 finite populations of referents, for which proposals are gen-
erated using methodM. Unlike the procedure for between-subjects designs, our goal this
time is to work with a population of referents for which the mean agreement rate across
all the referents is fixed. The ϵ ’s generated at this step will be used next as estimates for
the ϵ ’s that determine exact agreement rates {.10, .20, . . . , .90} in the infinite population, as
discussed in Section 8.3.

(2) Sample two dependent groups of N = 20 proposals corresponding to two referents from the
infinite population of referents.

(3) Compute AR for the two samples and run statistical tests. Count a Type I error when the
reported p-value is less than the significance levels of .01 and .05, respectively.

(4) Repeat steps 1 to 3 for 100 times.

Note the difference with respect to the simulation procedure employed for between-subjects
designs in the previous subsection. Instead of simulating populations of participants (an approach
equally followed by Vatavu and Wobbrock [121] and Tsandilas [108]), populations of referents
are simulated instead, since the goal now is to compare the same participants for two different
referents, with the assumption that the two referents come from the same population. Since Vatavu
andWobbrock [120] did not evaluate theirVrd test and Tsandilas [108] implemented an evaluation
procedure forVrd that is similar to the one used for between-subjects designs, we find it important
to stress this key difference between simulating within-subjects and between-subjects designs.
We evaluate the following tests for two dependent samples:

(1) The paired-samples t-test. Since AR represents the arithmetic mean of âi , the t-test can be
directly used to compare two means. We used the standard R implementation of the t.test
function with the paired argument set to TRUE. Note that the t-test assumes that observa-
tions are independent, which does not always occur for the ARmeasure when interpreted as
a mean, even in the presence of non-transitivity. Therefore, we expect larger Type I errors
for this test, but we include it anyway in our simulations to verify such assumptions and to
present them in a clear manner to readers.
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Table 8. Mean Type I Errors and Power for Within-Subjects Designs

Test Abbr.
Type I error rate Power

α = .05 α = .01 α = .05 α = .01

1. Paired-samples t-test t .290 .154 .853 .785

2. Wilcoxon W .301 .154 .856 .778

3. Vrd Vrd .360 .234 .883 .835

4. Vrd with corrected df V�
rd

.063 .038 .685 .634

5. ★percentile bootstrap pb .049 .015 .672 .551

6. ★bootstrap-t bt .065 .065† .665 .665†

For details, see Table 9. Note: stars ★ highlight the best performing statistical tests.
†For α = .05 and α = .01, Type I error rates and power are identical for the bootstrap-t technique, since rejection is

based on confidence intervals and no actual p-values are computed.

(2) Wilcoxon’s signed-rank test [134] implemented by the R function wilcox.test37 with the
paired argument set to TRUE.

(3) The Vrd test proposed by Vatavu and Wobbrock [120].

(4) TheVrd test with corrected degrees of freedom. Tsandilas [108] foundVrd problematic because
“the agreement pairs are highly interdependent” (p. 18:25). Since the test involves N · (N −1)/2
observations and, for each participant, there are N -1 observations from which its normal-
ized agreement score âi is computed (Equation (7)), we corrected the number of degrees of
freedom of the χ 2 distribution of Vrd from 1 (when comparing two groups) to N /2 (when
N -1 observations are pseudo-replicated N /2 times).

(5) The percentile boostrap method described inWilcox [132, p. 411], which we implemented in R
for AR using B = 2000 bootstrap samples.38 Tsandilas [108] preferred the jackknife technique
for within-subjects designs because it was “faster and easier to evaluate through Monte Carlo
simulations” (p. 18:29), but we stick to bootstrapping to be consistent with the between-
subjects evaluation.

(6) The bootstrap-t method [132] (p. 268), which we implemented in R for dependent AR’s using
B = 2000 bootstrap samples.

Overall, we report results from 70,200 trials (6 tests × 13 simulation conditions × 9 target AR
values × 100 repetitions) for Type I errors, and from 280,800 trials (6 tests × 13 conditions × 36
pairs of target AR values × 100 repetitions) for statistical power.
Table 8 shows the Type I error rates and power estimations for critical levels of significance .05

and .01, respectively. Again, the percentile bootstrap delivered the best control over the Type I
error rate. Our simulation results confirm large Type I errors for Vrd , between .188 and .556 (M =
.360); see detailed results in Table 9. However, the V�

rd
test with corrected degrees of freedom

delivered a Type I error rate of just .063 for α = .05 and .038 for α = .01, better than the bootstrap-
t method and much better than the other tests. Again, the performance of the other tests can
be explained by âi values not being completely independent, even under non-transitivity. (Note
that we do not provide any mathematical proof in this article regarding the correctness of the df
correction employed byV�

rd
, and we base it on the above intuition that df should be N /2, as well as

on a failed attempt from Tsandilas [108] to correct theVrd test in another way; see [108], pp. 18:25.)

37https://www.rdocumentation.org/packages/stats/versions/3.6.1/topics/wilcox.test.
38Wilcox’s [132] implementations use the default value B = 2000.
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Table 9. Type I Error (α = .05) and Power for Within-subjects Designs

Model, distribution & dissimilarity k
Type I error rate Power

t W Vrd V�
rd

pb bt t W Vrd V�
rd

pb bt

S1. Expert/Zipf-Mandelbrot/Identity 1 .354 .529 .556 .247 .127 .077 .777 .858 .876 .701 .587 .411

S2. Codebook/Bernoulli/Lin 5 .264 .266 .270 .031 .043 .078 .887 .885 .886 .674 .713 .741

S3. Codebook/Zipf-Mandelbrot/Lin 5 .282 .271 .324 .038 .038 .064 .868 .867 .887 .679 .689 .701

S4. Computer/Normal/Minkowski (p = 0.5) 5 .277 .268 .334 .043 .044 .064 .854 .847 .881 .682 .671 .676

S5. Computer/Normal/Minkowski (p = 1) 5 .303 .308 .381 .073 .053 .068 .853 .849 .888 .691 .667 .659

S6. Computer/Normal/Minkowski (p = 2) 5 .278 .286 .361 .057 .054 .064 .850 .847 .884 .688 .665 .659

S7. Computer/Normal/Squared Euclidean 5 .328 .331 .410 .054 .046 .062 .839 .838 .873 .690 .666 .659

S8. Codebook/Bernoulli/Lin 10 .234 .228 .188 .006 .018 .046 .912 .905 .897 .682 .743 .786

S9. Codebook/Zipf-Mandelbrot/Lin 10 .292 .278 .327 .031 .038 .063 .873 .871 .889 .678 .692 .713

S10. Computer/Normal/Minkowski (p = 0.5) 10 .284 .269 .344 .041 .033 .051 .852 .850 .884 .687 .674 .681

S11. Computer/Normal/Minkowski (p = 1) 10 .297 .300 .412 .062 .046 .068 .836 .833 .871 .677 .651 .647

S12. Computer/Normal/Minkowski (p = 2) 10 .300 .299 .400 .071 .050 .071 .849 .847 .886 .692 .660 .657

S13. Computer/Normal/Squared Euclidean 10 .280 .279 .376 .061 .041 .064 .839 .836 .873 .683 .657 .656

Mean .290 .301 .360 .063 .049 .065 .853 .856 .883 .685 .672 .665

Note: test names are abbreviated; refer to Table 8 for full names..

9.3 Which Statistical Test to Use?

The available data from 936,000 simulations involving 13 combinations of models of agreement
analysis, probability distributions for bias, and dissimilarity functions, lead to the conclusion that
the percentile bootstrap controls the best the Type I error rate for both within- and between-
subjects designs. At the same time, its power seems to be large enough (65%) to detect differences
in agreement rates of at least .10 at the critical level of .05. We also hope that our evaluations
clarify concerns from Tsandilas [108] about Vrd and Vb . Since V

�
b
, the default implementation of

AGATe [121], delivers Type I error rates of 15% and power of just 17%, and while a mathematical
proof is awaited for the very good performance delivered byV�

rd
(left for future work), the percentile

bootstrap represents our recommendation for practitioners to compare agreement rates for both within-
subjects and between-subjects experimental designs. Based on the results of our extensive evaluation,
we can address research questions [RQ4.1] and [RQ4.2], as follows:

ResearchQuestion [RQ4.1]:Which statistical test should one use for analyzing agreement
data for end-user elicitation studies with between-subjects experimental designs?

Clarification: The percentile bootstrap [132] (pp. 332–335) seems to control the Type I
error rate very well under a variety of testing conditions.

ResearchQuestion [RQ4.2]:Which statistical test should one use for analyzing agreement
data for within-subjects experimental designs?

Clarification: The percentile bootstrap [132] (p. 411) seems to control the Type I error rate
very well under a variety of testing conditions.

10 DISCUSSION

In this section, we summarize clarifications for the SC expressed in the literature regarding the end-
user elicitation method that we outlined in Section 1. We also use our theoretical and empirical
results to provide recommendations for researchers and practitioners that wish to apply the end-
user elicitation method in their own work.
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10.1 Revisiting SC from the Literature Regarding the End-User Elicitation Method

We revisit the Specific Concerns [SC1] to [SC7], outlined in Section 1, that were formulated in the
literature [75, 82, 103, 108, 114] regarding various practical aspects of conducting user studies with
the elicitation method [140, 141] and its variations for calculating and analyzing agreement [32,
120, 121]. Our goal is to respond to these concerns with the support of the theoretical and empirical
results presented in this article.

[SC1] Stern et al. [2008] [103]: Claims that eliciting proposals by having participants actually
performing them, as proposed in Wobbrock et al. [140, 141], may be a less suited ap-
proach compared to other ways to elicit end users’ preferences for actions, commands,
or symbols, such as the “coded gesture entry” method.

Clarification: The coded gesture entry method is a specific form of a codebook qualita-
tive study, where participants specify the characteristics of gestures from a predefined
list. Consequently, the results can and should be analyzed with the tools of inter-rater
reliability [40], since chance agreement is a potential outcome. Contrary to coded ges-
ture entry, the end-user elicitationmethod [140, 141] works without any predefined lists,
categories, or constraints for participants from which proposals are elicited. Depending
on the specific application of elicitation studies, there are three possible models for cal-
culating agreement: the expert, codebook, and computer models. We recommend the use
of the computer model for reasons of efficiency and reproducibility of results; see also
our recommendations in the next subsection.

[SC2] Nebeling et al. [2014] [82]: Claims that the end-user elicitation method should be ex-
tended toward reproducible and implementable user-defined interaction sets.

Clarification:We agreewith this claim. Our recommendation for the future of end-user
elicitation is toward reproducible results, for which we identify a five-level hierarchy of
end-user elicitation studies. This hierarchy is discussed in the next subsection and rep-
resents one of the contributions of this article.

[SC3] Morris et al. [2014] [76]: Claims that legacy bias, i.e., the potential pitfall of users’ propos-
als to be biased by their experience with prior interfaces and technologies, is a limitation
of the original end-user elicitation method [140, 141].

Clarification: We agree that legacy bias is a potential concern for limiting the effec-
tiveness of the end-user elicitation method to discover new interactions that take full
advantage of the possibilities offered by the areas under examination. To the best of
our knowledge, Morris et al.’s proposed solutions of production, priming, and partners
have received only few formal evaluations in the literature as to whether they reduce
legacy bias; e.g., Hoff et al. [43] reported medium effect sizes and large variance between
participants’ proposals. More recently, Williams et al. [136] proposed a technique to ad-
dress legacy bias in the form of an evolving set of interactions. Consequently, addressing
legacy bias represents a promising avenue for future work. We note, however, that all
legacy bias might not be bad. It is conceivable that for certain systems, designers may
want to leverage preexisting knowledge or familiarity in order to make their new sys-
tems easier to guess or learn. Legacy bias could therefore be an advantage in some cases
and, consequently, modeling legacy bias from the perspective of agreement occurring
by chance and ignoring the corresponding amount of agreement is not recommended
practice for end-user elicitation; see also the specific concern SC4, next.

[SC4] Tsandilas [2018] [108]: Claims that the established measures of agreement calculation,
A and AR, advocated by Wobbrock et al. [140, 141], Findlater et al. [32], and Vatavu and
Wobbrock [120, 121], do not take into account chance agreement.
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Clarification: Since inter-rater reliability and end-user elicitation studies are fun-
damentally different, the measures of agreement A [140, 141] and AR [32, 120, 121]
traditionally used in gesture elicitation studies incorporate both chance agreement
and chance disagreement. Moreover, the agreement relation is a tolerance relation in
end-user elicitation studies, which means that it is non-transitive. What would happen
if one still used the κ and κF coefficients from inter-rater reliability for non-transitive
agreement relations? Cohen’s [21] assumptions of independent and mutually exclusive
categories would break because of the conflict generated by non-transitivity. Therefore,
κ and κF and non-transitive agreement relations are incompatible.

[SC5] Tsandilas [2018] [108]: Claims that the guidelines proposed by Vatavu and Wobbrock
[120] for interpreting the magnitude of agreement can lead to overoptimistic con-
clusions about the true level of agreement reached by the participants of end-user
elicitation studies.

Clarification: We showed that the guidelines from Vatavu and Wobbrock [120] should
be used with care to prevent drawing incorrect and misleading conclusions. Especially
when it is the same practitioners that set the criteria to judge the similarity of elicited
proposals and that employ those criteria to calculate and report agreement. The facts
are that (i) different end-user elicitation studies use different criteria to evaluate the sim-
ilarity of proposals elicited from the study participants, and (ii) the criteria influence the
magnitude of the agreement rate. Nevertheless, the margins .10, .30, and .50 can be used
as rough guidelines for the qualitative interpretations of agreement rates as low,medium,
and high agreement, but not necessarily to draw final conclusions about the outcomes
of the study or to compare results between studies. Instead, conclusions should consider
the particularities of the specific investigations, application domains, contexts of the
studies (e.g., participants, criteria, bias), and agreement analysis approaches.

[SC6] Tsandilas [2018] [108]: Claims that the Vrd and Vb test statistics proposed by Vatavu
and Wobbrock [120, 121] yield high Type I error rates.

Clarification: Our simulations for Vb show similar Type I error rates for the
expert/Zipf–Mandelbrot tested by Tsandilas [108] and slightly better performance
for the other simulation conditions. (This is not surprising, since the Discrete Half
Normal distribution, also evaluated [108], showed lower Type I errors for Vb as well.)
However,V�

b
showed much better performance, ranking third across the 10 tests under

evaluation. V�
b
, reported by default in AGATe [121], was unfortunately not evaluated

by Tsandilas [108]. However, the relatively better control of the Type I error rate
of V�

b
compared to Vb comes with the downside of a very low power (17% and 12%,

respectively, for α = .05 and .01), representing the lowest power among all the tests
that we evaluated for the between-subjects condition). The V�

rd
test with corrected

degrees of freedom delivered a Type I error rate of just .063 for critical level .05 and .038
for critical level .01, better than the bootstrap-t method and much better than the other
tests that we evaluated. The performance of the other tests, e.g., the t-test, BMP, or
KS, can be explained by âi values not being independent, even under non-transitivity.
In conclusion, our empirical results recommend the percentile bootstrap technique for
analyzing agreement rates in end-user elicitation studies.

[SC7] Vatavu [114]: Claims that the criteria used to evaluate the similarity of proposals
elicited from the participants of end-user elicitation studies can make the magnitude
of agreement scores irrelevant, because of the dependency between agreement and the
criteria employed. Instead, a holistic approach in which agreement is interpreted as
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a function of the criteria used to judge the similarity of elicited proposals should be
preferred to using specific, possibly subjective criteria.

Clarification: Our measure ARϵ reconciles previous measures of agreement
A [140, 141] and AR [32, 120, 121] with the C measure [114], showing that they
are profoundly connected. Interesting future work lies ahead regarding structuring the
criteria used to judge the similarity of elicited proposals to increase the replicability of
the classification step.

Based on these clarifications, we provide answers to the four RQ outlined in Section 1 and show
how the specific concerns SC relate to the research questions RQ, as follows:

[RQ1] How do end-user elicitation studies compare to inter-rater reliability studies?

Answer: We showed that end-user elicitation and inter-rater reliability studies make
fundamentally different assumptions. Consequently, adopting the theory and practice
of inter-rater reliability (e.g., the concept of chance agreement and coefficients that
correct for the influence of chance agreement) may not be valid in the context of end-
user elicitation. This clarification addresses specific concerns [SC1] and [SC4].

[RQ2] What is agreement in end-user elicitation?

Answer: We showed that the agreement relation is a mathematical relation of toler-
ance [145] that generates a tolerance space [102] over the set of distinct proposals
elicited from end users. As a mathematical tolerance, the agreement relation is not nec-
essarily transitive, a key aspect mistakenly taken for granted in prior work [108, 121],
which has direct consequences on some of the measures that calculate agreement. This
clarification addresses concerns [SC2], [SC4], [SC5], and [SC7], respectively.

[RQ3] Can end-user elicitation be modeled formally?

Answer: Yes. We presented a comprehensive, six-step operational model for conduct-
ing general end-user elicitation studies in HCI, which include the popular gesture elic-
itation studies [140, 141]. Our model includes a formalization of the classification step
for grouping elicited proposals into signs and highlights the step of characterizing pro-
posals to report traits. In the framework of this formalization of end-user elicitation,
we identify three distinct models of agreement analysis: expert, codebook, and computer.
This clarification addresses concerns [SC1], [SC3], and [SC4].

[RQ4] What statistical procedures best apply to elicitation data?

Answer: The percentile bootstrap method [132] (pp. 332, 411) seems to be the best-
performing statistical test. This finding results from our extensive simulations re-
garding the Type I error rate and statistical power of 16 statistical tests for within-
and between-subjects experimental designs. This clarification addresses concern
[SC6].

10.2 Recommendations for the Science of End-User Elicitation

Our theoretical and empirical examinations revealed that end-user elicitation data has different
properties than believed until now, which we unveiled and used to address criticisms, in particular
regarding the calculation of agreement [108]. Beyond that, however, how should practitioners
make effective use of our findings to understand human behavior? To this point, we outline three
recommendations for conducting end-user elicitation studies by adopting a numerical perspective
for the data collected in those studies:

(1) Whenever possible, employ computational acquisition and representation of proposals elicited
from end-users. For example, a gesture elicitation study examining free-hand commands
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should capture gestures using an actual acquisition device, such as Leap Motion, Kinect, and
so on, besides the experimenter’s notes and videos. Direct advantages of capturing partici-
pants’ proposals in this form are represented by higher fidelity of the data, higher efficiency
in evaluating agreement by replacing human effort with numerical computations, and gain-
ing a larger perspective on the relationship between the magnitude of agreement and the
dissimilarity presented in the set of elicited proposals [114]. These practical advantages in
terms of efficiency and perspective have direct implications on the researcher’s time and ef-
fort spent to inform their user interface designs and prototypes. However, we acknowledge
that technology to record proposals in a computational form might not always be available,
e.g., when studying suitable gesture input commands for very new sensing technology, yet to
be perfected, such as radar gestures [68], or even yet to be invented, such as always-available
mid-air substrates of digital content [96]. Or when technology may not be readily accessi-
ble and/or affordable, such as sensing gestures in the terahertz domain [146]. In other cases,
recording technology may be an unnecessary overkill for the limited scope of the study (e.g.,
a preliminary study to inform the design of a full experiment) or it may limit innovations
because of the time and effort required for ethical clearances that the use of some technology
on human subjects may require, e.g., gesture input for implanted user interfaces [46]. We en-
courage the community to consider computational recording of elicited proposals whenever
possible and useful, while keeping in mind the scope and extent of their investigation.

(2) Favor numerical tools to identify signs and compute agreement. These tools include implemen-
tations of dissimilarity functions [114], clustering algorithms [3, 6], applications to acquire
user input [82], and platforms [4, 69] that facilitate conducting elicitation studies. Even for
cases when elicited proposals were not captured in a computational form, automated clus-
tering methods could help practitioners visualize the dendrogram in order to support their
decision regarding the most suitable partitioning of the set of proposals into signs.

(3) Make data and/or analysis scripts publicly available to encourage replication of results. Besides
some prior work [38, 80, 114] and few cases where authors were kind enough to share their
data when contacted,39 the community lacks public elicitation datasets. This is unfortunate,
especially considering that more than 200 gesture elicitation studies have been published to
date [124].

Note that the dissimilarity function approach that we propose for end-user elicitation data anal-
ysis encompasses the new computational methods advocated in this section, but also the conven-
tional method where researchers and practitioners manually label proposals into signs based on a
codebook and their judgments about similarity. It is also important to note that both approaches
may be affected by the subjectivity of the researcher, a problem discussed in length and exemplified
in [114]. For instance, in the case of computational dissimilarity functions, subjectivity can surface
in the form of how the raw data are preprocessed, filtered, normalized, or what kind of features are
extracted from that data. However, even if subjectivity exists in both approaches, a computational
method has the net advantage of being readily replicable: the code implementing the dissimilar-
ity function and method can be run by another researcher to replicate previous results and/or to
reproduce those results on another dataset.
These recommendations may be difficult to adopt in the short-term, but they are important in

light of the new perspective on classification and non-transitivity offered in this article. To encour-
age adoption of our recommendations, we propose a classification of end-user elicitation studies
by their level of data disclosure, inspired by RepliCHI efforts [138], a previous call to replication

39We are especially thankful to Gilles Bailly and Thammathip Piumsomboon.
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in gesture elicitation [82], and ACM’s [1] recommendations for repeatability, replicability, and re-
producibility in experimental science:

Level-0: An elicitation study that does not record data computationally. Unfortunately, the ma-
jority of published end-user elicitation studies are of this kind. Not recording data com-
putationally also makes it difficult to share the data.

Level-1: An elicitation study that records data computationally as well as releases the data, even-
tually with companion analysis scripts and software.

Level-2: A Level-1 study for which the data was validated and the results confirmed by indepen-
dent researchers/authors.

Level-3a: A Level-2 elicitation study that was successfully reproduced with other participants.

Level-3b: A Level-2 elicitation study that is validated through an end-user identification study,
which reverses the elicitation process. Specifically, the signs generated in an elicitation
study are shown to a fresh set of participants, who then infer the intended referents, as
described by Ali et al. [4].

Level-4: An elicitation study that satisfies both Level-3a and Level-3b. In other words, a study
that is replicated as an elicitation study and validated as an identification study.

From Level-0 to Level-4, our confidence in the results reported from end-user elicitation stud-
ies increases, as well as our ability to replicate and reproduce those results toward consolidating
knowledge in the community. At this point, the vast majority of studies are Level-0, Vatavu [114]
is Level-1, and we are not aware of any Level-2 or 3 studies, although Nebeling et al. [82] did report
on a replication of Morris [75] and, thus, comes close to a Level-3 elicitation study. Ali et al. [4]
ran an identification study using the Crowdlicit platform, coming thus close to a Level-3b end-user
elicitation study.
What about Level-0 studies? Are they still useful? We recommend conducting them internally

to inform other, more complex studies, to confirm or disconfirm insights and initial hypotheses,
or to gain more knowledge about a specific application domain. Thus, such studies are still useful
for authors that employ them for the reasons enumerated above as well as for situations where
acquisition technology may not be available, perfected, affordable, or reasonable to use on human
subjects. In such cases, Level-0 studies, even without data in computational form, can nevertheless
inspire innovation and develop knowledge regarding end users’ preferences for interactive modal-
ities, devices, and systems. However, Level-2 and Level-3 studies are our recommendation, when
possible, in order to avoid replication issues, already remarked in other fields of research, regarding
non-reproducible published results [24, 49] as well as to foster more replications in HCI [47].

10.3 Methodological Recommendations for Designers and Practitioners

End-user elicitation studies can be viewed as a form of participatory design [78, 97], where par-
ticipants’ ideas are taken directly as input into the design process, especially for generating new
design ideas. Thus, our recommendations serve not only researchers who use the end-user elicita-
tion method, but also design practitioners who seek to create interactive systems representative of
users’ thoughts and behaviors. From this perspective, we hope that our results will also be useful
to designers, developers, and usability specialists, especially newcomers to end-user elicitation, to
better understand recent theoretical developments, avoid pitfalls, and correctly apply measures of
agreement and statistical tests. To this end, we summarize our theoretical elaboration and empiri-
cal findings in the following list of guidelines:

(1) Decide which model of agreement analysis (expert, codebook, computer) applies best to your
particular study. To this end, answers to the following questions may be helpful: Are there
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experts available? If not, is it sensible to use the crowd for the particular application domain?
Can a codebook be clearly defined? Can a dissimilarity function be implemented in the form
of a computer program?

(2) For the expert model, describe the expertise of the experts. When the crowd is used, de-
scribe the demographics of the crowd workers (e.g., gender, age, education, professional
background), the recruitment procedure, and any validation checks performed on the simi-
larity votes.

(3) For codebook models, clearly describe the codebook: the criteria (dimensions) and the cate-
gories of each criterion. If rules are used instead, clearly state all the rules employed for the
analysis. Despite the common-sense of these recommendations, most published studies fail
to describe how agreement was evaluated. In the absence of such information, replication
of results may be difficult or even impossible. A key observation is that agreement rates are
irrelevant if they are not reliable, and to be reliable, they must be reproducible. To this end, the
codebook or set of rules must be clearly presented in the study description.

(4) For computer models, connect the outcomes of the end-user elicitation study with the ap-
plication meant for end users. If the application is a new gesture or voice input recognizer,
use the same dissimilarity function for clustering (i.e., agreement calculation) and discrim-
ination (i.e., evaluation of the recognizer). Make it a priority to release source code and/or
scripts that can be used by other researchers to reproduce the results.

(5) Once the data are collected, check if the agreement relation is transitive (likely true if the
analysis model is codebook and the codebook is finite, but likely untrue for the other mod-
els). If the codebook is finite and there are few categories, consider whether chance agree-
ment [108] may represent an issue for your study. Chance agreement can be an issue if the
number of categories is small and the experimenter must select a category for each proposal,
even when they are unsure about what to select [21, 40].

(6) Until future work further examines the V�
b

test and the corrected degrees of freedom for

the V�
rd

test, we recommend using the percentile bootstrap method for statistical inferences
about agreement rates.

(7) As a last guideline, we recommend the community to focus on applied results. Although
unveiling users’ preferences and behavior by conducting elicitation studies is valuable, too
many published articles stop at reporting a consensus set of proposals, with no subsequent
work developing an actual user interface, interaction technique, application, or interactive
system. This approach fosters new publications, but hinders advances in applied results,
which was the original goal of the method—to improve interface guessability [140].

11 RESOURCES

We provide companion code in R implementing measures of agreement, statistical tests for within-
subjects and between-subjects experimental designs, and our simulation procedures for the expert,
codebook, and computer models. We equally release our simulation data files with the note that
we employed fixed seeds for random number generators in all our simulation experiments, so that
our results from Tables 3 to 9 can be readily reproduced. Code resources are freely available for
download from https://depts.washington.edu/acelab/proj/dollar/agate.html.

12 CONCLUSION

In this work, we re-examined fundamental issues in end-user elicitation studies, specifically con-
cerning agreement procedures and calculations, and the objections articulately, but incompletely,
raised by Tsandilas [108]. Our most important results are a model for general end-user elicitation
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in HCI, experimental proofs for the non-transitivity of agreement, clarifications regarding
chance agreement and the differences between inter-rater reliability and elicitation studies.
Besides these contributions, we also provide support for a mathematical formalization based
on dissimilarity functions and tolerance spaces to describe agreement formation for end-user
elicitation. Our results suggest the need for revisiting current statistical tests for agreement
data analysis [108, 120, 121], since these tests have either assumed transitivity, such as Vrd and
Vb [120, 121], or used κ coefficients [108]. We leave this aspect for future work. Other connected
aspects, such as the best ways to perform clustering to identify the consensus set of signs, are
left for future work, due to constraints on space. More importantly, our results have implications
on our understanding of how agreement is formed and how it should be evaluated computationally.
It is our hope that this work will lead to more confident, formalized, rigorous, reliable, and
reproducible end-user elicitation studies.
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