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Evaluating Intelligibility and Battery Drain of Mobile Sign Language
Video Transmitted at Low Frame Rates and Bit Rates
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Mobile sign language video conversations can become unintelligible if high video transmission rates cause
network congestion and delayed video. In an effort to understand the perceived lower limits of intelligible
sign language video intended for mobile communication, we evaluated sign language video transmitted at
four low frame rates (1, 5, 10, and 15 frames per second [fps]) and four low fixed bit rates (15, 30, 60,
and 120 kilobits per second [kbps]) at a constant spatial resolution of 320 × 240 pixels. We discovered
an “intelligibility ceiling effect,” in which increasing the frame rate above 10fps did not improve perceived
intelligibility, and increasing the bit rate above 60kbps produced diminishing returns. Given the study pa-
rameters, our findings suggest that relaxing the recommended frame rate and bit rate to 10fps at 60kbps will
provide intelligible video conversations while reducing total bandwidth consumption to 25% of the ITU-T
standard (at least 25fps and 100kbps). As part of this work, we developed the Human Signal Intelligibility
Model, a new conceptual model useful for informing evaluations of video intelligibility and our methodol-
ogy for creating linguistically accessible web surveys for deaf people. We also conducted a battery-savings
experiment quantifying battery drain when sign language video is transmitted at the lower frame rates
and bit rates. Results confirmed that increasing the transmission rates monotonically decreased the battery
life.
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1. INTRODUCTION

With over 1.9 billion smartphone users at the end of 2013, smartphones are rapidly
changing the way people communicate and receive information [Cisco 2015]. The
growth of smartphone users has led to video being the fastest growing contributor
to mobile data traffic [Cisco 2015]. Streaming video providers such as YouTube, Hulu,
and Netflix contribute to mobile video traffic, consuming 51% of all network traffic.
Mobile video telephony is also contributing to the acceleration of video data consump-
tion with the numerous available mobile video chat applications (apps) such as Skype,
FaceTime, and Google Hangouts. In 2010, Skype received 7 million downloads onto
Apple’s iPhone alone [Static Brain Research Institute 2012].

Often, high-fidelity video quality is a top priority for mobile video telephony; however,
it is usually at the cost of large bandwidth consumption. Apple’s FaceTime app is
widely known to provide high-quality video over Wi-Fi with an average bandwidth
consumption of 5MB of data per minute of conversation [Hollington 2013]. The high
data rate cost of using FaceTime over limited data plans can quickly become expensive
[Chen 2013]. Other mobile video chat apps, such as Skype, transmit video at lower
dynamic transmission rates, ranging from 40 to 450kbps depending on network traffic
[Cicco et al. 2008]. Overall, commercial mobile video applications place a heavy load on
the total available network bandwidth, which may lead to packet loss, delay, blurred
video, and a poor user experience.

Deaf people can benefit significantly from advancements in mobile video commu-
nication because they facilitate sign language communication. American Sign Lan-
guage (ASL) is a visual language with its own grammar and syntax unique from
any spoken language. Intelligible video content is required for successful sign lan-
guage conversations; therefore, the Telecommunication Standardization Sector (ITU-
T) Q.26/16 recommends at least 25 frames per second (fps) and 100 kilobits per
second (kbps) for sign language video transmission [Saks and Hellström 2006]. How-
ever, total network bandwidth is limited and network congestion can lead to unin-
telligible content due to delayed and dropped video. Most US cellular networks no
longer provide unlimited data plans and may throttle network speeds to high data
rate consumers [Lawson 2011]. The ITU-T recommendation does not account for the
available total bandwidth of cellular networks or consider the lower bounds at which
sign language video may be deemed intelligible. Often, recommendations are based
on evaluations of prerecorded video and are not intended for real-time mobile video
communication.

This article contributes to the continuing effort to make mobile sign language com-
munication more accessible and affordable to deaf people. We optimize how much
mobile sign language video transmission rates can be reduced to save bandwidth
and battery life while maintaining video intelligibility for ASL video viewed on small
mobile devices. This work includes the creation of the Human Signal Intelligibility
Model (HSIM), a new conceptual model for understanding signal intelligibility and
signal comprehension that aid in their operationalization. The HSIM influences our
design and execution of a national web survey, as shown in Figure 1, evaluating the
lower limits of intelligible sign language video intended to be viewed on small mo-
bile devices. The web survey had 99 respondents watch 16 short ASL videos of a
male native ASL signer signing short sentences shown at four low frame rates (1,
5, 10, and 15fps) and at four low fixed bit rates (15, 30, 60, and 120kbps) in a full
factorial design. The spatial resolution was held constant at 320 × 240 pixels. Re-
sults revealed an intelligibility ceiling effect for video transmission rates, in which
increasing the frame rate above 10fps and bit rate above 60kbps did not improve
perceived video intelligibility. Notably, this is lower than the recommended ITU-T
standards.
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Fig. 1. Screen shot of one video from a web survey evaluating intelligibility of sign language video displayed
at 15fps at 30kbps at a spatial resolution of 320 × 240 pixels.

We also conducted a power-savings experiment to quantify how much bandwidth and
battery life are consumed when transmitting sign language video at the investigated
low frame rates and bit rates on an experimental smartphone application. As expected,
increasing the frame rate monotonically decreased the battery life.

The main contributions of this work are summarized as follows: (1) the creation
of the Human Signal Intelligibility Model, a new conceptual model that outlines the
components comprising signal intelligibility and signal comprehension for the purpose
of video intelligibility evaluations; (2) empirical findings verifying an intelligibility
ceiling effect for frame rate, in which increasing the frame rate above 10fps does not
improve perceived video intelligibility when video is transmitted at a constant bit rate;
(3) empirical findings verifying an intelligibility ceiling effect for bit rate, in which
increasing the bit rate above 60kbps does not improve perceived video intelligibility;
(4) empirical findings validating the bandwidth and power savings associated with
reducing video frame rates and bit rates; and (5) demonstration that intelligible mobile
sign language can occur at frame rates as low as 10fps and bit rates as low as 60kbps,
which is lower than the current recommended ITU-T standards.

This article is an extended version of a paper originally presented at the ACM
SIGACCESS Conference on Computers and Accessibility [Tran et al. 2013] and influ-
enced the research presented at the ACM SIGACCESS Conference on Computers and
Accessibility (ASSETS ’14) [Tran et al. 2014]. Related work is discussed in Section 2.
The HSIM in Section 3 and web study in Section 5 were previously discussed in the
ASSETS ’13 paper. This article describes in more depth how the HSIM influenced the
web study design. It also discusses our methodology for creating linguistically acces-
sible web surveys for deaf people (Section 4). This article also describes a new study
quantifying battery drain when transmitting video at lower frame rates in Section 7.
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Study findings are discussed in Section 8. Conclusions and advice for future investiga-
tions of these phenomena are presented in Section 9.

2. BACKGROUND AND RELATED WORK

2.1. Video Compression

Successful real-time mobile video telephony requires little to no latency during trans-
mission; therefore, video compression is necessary. Video compression is the process
of converting video files into a format that takes fewer bits. Compression takes two
forms: lossless and lossy. Lossless compression compresses data without losing any in-
formation, at the expense of more required storage space. Lossy video compression uses
spatial correlation and temporal motion compensation to reduce redundancy in video
data, at the expense of introducing visible artifacts that may impact video intelligibility.

Spatial resolution, frame rate, and frame quality are the primary physical parame-
ters that impact video quality. Spatial resolution is described by the number of pixels
in each frame. A frame is a single video image and the rate at which frames are shown
is measured in frames per second (fps). Frame quality is impacted by the quantization
parameter (QP), which directly relates to the bit rate, as described in more detail, to
follow.

H.264/MPEG-4 AVC is a standard for lossy video compression that is commonly used
for recording, compressing, and decompressing video [Richardson 2004]. H.264 is best
known as the codec standard for blu-ray discs and different streaming Internet sources
such as YouTube, Vimeo, the iTunes store, and web software such as Adobe Flash
Player and Microsoft Silverlight. The MobileASL application, discussed in Section 2.4,
uses x264, which is an open-source version of H.264 [Aimar et al. 2005].

H.264 is a block-based, motion-compensation codec [Aimar et al. 2005]. Motion es-
timation is used to create motion vectors for intra- and interframe coding. Intraframe
coding uses information contained only in the current frame (it performs no tempo-
ral processing) [Oppenheim and Schafer 1975]. Interframe coding takes advantage of
temporal redundancy between neighboring frames, which allows for higher compres-
sion rates. The encoder divides each frame into blocks of pixels, called macroblocks. A
block-matching algorithm tries to find a closely matching block in the previous decoded
frame. If a matching block cannot be found, then that block is intracoded (I-block);
otherwise, a two-dimensional motion vector, which provides an offset from the coor-
dinates in the decoded picture to the coordinates of the reference picture, is formed
[Oppenheim and Schafer 1975]. The difference between the new block and the previ-
ous one is transformed, via Discrete Cosine Transform (DCT) [Ahmen et al. 1974], and
the resulting DCT coefficients are quantized. The motion vectors and DCT coefficients
are losslessly compressed and sent to the decoder [Oppenheim and Schafer 1975].

The DCT transforms an image into different frequencies. The DCT has a strong
“energy compaction” property in which the signal information is concentrated in a
few low-frequency coefficients and the highest-frequency components are quantized
to zero [Oppenheim and Schafer 1975]. Trade-offs in video quality can be made by
varying the QP and frame rate. The DCT coefficients are divided by the QP. A low-QP
value requires more bits to encode than a high-QP value, resulting in higher video
quality. Conversely, a high-QP value results in the DCT coefficients being quantized
more heavily, which requires fewer bits. In addition to the QP, the frame rate can
be varied. For a fixed bit rate, there is a trade-off between frame quality (typically
objectively measured by Peak Signal-to-Noise Ratio (PSNR) [Oppenheim and Schafer
1975], which is controlled by the QP parameter and frame rate. More frames per
second means that the individual frames will be of lower quality to maintain a fixed bit
rate.
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2.2. Evolution of Mobile Networks

A new mobile generation wireless system is introduced in the United States approxi-
mately every 10 years. The first 1G system, Nordic Mobile Telephone, was introduced
in 1981 and was the first fully automatic cellular phone system transmitting data at
1200bps. The next generation (known as 2G), Global System for Mobile Communication
(GSM), started rolling out in 1992 and became the de facto global standard for mobile
communications, transmitting data at 14.4kbps. Next, 3G (EDGE and CDMA) started
becoming available in 2002 and provided an upload data rate of 118.4kbps and down-
load data rate of 296kbps. 3G was slow to be adopted globally due to some 3G networks
not using the same radio frequencies as 2G. As a result, network providers needed to
build new networks and license new frequencies to achieve higher data transmission
rates. Finally, 4G Long Term Evolution (LTE) began appearing in 2012 and provides
download data peak rates of 300Mbps and upload peak rates of 75Mbps. The quality of
service aims for a data-transfer latency of less than 5ms. Today, major cellular phone
companies such as Sprint, T-Mobile, AT&T, and Verizon are expanding their 4G LTE
networks to provide higher data speeds in more locations across the United States.
However, consistent access to 4G LTE service is currently location-dependent.

Although network providers are continually growing their data services, total net-
work bandwidth is still limited. Many cellular phone companies no longer offer un-
limited data plans and have switched to tiered data plans ranging from 2 to 4GB per
month depending on the data plan [AT&T 2014; T-Mobile 2014; Verizon 2014]. The
average US consumer uses 733MB of data per month; however, those users generally
check websites and email [Fitzgerald 2013]. Smartphone users who stream music or
video on their mobile devices can quickly use up their data allowance in a few hours. For
instance, streaming music with average quality (160Kbps) requires 1.2MB per minute
or 72MB per hour; music streaming at 320Kbps is equivalent to 2.4MB per minute or
144MB per hour; a Netflix video in standard definition can consume up to 0.7GB per
hour and a Netflix video in HD can consume 1GB to 2.8GB per hour [Marshall 2014].

2.3. Commercial Mobile Video Applications

Commercial mobile video applications have evolved with the expanding networks.
Skype is a free voice-over-IP (VoIP) service that allows people to communicate through
instant message, voice, and video on computers and mobile devices [Skype 2011]. Skype
transmits video at high bit rates with mobile-to-mobile calls at 500kbps and video calls
between a mobile phone and a computer at 600kbps [Microsoft 2013]. Before 2013,
Apple’s FaceTime mobile video chat application could only work over Wi-Fi networks.
Once Apple devices supported iOS6 (released in September 2012), FaceTime began
working on AT&T’s tiered data plans at the data consumption rate of 3MB of data per
minute [Zeman 2010].

Video relay services (VRS) allow deaf people to communicate over video telephone
with a hearing person in real time via a sign language interpreter. Major VRS com-
panies such as Purple Communications, Inc. [Purple 2014], Sorenson VRS [Sorenson
2014], ConvoRelay [Convo 2011], and ZVRS [ZVRS 2014] provide VRS apps for mo-
bile devices. In compliance with the ITU-T standard, these applications attempt to
transmit video at rates of at least 25fps and 100kbps, which may lead to video delay or
dropped video calls. VRS users tend to use video phones or computers with a broadband
connection to utilize interpreting services without the worry of dropped video calls.

All of these commercial mobile video apps provide reasonable video quality for in-
telligible conversations at the expense of larger bandwidth consumption and more
aggressive battery consumption than voice calls or texting. Those who use video chat
or VRS consume network bandwidth more rapidly than average data users, which
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Fig. 2. HTC TyTNII cell phone.

leads to increased cost for all mobile users. Cellular phone companies do not currently
offset the extra cost of mobile video communication used by deaf people. Instead, net-
work providers begin throttling down network speeds after 2GB of data usage per
month [Lawson 2011]. This research contributes to the MobileASL project’s [Riskin
et al. 2012] goal of providing deaf people equal access to mobile video communication
without needing to pay more for services.

2.4. The MobileASL Project

MobileASL is a video compression project at the University of Washington and Cornell
University that began in 2005 with the goal of making wireless cell phone communi-
cation through sign language a reality in the United States [Riskin et al. 2012]. One of
the goals was to transmit real-time, two-way video using the 3G GSM EDGE network,
which has 296kbps download and 118kbps upload speeds. In 2008, a major milestone
was met with a working prototype of MobileASL, an experimental smartphone appli-
cation that provides two-way, real-time sign language video at very low bandwidth
(30kbps at 8–12fps) [Chon et al. 2009].

MobileASL was developed using the Windows Mobile 6.1 platform for the HTC TyT-
NII cellular phone [Chon 2011]. This phone, shown in Figure 2, was selected because
it has a front-facing camera and screen, which can prop itself up at an angle during
conversations. The phone weighs 6.7oz; has a 400MHz processor; and 1350mAH bat-
tery life. The MobileASL app uses the open-source x264 implementation of the H.264
standard [Aimar et al. 2005] with the ARMv6 SIMD instruction set [ARM 2008] and a
NAT-enabled protocol [Chon 2011]. The app uses a peer-to-peer networking application
that allows video transmission on both Wi-Fi and AT&T 3G/4G cellular networks.

Since intended users of MobileASL are deaf, characteristics unique to sign language
were used to reduce the total amount of data needed for transmission. For example, an
algorithm called Region-of-Interest (ROI) encoding, that differentiates between skin
pixels and background, was implemented [Cherniavsky et al. 2009]. When MobileASL
with ROI encoding encodes video, more bits are devoted to skin pixels, such as a person’s
hands and face, making those regions appear clearer than the background.

Intelligible ASL video is more important than ASL video quality because people
can perceive changes in video quality before content intelligibility is compromised.
Cavender et al. [2006] conducted a focus group in 2006 investigating intelligibility of
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sign language video constrained by mobile phone technology. They explored the need
and desire for mobile video phones and addressed potential challenges in using such
technology. Some notable findings were: participants desired the device to have the
ability to be propped up for two-hand communication; the software interface needed
to have an easy and intuitive display; and the software needed the ability to make
video calls between different types of video software. They also conducted a laboratory
study evaluating video intelligibility at two frame rates (10 and 15fps), three bit rates
(15, 20, and 25kbps), and three ROI encoding levels (0, -6, and -12 ROI), during which
participants viewed prerecorded videos and were asked to subjectively rate perceived
intelligibility. They discovered a frame rate preference of 10fps for viewing ASL video
at a fixed bit rate of 25kbps.

Masry and Hemami [2003] evaluated subjective video quality perception of non-ASL
streaming video content transmitted at 10, 15, and 30fps and six bit rates (40, 100,
200, 300, 600, and 800kbps). Respondents viewed fifteen 30s video clips consisting of
low-, medium-, and high-motion sequences. After each video, respondents rated video
quality on a slider ranging from 0 (worst) to 100 (best). The researchers found that
respondents favored video shown at 15fps over 10fps when shown at a fixed bit rate of
800kbps.

The findings from our work and elsewhere [Holm 1979; Hooper et al. 2007] suggest
that there is a threshold above which increasing the frame rate does not significantly
improve video intelligibility. Our research builds on Cavender et al.’s [2006] findings
and more rigorously investigates intelligibility of sign language video. Cavender et al.’s
laboratory study used prerecorded video filmed with a stationary video camera, which
allowed more space in the signing region. By contrast, the videos evaluated in our
web study were representative of the angle and signing space constrained by mobile
devices. Also, our research goal was to discover how much video quality could be reduced
before sign language intelligibility was compromised, a goal not approached by prior
MobileASL research.

The effects of frame-rate and bit-rate reductions on objective video quality have been
widely researched for sign language learning and comprehension, evaluating subjec-
tive video quality, creating video quality measures, and evaluating video intelligibility.
However, unlike the present work, none of this prior work has been intended for fa-
cilitating real-time mobile sign language conversations or considering the bandwidth
needed to support such communication. Our work fills this gap by identifying the lower
limits of intelligible mobile sign language video.

2.5. Sign Language Comprehension

Sign language learning requires more than holding sign language conversations. The
former requires linguistic accuracy to correctly convey signs, while the latter does not
require absolute accuracy of signs in order for the overall message to be understood in
a conversation. The effect of frame-rate reduction on sign language learning has been
extensively researched [Chen and Thropp 2007; Hooper et al. 2007; Johnson and Caird
1996; Sperling et al. 1985] but not so for holding sign language conversations. Johnson
and Caird [1996] investigated whether perceptual ASL learning was affected by video
transmitted at 1, 5, 15, and 30fps. In a discrimination task, participants made a yes–
no decision about whether the displayed sign and the English word shown matched.
They found that frame rates as low as 1fps and 5fps were sufficient for novice ASL
learners to recognize learned ASL gestures. Although this work suggests frame rates
as low as 1fps and 5fps can support sign language recognition, it does not evaluate
conversational sign language, which the present research investigates.

Hooper et al. [2007] defined comprehension as the ability for respondents to accu-
rately retell stories verbatim. They investigated the impact on ASL comprehension
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when ASL video was presented at 6, 12, and 18fps and displayed at 240 × 180, 320 ×
240, and 480 × 360 pixels at 700kbps. They found video-display size did not affect
comprehension, but varying frame rates did. Students performed better after viewing
video at 12fps than at 6fps, and at 18fps than at 6fps. However, there was no significant
difference in performance between 18fps and 12fps.

Sperling et al. [1985] define intelligibility as the ability to correctly recognize signs.
Under this operationalization, they investigated ASL video intelligibility transmitted
at 10, 15, and 30fps displayed at 96 × 64, 48 × 32, and 24 × 16 pixels, while applying a
grayscale image transformation. They found that common isolated ASL signs shown at
96 × 64 pixels at 15fps and 30fps did not have a noticeable difference in intelligibility,
but lowering the frame rate to 10fps did. While prior work showed that lower frame
rates can impact isolated sign recognition, these results may not hold true for mobile
sign language video conversations because the spatial resolutions were small and may
have influenced respondents’ ability to recognize signs shown at 10fps. Also, their work
was conducted in 1985, when the video compression algorithms were not as efficient as
today; therefore, more visual artifacts may have been introduced in the stimuli used.
Our work goes beyond sign recognition and investigates video intelligibility to support
two-way conversations.

2.6. Evaluating Video Quality

We aim to discover whether frame rate or bit rate has more impact on ASL video in-
telligibility. A subjective experiment, conducted by Yadavalli et al. [2003], evaluated
frame-rate preferences passively viewed for low-, medium-, and high-motion sequences
displayed at 352 × 240 pixels; three frame rates (10, 15, and 30fps); and three bit rates
(100, 200, and 300kbps). A limitation of this work was the type of video content used
for evaluation. Specifically, a boat moving across a body of water, camera panning from
one side of a room to another, and a soccer match were used for low-, medium-, and
high-motion video, respectively. Viewers preferred video at 15fps across all bit rates
and video sequences, which suggests that 15fps represents a compromise rate between
frame and motion quality. At 300kbps, respondents preferred video at 30fps, suggest-
ing that motion quality is more important once adequate frame quality is achieved.
Like Yadavalli et al.’s work, we aim to determine whether ASL video becomes more
intelligible by increasing the frame rate once frame quality (determined by bit rate) is
adequate. But, unlike this prior work, we require respondents to actively watch and
understand ASL video content.

Measuring subjective video quality is time-consuming, content-specific, and requires
many subjects to produce generalizable findings. By contrast, PSNR is commonly
used in video compression to measure objective video quality after lossy compression
[Wiegang et al. 2003]. However, PSNR has been shown to not always accurately repre-
sent humans’ subjective judgments about video quality [Feghali et al. 2007; Nemethova
et al. 2006; Thu and Ghanbari 2008; Tran et al. 2011; Wang et al. 2002]. Numer-
ous researchers have attempted to map PSNR to subjective responses by creating
new objective video quality perception metrics [Winkler and Mohandas 2008; Feghali
et al. 2007; Bae et al. 2009]; however, these objective measures have all been content-
dependent.

Content intelligibility is most important for sign language video; therefore, objec-
tive video evaluations are not the most appropriate way to characterize video quality.
Ciaramello and Hemami [2011] recognized that sign language video needs to be eval-
uated in terms of subjective intelligibility. They created a computational intelligibil-
ity model (CIM) for ASL called CIM-ASL, which measures the perceptual distortions
of video regions deemed important for conveying information, specifically the hands,
face, and torso of a signer. The CIM-ASL model has been shown to yield statistically
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Fig. 3. Block diagram of Shannon’s communication system [Shannon 1948, p. 10].

significant improvements over PSNR when estimating distortions in the CIM-ASL–
defined signing region. However, the CIM-ASL model relies on video-quality perception
with the assumption that greater video quality in the signing region leads to higher
intelligibility. By contrast, our model of subjective intelligibility for sign language video
goes beyond measuring video objectively and details the components impacting subjec-
tive sign language intelligibility.

3. HUMAN SIGNAL INTELLIGIBILITY MODEL (HSIM)

In evaluating mobile sign language video intelligibility, we discovered a lack of uni-
formity in the way that “signal intelligibility” and “signal comprehension” were oper-
ationalized in the literature of human-centered evaluations. Often, intelligibility and
comprehension are loosely defined and used interchangeably in evaluations of video
quality. Some researchers focused on measuring signal intelligibility with the assump-
tion that if one finds the signal intelligible, then comprehension of content automat-
ically follows [Arons 1997; Harrigan 1995; Heiman and Tweney 1981; Hooper et al.
2007; Omoigui et al. 1999]. As part of this research, we present the Human Signal
Intelligibility Model (HSIM), a new conceptual model informing video intelligibility
evaluations and disentangling video intelligibility from video comprehension.

3.1. Existing Communication Models

Before introducing the components comprising the HSIM, we first discuss three ex-
tant conceptual models used to explain the human communication process: Shannon’s
Theory of Communication [Shannon 1948]; Berlo’s Source-Message-Channel-Receiver
model [Berlo 1960]; and Barnlund’s transactional model of communication [Barnlund
1970]. Shannon’s Theory of Communication originates from information theory, while
Berlo’s and Barnlund’s models of communication originate from communication theory.
This section will also address the limitations of existing communication models and
how intelligibility is defined, which led to our creation of the HSIM.

3.1.1 Shannon’s Theory of Communication. In his famous work, Shannon [1948] created
a simple abstraction for communication called the channel, consisting of a sender (the
information source), a transmission medium with noise and distortion, and a receiver
(Figure 3).

In this block diagram, the information source generates a signal, xn, which is a lossy
compressed, generating signal ûn. Noise is introduced to the compressed signal during
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Fig. 4. Berlo’s SMCR Model of Communication [Berlo 1960, p. 3].

transmission due to packet loss and network congestion, resulting in signal ûn. Finally,
the transmitted signal is decoded, producing signal x̂n. From this model, one could
argue that objective metrics could be used to measure video quality, with high-quality
scores implying intelligible content. An objective measure of quality might just measure
the difference between xn and x̂n. However, we argue that there are more components
to intelligibility and comprehensibility of a video signal and using objective measures
alone is not sufficient for human-centered evaluations. The environment in which video
is recorded and displayed, as well as the humans sending and receiving video, also need
to be considered. Shannon’s channel model focuses only on the communication channel
itself without considering the surrounding environment or properties of human senders
and receivers.

3.1.2. Berlos’s SMCR Model of Communication. Existing communication models [Berlo
1960; Barnlund 1970] that attempt to distinguish intelligibility from comprehension
are poorly defined. Berlo viewed communication as a coordination or synchronization
process to allow people to deal with the environment in which they live [Berlo 1960].
He created the source, message, channel, receiver (SMCR) model of communication,
as shown in Figure 4, to represent an exchange of ideas that may hold influence and
authority with one’s culture.

The SMCR model consists of the source, which includes the sender’s communication
skills, attitudes, knowledge, social system, and culture. The message is the physical
product of the sender. The channel represents how the information is transmitted to
the receiver’s senses. Finally, the intended person of the message is the receiver, with
one’s own communication skills, attitudes, knowledge, social system, and culture. The
SMCR model relies on the response of the receiver to determine if the message is
successfully transmitted.

The SMCR model has many limitations when used to evaluate intelligibility of mo-
bile sign language communication. First, both the source and receiver list culture as
a component to account for. Culture could be classified as a component of the human
sending and receiving information, which has no direct impact on video transmission.
Second, the channel components consist of the human senses, which are not represen-
tative of data being transmitted across mobile devices. While this model attempts to
describe human communication with 20 different components, the SMCR model does
not clearly identify which elements produce intelligible communication.
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Fig. 5. Barnlund’s Transactional Model of Communication [Barnlund 1970, p. 47].

3.1.3. Barnlund’s Transactional Model of Communication. Barnlund [1970] proposed a
Transactional Model of Communication with seven communication postulates,
suggesting that individuals are simultaneously engaging in the sending and receiv-
ing of messages, as shown in Figure 5.

The Transactional Model of Communication states that the giving and receiving of
messages is reciprocal, not one-way; therefore, both the sender and receiver are re-
sponsible for the effectiveness of the communication. This model also divides commu-
nication into “intrapersonal,” which consists of encoding and decoding messages within
one’s self, and “interpersonal,” which is encoding and decoding messages with one an-
other. There are seven communication postulates [Barnlund 1970]: (1) communication
describes the evolution of meaning; (2) communication is dynamic; (3) communica-
tion is continuous; (4) communication is circular; (5) communication is unrepeatable;
(6) communication is complex; and (7) communication is irreversible. Ultimately, this
model emphasizes that people need to build shared meaning for any message to be
successfully communicated [Clark 1985]. While this model focuses on how information
is transferred and the relationship of the message between the sender and receiver,
it does not attempt to distinguish intelligibility from comprehension. Also, this model
does not consider the medium in which communication occurs and how it affects com-
munication overall.

3.2. Defining Intelligibility

Signal intelligibility and signal comprehension need to be differentiated for the pur-
pose of evaluating the lower limits at which intelligible sign language video can
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be transmitted. Intelligibility is defined as the capability of a signal to be under-
stood [Merriam-Webster 2003]; namely, how well the signal was articulated, captured,
transmitted, received, and perceived by the receiver, including the environmental con-
ditions affecting these steps. Comprehension, on the other hand, relies on signal intel-
ligibility and the human receiver having the prerequisite knowledge, including knowl-
edge of context, to understand the information. For a signal to be comprehended, it must
be at least minimally intelligible, but not all intelligible signals must or will be compre-
hended. Both intelligibility and comprehension are human-centered concepts, unlike
objective video-quality measures such as the PSNR, which is a technology-centered
concept. These distinctions lead to the creation of the HSIM, described next.

3.3. HSIM Components

We present the HSIM to address the lack of uniformity in the way that signal intelli-
gibility and signal comprehension have been operationalized, especially in contrast to
objective video-quality measures. This model distinguishes subjective video intelligi-
bility from objective video quality and video comprehension, which are three usefully
distinct and separable concepts.

The HSIM (1) extends Shannon’s theory of communication [Shannon 1948] to in-
clude the human and environmental influences on signal intelligibility and signal
comprehension, and (2) identifies the components that make up the intelligibility of a
communication signal, while separating those from the comprehension of a communi-
cation signal. Signal intelligibility and signal comprehension are separable concepts
because an intelligible signal does not require comprehension to have been intelligible.
If the receiver lacks the requisite knowledge for understanding, the signal will not be
comprehended.

The capability of a signal (e.g., video) to be comprehended is different than whether
a signal is actually comprehended in any given instance; this capability is the intel-
ligibility of a signal. In the case of sign language video, intelligibility is affected by
the human articulation of the signal; the environment affecting that articulation; the
channel capturing, transmitting, receiving, and portraying that signal (the items in
Shannon’s model); the human perception of that signal; and the environment affecting
that perception. Figure 6 shows a block diagram illustrating the components compris-
ing intelligibility within the HSIM.

Whether or not the signal is actually understood involves all of the components
comprising intelligibility and one additional component: whether the knowledge of
the human receiver is adequate to understand the communicated message. Because
of this, the receiver’s mind is included in the components comprising comprehension
in Figure 6. The knowledge of the human sender, on the other hand, is irrelevant to
comprehension by the receiver. For example, the sender could be a robot articulating
ASL signs without any real understanding of ASL. The HSIM’s definition of signal
intelligibility and signal comprehension builds on Koul’s definition of speech signal
quality. Koul [2003] defines intelligibility of a speech signal as the individual’s ability
to recognize phonemes and words presented in isolation. Comprehension is defined as
the listener’s ability to process the linguistic message as a whole.

The HSIM goes beyond Koul to include environmental influences in which a signal is
transmitted and received. Lighting is an example of an environmental factor that may
influence signal intelligibility. For instance, viewing sign language video on a mobile
device outside on a sunny day could make the screen appear dark. This environmental
factor would clearly affect the ability for the video to be perceived by the receiver,
compromising its intelligibility. (By contrast, the video’s objective quality (PSNR) would
be unaffected by sunny outdoor conditions.) Recognizing that the environment can
influence signal intelligibility is why the environment is included in the HSIM.
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Fig. 6. Block diagram of the Human Signal Intelligibility Model. Note that the components comprising
signal intelligibility are a subset of signal comprehension, which is signal intelligibility plus the receiver’s
mind.

The HSIM also explicitly separates the sender into two parts, the sender’s mind and
the sender’s articulation. Similarly, the HSIM separates the receiver into two parts, the
receiver’s mind and the receiver’s perception. The sender’s articulation impacts intel-
ligibility and comprehension because, for sign language video, the quality with which
information is conveyed influences the receiver’s ability to understand the content. For
example, a fluent ASL signer could have a motor impairment that would limit the
ability to sign clearly. The physical limitation impacts the sender’s signal articulation,
which impacts the intelligibility of that signal to the receiver.

The receiver’s perception also influences the ability to process information. For in-
stance, the sender could sign perfectly clear ASL, but if the receiver were blind, the sig-
nal would be unintelligible to that receiver. However, since the sign language video was
clearly signed, it may be intelligible to other receivers. Moreover, measuring perception
alone is not sufficient to infer intelligibility. Perceiving a change in video quality does
not necessarily reflect the understandability of its content. These and other examples
illustrate the importance of recognizing human factors and environmental influences
on signal intelligibility and signal comprehension. Intelligibility, then, is inherently a
contextualized concept, unlike objective signal quality as measured by PSNR.

The HSIM reveals an important fact about signal intelligibility: it cannot be mea-
sured directly, as the ability to be comprehended cannot be easily separated from the
actual comprehension of a signal. Fortunately, intelligibility can be inferred by measur-
ing signal comprehension in the presence of fully capable receivers’ minds with more
than adequate linguistic and contextual knowledge to understand the signals that they
receive. Such minds remove the chance that a lack of knowledge affects comprehension,
leaving only intelligibility to explain any comprehension difficulties.

One may wonder why signal perception is not used as a measure of signal intelli-
gibility. Perception is defined as the ability to see, hear, or become aware of a change.
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Therefore, measuring awareness of changes in video quality alone is not sufficient to
infer intelligibility. Using a just-noticeable difference evaluation [Weber 1834] would
not be appropriate because differences in video quality will be more evident at lower
transmission rates before a signal becomes unintelligible.

The HSIM informs our web study design, which evaluates the extreme lower trans-
mission rate limits at which mobile sign language video can be transmitted before
intelligibility is compromised. Owing to the need to ensure that all receivers’ minds are
fully capable of comprehension, participants were screened for ASL fluency. Thereafter,
differences in comprehension could be attributed to differences in intelligibility and not
knowledge.

4. METHODOLOGY FOR CREATING WEB STUDIES FOR DEAF PEOPLE

There are two opposing conceptualizations of deafness, each with a unique impact on
the design of a survey and the way in which it is received by Deaf participants. The
first defines deafness as a pathological condition, while the second views deafness as
a social identifier. The pathological model focuses on people’s audiological status and
considers deafness a medical condition requiring treatment. This perspective classifies
people with hearing loss as “disabled” or “handicapped,” and is marked by negative
stereotypes and prejudice [Cumming and Rodda 1989; Munoz-Baell and Ruiz 2000].
Under this paradigm, deafness is perceived as the dominant quality of a group of people
who share a “condition.”

The social model, in contrast, holds that Deaf people are disabled more by their
interactions with hearing people than by the physical condition that determines their
perception of sounds. This view recognizes the linguistic [Lucas and Valli 2000; Maher
1996] and sociological [Padden and Humphries 2005; Reagan 1995] research that has
identified ASL as a unique language distinct from English, and Deaf Culture as a
legitimate culture distinct from the mainstream.

Given the historical dominance of the pathological view of deafness [Lane 1992],
designing web studies that demonstrated respect for the language and culture of Deaf
people was deemed of paramount importance. Taking into consideration both the values
identified as defining characteristics of Deaf Culture, and the recorded experiences of
deaf individuals who do not identify themselves as members of that culture, we identify
two issues requiring explicit attention: (1) linguistic accessibility and (2) respect for
the autonomy and intelligence of the Deaf individual.

4.1. American Sign Language Instructional Videos

Ensuring the accessibility of an online survey is paramount to its success. Three factors
were taken into consideration with regard to the accessibility of the web study: (1) the
intended audience of Deaf signers; (2) linguistic research that states that the grammar
and lexicon of ASL are distinct from that of English [Lucas and Valli 2000; Padden
and Humphries 2005]; and (3) the value Deaf Culture places on both linguistic acces-
sibility and self-determination [Lucas and Valli 2000]. For this web study, we include
an alternative to textual English by incorporating ASL instructional videos, to both
increase accessibility and demonstrate our respect both for the individual participants
and for Deaf Culture. Creating bilingual surveys widened the audience to include both
ASL signers and those who prefer to communicate visually but who are not fluent
in ASL (for example, late-deafened individuals.) Figure 7 is an example of the ASL
instructional video used alongside the English text.

Neither words nor signs have absolute equivalents in other spoken languages. What
makes ASL/English interpretation possible is that both languages have the capacity to
express identical meanings. The process of interpreting the surveys in ASL began with
analyzing the text for explicit and implicit meaning, English-based discourse patterns,
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Fig. 7. Example of web survey with ASL interpretation of the English text.

and cultural influences. A certified ASL interpreter was consulted to interpret the
instructions with equivalent meaning while utilizing ASL-based discourse patterns
and cultural influences.

5. WEB SURVEY DESIGN

The HSIM informs the design of our web study, which evaluates sign language video
intelligibility transmitted at four low frame rates (1, 5, 10, and 15fps) and four low bit
rates (15, 30, 60, and 120kbps), in a full factorial design. These frame rates and bit
rates are representative of what would be displayed on mobile devices.

The spatial resolution was held constant at 320 × 240 pixels. The web study was
selected over a laboratory study because more parameter settings can be evaluated
with participants from across the nation. A mobile web survey was considered, but at
the time of survey development, there was too much variability across mobile devices
and mobile web browsers, which could not be controlled as an unwanted influence.

5.1. Establishing Language Fluency

Using the HSIM requires establishing language fluency to ensure that all receivers’
minds are fully capable of comprehension. Subsequently, we can attribute differences
in comprehension to differences in intelligibility and not language fluency. We re-
cruited participants from listservs with known fluent ASL signers. Our web survey
began by asking participants to self-report their fluency in ASL. Demographic ques-
tions were presented at the end of the survey to further identify language fluency.
Examples of questions asked include: “Are you deaf or hard-of-hearing?”; “Are you a
native ASL signer?”; “From whom did you learn ASL?”; and “How many years have you
signed ASL?” We provided instructions to the web study in both ASL and English. ASL
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Fig. 8. Example of Question 1 shown in web survey.

interpretations of the English text instructions were shown side-by-side throughout
the web survey to increase accessibility. A professional ASL interpreter was consulted
before filming.

5.2. Video Stimuli

Users of mobile sign language video communication are limited by the front-facing
camera angle and confined signing space. Since the web survey would display prere-
corded video on a computer screen parallel to the participant, the videos used in the
survey simulated the 45-degree angle and signing space that would be typically dis-
played on a small mobile device. At the time of video recording, the front-facing camera
of smartphones, such as Sprint’s EVO phone, recorded only compressed video in the
3GP file format. A tablet was selected to record the videos because it simulated the
allowable signing space and display angle. Recording video from a smartphone was not
an option due to added video compression. An Acer Iconic tablet running Android Hon-
eycomb 3.2.1 was used to video-record a male, native ASL signer/consultant, signing 16
short ASL sentences that included various amounts of finger spelling and descriptive
lexicons. The ASL signer was asked to sign slowly and articulate all signs within the
allowable signing space. The ASL signer sat in front of a solid dark-blue background.
Video length ranged from 15s to 30s. The tablet recorded uncompressed video in 4:2:2
YUV format at 25fps, 8.73Mbps with 320 × 240 screen resolution.

The original YUV videos were encoded using the open-source H.264 encoder
[Richardson 2004] at 1, 5, 10, and 15fps at 15, 30, 60, and 120 kbps, respectively, in a
full-factorial design. The encoded videos were converted to MPEG-4 using a publicly
available converter [Kurtnoise 2009] that does not contribute additional compression
artifacts. The web survey displayed the videos using Apple’s QuickTime media player
[Apple 2013] since it contributes no additional artifacts.

5.3. Survey Components

The survey consisted of three parts: Part 1, practice videos; Part 2, actual survey; and
Part 3, demographic questions. Part 1 displayed two practice videos for participants
to familiarize themselves with the survey layout. All videos were displayed at 320 ×
240 pixels in the middle of the computer screen. A picture of the Sprint EVO phone
was placed behind each video to simulate the mobile environment in which the videos
would be viewed. Each video was shown once, without the option to repeat or enlarge
the video, then removed from the screen and replaced by two questions shown one at
a time. Figure 8 is an example of Question 1, which asked respondents to rate their
agreement on a 7-point Likert scale with, “How easy was the video to understand?”
The 7-point Likert scale was shown in descending vertical order from very easy to

ACM Transactions on Accessible Computing, Vol. 7, No. 3, Article 11, Publication date: November 2015.



Evaluating Sign Language Video Intelligibility 11:17

Fig. 9. Multiple-choice comprehension question example.

very difficult. Figure 9 is an example of a trivial comprehension question pertaining to
the video shown. A four-point, multiple-choice answer appeared with a corresponding
image.

The same layout used in Part 1 was used in Part 2 of the survey, in which participants
watched 16 different videos at each bit-rate and frame-rate combination. Videos were
randomly displayed using a Latin Squares algorithm. The frame-rate and bit-rate
settings did not change within each video clip.

Unobtrusive logging was implemented to measure the time it took to answer
Questions 1 and 2. The start time began when the question appeared on the screen
and the stop time occurred once the “Next” button was clicked. Unobtrusive logging
also captured computer screen size, Internet browser, and computer operating system.
Finally, the survey concluded with Part 3 asking demographic questions to establish
language fluency, as described in Section 5.1, and questions to gather technology use,
such as: “Do you own a smartphone or Blackberry?”; “Do you text message on the smart
phone or Blackberry?”; “What operating system is on your smartphone?”; “Do you video
chat?”; “What video chat program do you use?” “Do you use a video phone?”; “Do you
use Video Relay Service (VRS)?”; and “Which VRS service(s) do you use?”

6. RESULTS

Our web survey received 300 hits, with 99 respondents completing the survey, all of
whom self-reported fluency in ASL. We eliminated results from those who responded
with the same answers for all 16 videos, such as selecting all 1s or all 7s. We analyzed
data from 77 respondents (48 women). Their age ranged from 18 to 72 years old (me-
dian = 40 years, SD = 12.7 years). Of the 77 respondents: 56 were deaf (38 indicated
ASL as their native language, 11 have parents who are deaf), 54 indicated ASL as
their daily language, and the number of years they have spoken ASL ranged from 5 to
59 years (median = 28 years, SD = 12.7). All but 7 respondents owned a smartphone
and sent text messages; 65 indicated they used video chat; and 53 used video-relay
services.

6.1. Perceived Intelligibility

Results are reported in terms of intelligibility even though comprehension questions
were asked. Recall that video intelligibility can be inferred from comprehension ques-
tions provided that the receivers’ knowledge is fully adequate to understand the re-
ceived signals—in this case, once ASL fluency is established. Nonparametric analyses
were used to analyze the Likert responses since the data were ordinal and not normally
distributed. Analysis was performed using the nonparametric Aligned Rank Transform
procedure that enables the use of ANOVA after alignment and ranking, while preserv-
ing interaction effects [Higgins and Tashtoush 1994; Wobbrock et al. 2011].
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Table I. Mean Likert Scale Responses for Ease of Understanding Video Quality

Bit rate (kbps)
15 30 60 120

Frame
rate (fps)

Mean
Likert

std.
error

Mean
Likert

std.
error

Mean
Likert

std.
error

Mean
Likert

std.
error

1 2.14 0.14 1.13 0.07 1.75 0.11 1.90 0.10
5 3.01 0.16 4.43 0.15 4.95 0.14 4.75 0.13
10 4.04 0.16 4.74 0.13 5.66 0.13 5.91 0.14
15 3.51 0.17 3.97 0.15 5.13 0.15 5.25 0.14

Note: Higher Likert scores correspond to better comprehension.
Bold numbers indicate higher Likert scores where 7-strongly agree and 1-strongly disagree.

Fig. 10. Plot of 7-point Likert scale rating participants’ ease of understanding the video for each frame rate
and bit rate averaged over all participants. Error bars represent standard error.

6.1.1. Frame Rate Main Effect. Frame rate was found to have a significant main effect
on video intelligibility (F(3,1139) = 636.99, p < .0001). Post-hoc contrast tests with
Holm’s sequential Bonferroni procedure [Holm 1979] were performed for 1fps versus
5fps; 5fps versus 10fps; 5fps versus 15fps; and 10fps versus 15fps. Table I and Figure 10
list the mean Likert score for question 1, in which higher scores correspond to higher
agreement with the ease of perceived understanding of video content. As expected,
videos displayed at 5fps when compared to 1fps received higher mean Likert scores
for video intelligibility (F(1,1139) = 921.07, p < .0001). Videos displayed at 10fps
when compared to 5fps received higher mean Likert scores for video intelligibility
(F(1,1139) = 111.13, p < .0001). However, when comparing 10fps versus 15fps, video
displayed at 10fps was found to have a higher mean Likert score for intelligible content
(F(1,1139) = 77.22, p < .0001). As Figure 10 shows, video displayed at 10fps (averaged
across four bit rates) received higher mean Likert scores than all other frame rates.
An unexpected finding was that video was not perceived to be less intelligible at 5fps
versus 15fps (F(1, 1139) = 3.11, n.s.). One would expect that a higher frame rate would
yield higher intelligibility for a temporal language since the ITU-T recommends 25fps
for intelligible sign language video.

6.1.2. Bit Rate Main Effect. As expected, changing the bit rate was found to have a sig-
nificant main effect on the ease of understanding ASL video (F(3,1139) = 145.53, p <
.0001) as demonstrated in Figure 10. Post-hoc contrast tests with Holm’s sequential
Bonferroni procedure were performed between 15kbps versus 30kbps; 30kbps ver-
sus 60kbps; and 60kbps versus 120kbps. Unsurprisingly, increasing the bit rate from
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Table II. Percentage of Correctly Answered Comprehension
Questions Across Frame Rate and Bit Rate

frame rate (fps)
bit rate (kbps) 1 5 10 15

15 77.90 64.90 97.40 100.0
30 19.48 94.80 100.00 98.70
60 94.80 96.10 100.00 100.00
120 97.40 97.40 97.80 100.00

Note: Accuracy increases with bit rate but not with
frame rate.

15kbps to 30kbps to 60kbps was found to improve the perceived ease of understanding
ASL video (F(1,1139) = 82.75, p < .0001). However, comparing the perceived ease of un-
derstanding video displayed at 60kbps versus 120kbps was not found to be statistically
significant (F(1,1139) = 4.62, n.s.).

6.1.3. Frame Rate × Bit Rate Interaction. There was also significant frame rate × bit rate
interaction (F(9,1139) = 23.40, p < .0001). Videos transmitted at 10fps, independent
of bit rate, received the highest mean Likert scores for ease of understanding video
quality, as shown in Table I and Figure 10. This result was also found to be statistically
significant when post-hoc contrast tests with Holm’s sequential Bonferroni procedure
was performed for video transmitted at 10fps versus 15fps, varying the frame rate while
the bit rate was held constant (F(1,1139) = 77.22, p < .0001). Additionally, displaying
the video at 60kbps versus 120kbps was not found to be statistically significant to
improve video intelligibility (F(1,1139) = 4.62, n.s.), which is reflected by similar mean
Likert scores. This suggests that 60kbps is high enough to transmit intelligible video.
Video displayed at 1fps received the lowest mean Likert score, which suggests that
1fps is too low to support intelligible sign language video conversations.

6.2. Comprehension Questions

Table II lists the percentage of correctly answered comprehension questions across the
frame rates and bit rates. A one-sample Chi-Square test of proportions was performed
to determine whether frame rate or bit rate affected comprehension question accuracy.
Frame rate (when averaged over bit rates) was not found to impact comprehension
question accuracy (χ2

(3,N=1162) = 6.21, n.s.). However, bit rate (when averaged over
frame rate) was found to impact comprehension question accuracy (χ2

(3,N=1162) = 43.34,
p < .0001). Mainly, comprehension accuracy increased as bit rate increased. This result
is expected since more bits are allocated to each frame and prior work has demonstrated
that increasing the bit rate leads to higher perceived video quality [McCarthy et al.
2004; Nemethova et al. 2006; Wang and Ou 2012]. As Table II demonstrates, 13 of
16 videos received correctly answered comprehension questions with 95% accuracy or
higher. This may suggest that the comprehension questions used were too easy; how-
ever, the main purpose of the comprehension questions was to ensure that participants
were paying attention to the video content.

7. QUANTIFYING BATTERY DRAIN

Reducing the rates at which sign language video is transmitted is only half the solution
to extending battery life and reducing bandwidth consumption. Smartphone batteries
have evolved over the past decade, with early portable devices using older technologies
like nickel-cadmium (NiCD or NiCad) to today’s most popular battery chemistry of
lithium ion. Battery life will continue to be a limiting factor for prolonged mobile video
communication.
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We quantify the battery drain of sign language video transmitted at 320 × 240 spa-
tial resolution at four low transmission rates similar to the ones investigated in the
web study, specifically: 5fps/25kbps, 10fps/50kbps, 15fps/75kbps, and 30fps/150kbps.
These settings are slightly different from the web study because of the technological
limitations of implementation; however, the frame rate and bit rate pairs are still
considerably lower than the ITU-T standard. Intuitively, one would expect that trans-
mitting video at lower frame rates and bit rates would result in longer battery life. We
conducted this study to quantify and confirm such hypotheses.

7.1. Experiment Setup

Our HSIM influenced the battery study design, specifically which technological compo-
nents were held constant: the environment, the video content, the network over which
transmission occurred, the mobile devices used, and video transmission rates. By do-
ing this, we could attribute battery drain to the video transmission rates and not the
technology setup. A Samsung Galaxy S3 smartphone was used to run an open-source
video chat software app called IMSDroid [Doubango Telecom 2009], whose encoder was
modified to transmit video at 5, 10, 15, and 30fps. IMSDroid is an open-source video
conferencing application running on Doubango [Doubango Telecom 2009], a 3GPP
IMS/LTE (IP Multimedia Subsystem) framework for embedded systems. IMSDroid is a
Java-based frontend to Doubango, which is an open-source VoIP client that references
implementation to the Doubango framework. IMSDroid has a GUI interface allowing
for both audio and video calls with the robustness of selecting a different video encoder.
Doubango is the backend framework running 3GPP IMS/LTE, which can run many dif-
ferent types of protocols such as SIP/SDP, HTTP/HTTPS, and DNS. In this experiment,
Session Initiation Protocol (SIP) was selected for the VoIP.

To account for network bandwidth and to minimize network congestion, an Asterisk
[Asterisk 2014] server was set up as the communication server for the battery study. It
controlled the average bit rate per frame. Asterisk is an open-source framework that
supports the server side of facilitating VoIP video communication, for which we used
SIP [Rosenberg et al. 2002]. A specific configuration file was modified to regulate the
bit rate at which video was transmitted, specifically an average of 5kb/frame. Asterisk
uses User Datagram Protocol [Postel 1980], which is suitable for fast and efficient
transmission of data for video conversations.

Since the bit rate averaged 5kb/frame, the bit rate increased as the frame rate
increased: 25, 50, 75, and 150kbps, respectively. The spatial resolution of the video
transmitted was 320×240 pixels displayed horizontally on the phone to maximize the
screen size. Prior to the selection of the Samsung Galaxy S3 phone, the Sprint EVO,
Samsung Galaxy S2, Samsung Galaxy S4, HTC One, and Google Nexus Phone 4 were
investigated as alternatives, but each of these phones’ encoders failed to allow for the
lowered frame rates. Only the Samsung Galaxy S3 encoder was compatible with the
IMSDroid frame-rate modifications, thus, the Galaxy S3 was selected. Network traces
were conducted on the Asterisk server to monitor the frame rate and bit rate of each
video call. A free smartphone diagnostic app, called AndroSensor [Asim 2013], was
used to log the discharge of the battery in the experiment.

AndroSensor ran in the background of IMSDroid and logged the battery life percent-
age in 0.5s increments for 30min. In a preliminary experiment, it was discovered that
transmitting video of a person signing consumes more battery life than transmitting a
static image. Therefore, all experiments were conducted with the smartphone facing a
computer monitor where a person was signing on the screen. Figure 11 is a picture of
this experimental setup. A total of seven experiments were conducted: one for each of
the frame rates of interest; IMSDroid “on” and not transmitting data; and IMSDroid
“off”; and the Samsung Galaxy S3 phone on standby mode.
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Fig. 11. Experimental setup in which two Samsung Galaxy S3 phones are facing a computer screen with a
video of a woman signing in ASL.

Fig. 12. Estimated average battery life (in minutes) for sign language video transmitted on IMSDroid at
each frame rate/bit rate.

7.2. Results

As anticipated, increasing the frame rate at which sign language video was transmit-
ted over the smartphones consumed battery life more quickly because more processing
power was required to transmit video at higher frame rates. Regression analysis demon-
strated that the battery drain was linear for each experiment; therefore, the battery
drain data were extrapolated to determine when the battery would discharge to 0%.
Figure 12 shows the extrapolated data for the average battery life of the Samsung
Galaxy S3 for each frame rate.
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From this experiment, it is estimated that the Samsung Galaxy S3 on standby, with
IMSDroid turned off, has a battery life of 1000min and IMSDroid turned on and not
transmitting video has a battery life of 750min. The Samsung Galaxy S3 specifications
state that a fully charged battery could last up to 8 hours of talk time [T-Mobile 2014].
Our results demonstrate that transmitting video on mobile devices is computationally
intensive and depletes a full battery charge in 3 to 4h. As expected, reducing the
frame rate/bit rate of video monotonically increases battery life. This result is further
corroborated in Tran et al.’s laboratory study, in which fluent ASL signers in pairs held
real-time, free-form conversations over an experimental smartphone app transmitting
video at the same frame rate and bit rate pairs [Tran et al. 2014].

8. DISCUSSION

8.1. HSIM Influence on Study Design

The HSIM influenced our web study and battery study designs in terms of which
components were held constant. We allowed participants to self-report ASL fluency to
encourage participation. Language fluency questions were asked in the demographic
questions to infer levels of ASL fluency. Recall that, in Section 3, we made the distinction
between signal intelligibility and signal comprehension: the latter is defined as signal
intelligibility plus human knowledge and the receiver’s mind. Since data analysis was
performed on data collected from fluent ASL respondents, we were not concerned with
language proficiency influencing our results. We controlled the environment in which
the video stimulus was recorded and how it was displayed on the web survey. The videos
used in the survey were preprocessed to reduce the potential lag time when loading
our web survey. We also asked participants to use a high-speed Internet connection
and allow enough time to view all video sequences.

8.2. Study Findings

8.2.1. Frame Rate and Bit Rate. We anticipated finding frame rate and bit rate pairs in
which video quality either begins to affect intelligibility too negatively or diminishing
returns begin. Unsurprisingly, respondents overwhelmingly ranked video displayed
at 1fps to have the lowest mean Likert scores for ease of understanding the video
content. The 1fps option was included to achieve a sufficiently low frame rate so that
we “bottomed out” on intelligibility. Prior work investigating the impact of frame rate
on perceived video quality acknowledged not selecting a low-enough frame rate to
explore [Cavender et al. 2006; Masry and Hemami 2001].

We discovered diminishing returns for videos displayed at 120kbps over video at
60kbps, independent of frame rate. Figure 10 shows how the mean Likert scores for
60kbps and 120kbps, when averaged over all four frame rates, had similar Likert scores
and were not found to be significantly different in terms of intelligibility (F(1,1139) =
0.47, n.s.). Our findings suggest that 60kbps is high enough to provide intelligible video
conversations.

Another important finding was that video transmitted at 10fps received a higher
mean Likert score than video transmitted at 15fps across all bit rates. The preference
of viewing ASL video at 10fps over 15fps was also discovered in earlier ASL video
communication research conducted by Cavender et al. [2006]. However, their findings
reported a slight, but significant, main effect that frame rate influenced video intelli-
gibility. Our results strongly affirm that ASL video intelligibility peaks at 10fps across
all bit rates. At a fixed low bit rate, more bits are allocated per frame at 10fps ver-
sus 15fps. This difference is noticeable enough to result in higher intelligibility. Our
findings suggest that relaxing the recommended frame rate and bit rate to 10fps at
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60kbps will provide intelligible video conversations while reducing total bandwidth
consumption to 25% of the ITU-T standard.

8.2.2. Signing Speed. The signing speed used in the video stimuli may have contributed
to the nonsignificant intelligibility improvement of video transmitted at 5fps versus
15fps. Our findings suggest that 5fps would be sufficient for intelligible video commu-
nication. In future work, we will objectively measure how many signs are perceived by
the viewer at 5fps versus 15fps to understand the impact of signing speed and frame
rate on video intelligibility.

9. CONCLUSION AND FUTURE WORK

There will be a continued need for investigating trade-offs between video intelligibility
and resource consumption when providing real-time mobile sign language communica-
tion. Several technical challenges remain so that higher video transmission rates can
improve video intelligibility.

9.1.1. Context-Aware Video-Quality Adaptation. Current commercial video apps vary the
video transmission rate based on bandwidth availability, while ignoring the external
factors surrounding the conversation, such as the context of the conversation and
the device facilitating the conversation. A more dynamic method to improve mobile
video transmission rates is to create an algorithm that is context-aware. For example,
during a video call, other external factors can be monitored such as location of call,
environmental factors such as sunlight and rain, remaining battery life, and remaining
data allotment for the month. These and other components outlined in the HSIM
would aid in parameter selection. Part of this work will be to capture the different
contexts in which conversations occur. A field study, in which participants are asked
to communicate via texting and mobile video transmitted at the lower frame rates and
bit rates recommended in this work, would allow researchers to understand context
such as to whom the person was communicating and the nature of the conversation. A
dynamic mobile video app that incorporates all of these components would allow better
resource distribution and improvement over current mobile video communication.

9.1.2. Region-of-Interest Improvements. This web study focused on the baseline transmis-
sion rates at which to transmit video, without ROI-encoding. A future area of research
would be to develop new algorithms that would track the ROIs most important to the
signer, specifically the hands and face, and allocate more data to those ROIs.

9.1.3. Mobile Video Communication in Emergency Situations. Emergency response work can
greatly benefit from the additional information provided with live video. Findings from
this research can be applied to transmitting live video broadcasted in emergency situa-
tions. A potential area of research would be identifying which transmission rates (frame
rate, bit rate, and spatial resolution) provide enough intelligible content to aid emer-
gency response workers. Part of this work would include understanding the situations
faced by response workers on an accident site, identifying key interactions between re-
sponse workers, and identifying how streaming video live could reflect situation-specific
information.

9.1.4. Conclusion. We presented the Human Signal Intelligibility Model (HSIM), which
identifies and distinguishes the components comprising signal intelligibility and signal
comprehension. The HSIM informed our web study evaluating the lower limits of sign
language video transmitted at four low frame rates and four low bit rates. We found that
intelligibility was affected too negatively at 1fps, and that increasing the frame rate
and bit rate above 10fps at 60kbps provided negligible gains. Our findings suggest that
increasing video transmission rates above 10fps and 60kbps does not increase perceived
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intelligibility of content. This finding was further investigated by Tran et al. [2014] in a
laboratory study. These study results further corroborate the findings that respondents
can successfully hold intelligible real-time sign language conversations at transmission
rates lower than the recommended ITU-T standard.

Finally, we anticipate that the HSIM can be used in other signal evaluations of
intelligibility and comprehension such as audio and other video-streaming media. The
knowledge gained about intelligibility of low video quality has the potential to positively
influence the user experience of mobile video communication.
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