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AI-Driven Intelligent Text Correction
Techniques for Mobile Text Entry

Mingrui “Ray” Zhang, He Wen, Wenzhe Cui, Suwen Zhu,
H. Andrew Schwartz, Xiaojun Bi, and Jacob O. Wobbrock

1 Introduction

Text entry techniques on touch-based mobile devices today are generally well devel-
oped. Ranging from tap-based keyboard typing to swipe-based gesture typing [64],
today’s mobile text entry methods employ a range of sophisticated algorithms
designed to maximize speed and accuracy. Although the results reported from var-
ious papers [46, 55] show that mobile text entry can reach reasonably high speeds,
some even as fast as desktop keyboards [55], the daily experience of mobile text
composition is still often lacking. One bottleneck lies in the text correction process.
On mobile touch-based devices, text correction often involves repetitive backspac-
ing and moving the text cursor with repeated taps and drags over very small targets
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Fig. 1 The three correction interactions of Type, Then Correct: a Drag-n-Drop lets the user drag
the last word typed and drop it on an erroneous word or gap between words; b Drag-n-Throw lets
the user drag a word from the suggestion list and flick it into the general area of the erroneous
word; c Magic Key highlights each possible error word after the user types a correction. Directional
dragging from atop the magic key navigates among error words, and tapping the magic key applies
the correction

(i.e., the characters and spaces between them). Owing to the fat finger problem [56],
this process can be slow and tedious indeed. In this chapter, we will introduce two
projects that apply techniques in Natural Language Processing (NLP) to improve the
text correction interaction for touch screen text entry.

Correcting text is a consistent and vital activity during text entry. A study by
MacKenzie and Soukoreff showed that backspace was the second most common
keystroke during text entry (pp. 164–165) [36]. Dhakal et al. [12] found that during
typing, peoplemade 2.29 error corrections per sentence, and that slow typists actually
made and corrected more mistakes than the fast typists.

For immediate error corrections, i.e., when an error is noticed right after it is made,
the user can press backspace to delete the error [53]. However, for overlooked error
corrections, the current cursor movement-based text correction process on smart-
phones is laborious: one must navigate the cursor to the error position, delete the
error text, re-enter the correct text, and finally navigate the cursor back. There are
three ways to position the cursor: (1) by repeatedly pressing the backspace key [53];
(2) by pressing arrow keys on some keyboards or making gestures such as swipe-left;
and (3) by using direct touch to move the cursor. The first two solutions are more
precise than the last one, which suffers from the fat finger problem [56], but they
require repetitive actions. The third option is error-prone when positioning the cursor
amid small characters, which increases the possibility of cascading errors [3]; it also
increases the cognitive load of the task and takes on average 4.5 s to perform the
tedious position-edit-reposition sequence [18].

The two projects in this chapter are based on the same premise: What if we can
skip positioning the cursor and deleting errors? Given that the de facto method of
correcting errors relies heavily on these actions, such a question is subtly quite radical.
What if we just type the correction text, and apply it to the error? The first project,
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“Type, ThenCorrect” (TTC) contains three interactions (Fig. 1): (1)Drag-n-Drop is a
simple baseline technique that allows users to drag the last-typedword as a correction
and drop it on the erroneous text to correct substitution and omission errors [59].
(2) Drag-n-Throw is the “intelligent” version of Drag-n-Drop: it allows the user to
flick a word from the keyboard’s suggestion list toward the approximate area of the
erroneous text. The deep learning algorithm finds the most likely error within the
general target area and automatically corrects it. (3)MagicKey does not require direct
interaction with the text input area at all. After typing a correction, the user simply
presses a dedicated key on the keyboard, and the deep learning algorithm highlights
possible errors according to the typed correction. The user could then dragging atop
the key to navigate through the error candidates and tap the key again to apply the
correction. All three of our interaction techniques require no movement of the text
cursor and no use of backspace.

The second project, JustCorrect, is the evolution of the TTC project. It simpli-
fies the concept even further by reducing the need to specify the error position. To
substitute an incorrect word or insert a missing word in the sentence, the user sim-
ply types the correction at the end, and JustCorrect will automatically commit the
correction without the user’s intervention. Additional options are also provided for
better correction coverage. In this way, JustCorrect makes post hoc text correction
on the recently entered sentence as straightforward as text entry.

We evaluated the two text correction projects with multiple text entry experiments
and compared their performances. The results revealed that bothTTCand JustCorrect
resulted in faster correction times, and were preferred over the de facto technique.

2 Related Work

In the following subsections, we first review research related to text entry correction
behaviors on touch screens. We then present current text correction techniques for
mobile text entry and multi-modal text input techniques. Finally, we provide a short
introduction to natural language processing (NLP) algorithms for text correction.

2.1 Text Correction Behaviors on Touch Screens

Many researchers have found that typing errors are common using touch-based key-
boards and that current correction techniques are left wanting in many ways. For
example, sending error-ridden messages, such as typos and errors arising from auto-
correction [27], is of greatest concern when it comes to older adults. Moreover,
Komninos et al. [28] observed and recorded in-the-wild text entry behaviors on
Android phones, and found that users made around two word-level errors per typing
session, which slowed text entry considerably. Also, participants “predominantly
employed backspacing as an error correction strategy.” Based on their observations,
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Komninos et al. recommended that future research needed to “develop better ways
for managing correction,” which is the very focus of this chapter.

Inmost character-level text entry schemes, there are three types of text entry errors
[35, 59]: substitutions, where the user enters different characters than intended; omis-
sions, where the user fails to enter characters; and insertions, where the user injects
erroneous characters. Substitutions were found to be the most frequent error among
these types. In a smart watch-based text entry study [30], out of 888 phrases, partic-
ipants made 179 substitution errors, 31 omission errors, and 15 insertion errors. In a
big data study of keyboarding [12], substitution errors (1.65%) were observed more
frequently than omission (0.80%) and insertion (0.67%) errors. Our correction tech-
niques address substitution and omission errors; we do not address insertion errors
because users can just delete insertions without typing any corrections. Moreover,
insertion errors are relatively rare.

2.2 Mobile Text Correction Techniques

While much previous work focused on user behaviors during mobile text entry, there
have been a few projects that improved upon the text correction process. Previous
work often adopted a cursor-based editing approach. For example, previous research
proposed controlling the cursor by using magnifying lens [2], pressing hard on the
keyboard to turn it into a touchpad [2], or adding arrow keys [58]. Gestural operations
have also been proposed to facilitate positioning the cursor. Examples included using
left and right gestures [18], sliding left or right from the space key [22] to move the
cursor, or using a “scroll ring” gesture along with swipes in four directions [65].

The smart-restorable backspace [4] project had the most similar goal to that of
this chapter: to improve text correction without extensive backspacing and cursor
positioning. The technique allowed users to perform a swipe gesture on the backspace
key to delete the text back to the position of an error, and restore that text by swiping
again on the backspace key after correcting the error. To determine error positions,
the technique compares the edit distance of the text and the word in a dictionary.
The error detection algorithm is the main limitation of that work: it only detects
misspellings. It cannot detect grammar errors or word misuse. By contrast, the two
projects in this chapter could detect a wide range of errors based on deep learning
techniques.

Commercial products exhibit a variety of text correction techniques. Gboard [34]
allows a user to touch on a word and replace it by tapping on another word in a sug-
gestion list. However, this technique is only limited tomisspellings. Some keyboards,
such as the Apple iOS 9 keyboard, support indirect cursor control by treating the
keyboard as a trackpad. Unfortunately, prior research [48] showed that this design
brought no time or accuracy benefits compared to direct pointing. The Grammarly
keyboard [23] will keep track of the input text, and provide corrections in the sug-
gestion list. Grammarly uses NLP algorithms to provide correction suggestions, and
it is able to detect both spelling and grammar errors. The user simply taps the sug-
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gestion to commit a correction. However, because Grammarly provides correction
suggestions without guidance (e.g., it provides all possible error correction options
without knowingwhich one the user wants to correct), the suggestion bar can become
cluttered in the presence of many suggestions.

Different from the above techniques, the correction techniques presented in this
chapter have the user enter a correction first, typed at the end of the current text
input stream. Informed by the correction, the techniques can better understand what
text the user wants to correct. Thus, they can not only correct “real errors” such as
misspellings or grammar errors but also address other issues, such as offering to
substitute synonyms.

2.3 Multi-Modal Text Input

Many soft keyboards (e.g.,Gboard [34]) support entering text via differentmodalities,
such as tap typing, gesture typing, and voice input. Previous research has explored
fusing information from multiple modalities to reduce text entry ambiguity, such
as combining speech and gesture typing [41, 51], using finger touch to specify the
word boundaries in speech recognition [50], or using unistrokes together with key
landings [25] to improve input efficiency.

JustCorrect also investigated how different input modalities affected the perfor-
mance. It was particularly inspired by ReType [52], which used eye-gaze input to
estimate the text editing location. We advanced it by inferring the editing intention
based on the entered word only, making the technique suitable for mobile devices,
which typically are not equipped with eye-tracking capabilities.

2.4 NLP Algorithms for Error Correction

The projects in this chapter use deep learning algorithms from natural language
processing (NLP) to find possible errors based on typed corrections. We therefore
provide a brief introduction to related techniques.

Traditional error correction algorithms utilize N-grams and edit distances to pro-
vide correction suggestions. For example, Islam and Inkpen [24] presented an algo-
rithm that uses the Google 1T 3-gram dataset and a string-matching algorithm to
detect and correct spelling errors. For each word in the original string, they first
search for candidates in the dictionary, and assign each possible candidate a score
derived from their frequency in the N-gram dataset and the string-matching algo-
rithm. The candidate with the highest score above a threshold is suggested as a
correction.

Recently, deep learning has gained popularity in NLP research because of its
generalizability and significantly better performance than traditional algorithms. For
NLP tasks, convolutional neural networks (CNN) and recurrent neural networks
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Fig. 2 Our customized
keyboard interface. The undo
key is located in the top-right
corner. TheMagic Key is the
circular key immediately to
the left of the space bar

(RNN) are extensively used. They often follow a structure called encoder–decoder,
where part of the model encodes the input text into a feature vector, then decodes the
vector into the result. In TTC, we utilize an RNN in this encoder–decoder pattern.
A thorough explanation of these methods is beyond the current scope. Interested
readers are directed to prior work [6, 54, 61].

Most researchers treat the error correction task as a language translation task in
deep learning because their input and output are both sentences—for error correction,
the input is a sentencewith errors and the output is an error-free sentence; for language
translation, the input is a sentence in one language and the output is a sentence in
another language. For example, Xie et al. [60] presented an encoder–decoder RNN
correction model that operates input and output at the character level. Their model
was built upon a sequence-to-sequence model for translation [6], which was also
used in the algorithm of the TTC project for error detection.

3 Type, Then Correct: The Three Interactions

Wepresent the design and implementation of the three interaction techniques of Type,
Then Correct (TTC). The common features of these interactions are: (1) the first step
is always to type the correction text at the current cursor position, usually the end
of the current input stream; (2) all correction interactions can be undone by tapping
the undo key on the keyboard (Fig. 2, top right); (3) after a correction is applied, the
text cursor remains at the last character of the text input stream, allowing the user
to continue typing without having to move the cursor. A current, but not theoretical,
limitation is that we only allow the correction text to be contiguous alphanumeric
text without special characters or spaces.
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Fig. 3 The three interaction techniques. Drag-n-Drop: a.1 Type a word and then touch it to ini-
tiate correction; a.2 Drag the correction to the error position. Touched words are highlighted and
magnified, and the correction shows above the magnifier; a.3 Drop the correction on the error to
finish. Drag-n-Throw: b.1 Dwell on a word from the suggestion list to initiate correction. The word
will display above the finger; b.2 Flick the finger toward the area of the error: here, the flick ended
on “the,” not the error text “technical”; b.3 The algorithm determines the error successfully, and
confirming animation appears. Magic Key: c.1 Tap the magic key (the circular button) to trigger
correction. Here, “error” is shown as the nearest potential error. c.2 Drag left from atop the magic
key to highlight the next possible error in that direction. Now, “magical” is highlighted. c.3 Tap the
magic key again to commit the correction “magic”

3.1 Drag-n-Drop

Drag-n-Drop is the simplest interaction technique. With Drag-n-Drop, after typing
the correction, the user then drags the correction text and drops it on the error location.
As shown in Fig. 3a.1, if the finger’s touchdown point is within the area of the last
word, the correction procedurewill be initiated. The user can thenmove the correction
and drop it either on anotherword to substitute it, or on a space to insert the correction.

While moving the correction, a magnifier appears above the finger to provide an
enlarged image of the touched text; text to be correctedwill be highlighted in a yellow
background (Fig. 3a.2). When the finger drags over an alphanumeric character, we
highlight its surrounding text bounded by any special character or space. When the
finger drags over a space character, we highlight the single space character. The
correction text also displays above the magnifier during the drag to remind the user
what the correction is.
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Fig. 4 Perceived input point: a the user views the top of the fingernail as the input point [21]; b
but today’s hardware regards the center of the contact area as the touch input point, which is not the
same. Figure adapted from [56]

Similar to Shift by Vogel and Baudisch [56], we adjusted the input point to 30
pixels above the actual contact point, to reflect the user’s perceived input point [21].
Vogel and Baudisch suggested that “users perceived the selection point of the finger
as being located near the top of the finger tip” [7, 56], while the actual touch point
was roughly at the center of the finger contact area [49], as shown in Fig. 4. After
the correction is dropped on a space (for insertion) or on a word (for substitution),
there is an animated color change from orange to black, confirming the successful
application of the correction text.

3.2 Drag-n-Throw

Similar toDrag-n-Drop,Drag-n-Throw also requires the user to drag the correction.
But unlike Drag-n-Drop, with Drag-n-Throw, the user flicks the correction from the
word suggestion list atop the keyboard, not from the text area, allowing the user’s
fingers to stay near the keyboard area. As before, the correction text shows above the
touch point as a reminder (Fig. 3b.1). Instead of dropping the correction on the error
position, the user throws (i.e., flicks) the correction to the general area of the text to
be corrected. Once the correction is thrown, our deep learning algorithm determines
the error position, and corrects the error either by substituting the correction for a
word, or by inserting the correction. Color animation is displayed to confirm the
correction. The procedure is shown in Fig. 3b.1–3.

We enable the user to drag the correction from the suggestion list because it is
quicker and more accurate than directly interacting with the text, which has smaller
targets. Moreover, our approach provides more options and saves time because of
the word-completion function. For example, if the user wants to type “dictionary,”
she can just type “dic” and “dictionary” appears in the list. Or, if the user misspells
“dictonary,” omitting an “i,” the correct word still appears in the list because of the
keyboard’s decoding algorithm.
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Throwing the text speeds up the interaction beyond precise drag-and-dropping.
The user does not have to carefully move the finger to drop the correction. Our deep
learning algorithmwill output candidate positions for substitution or insertion within
the general finger-up area. (More implementation details are explained below.) In our
implementation, if the candidate is within 250 pixels of the finger-lift point in any
direction, the error will be corrected and confirmed by color animation. Otherwise,
therewill be no effect. The 250-pixel thresholdwas derived empirically from iterative
trial-and-error. Larger thresholds allow corrections too far away from the finger-lift
point, which can cause unexpected results and user frustration. Smaller thresholds
reduce the benefits of “throwing” and eventually start to feel like “dropping.”

3.3 Magic Key

Drag-n-Drop required interaction within the text input area; Drag-n-Throw kept the
fingers closer to the keyboard but still required some interaction in the text input
area. With Magic Key, the progression “inward” toward the keyboard is fulfilled, as
the fingers do not interact with the text input area at all, never leaving the keyboard.
Thus, round trips [15] between the keyboard and text input area are eliminated.

With Magic Key, after typing the correction, the user taps the magic key on
the keyboard (Fig. 3c.1), and the possible error text is highlighted. If a space is
highlighted, an insertion is suggested; if a word is highlighted, a substitution is
suggested. The nearest possible error to the just-typed correction will be highlighted
first; if it is not the desired correction, the user can drag from atop the magic key
to left to show the next possible error. The user can drag left or right from atop the
magic key to rapidly navigate among different error candidates. Finally, the user can
tap the magic key to commit the correction. The procedure is shown in Fig. 3c.1–3.
To cancel the operation, the user can simply tap any key (other than undo or the
magic key itself).

4 Type, Then Correct: The Correction Algorithm

In this section, we present the deep learning algorithm for text correction and its natu-
ral language processing (NLP) model, the data collection and processing procedures,
and the training process and validation results.

4.1 Expected Correction Categories

We first list error types that our model should correct:
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Typos A typographical error (“typo”) happens when a few characters of a word
are mistyped. For example, fliwer (flower) or feetball (football). Among typos,
misspellings can usually be auto-corrected by current keyboards; however, auto-
correction might yield another wrong word. For example, best (bear) or right (tight).
Our model should be able to handle different types of typo errors.

Grammar Errors Grammar errors caused by one mistaken word should be cor-
rected, such as misuse of verb tense, lack of articles or pronouns, subject–verb dis-
agreement, etc.

Semantic SubstitutionOur model should also be able to substitute words that are
semantically related to the correction, such as synonyms and antonyms. For example,
“what a nice day” can be corrected to “what a beautiful day.” Semantic substitution
is not necessarily correcting an error, but is useful when the user wants to change the
expression.

4.2 The Deep Neural Network Structure

Inspired by Xie et al. [60], we applied a recurrent neural network (RNN) encoder–
decoder model similar to the translation task for text corrections. The encoder
contains a character-level convolutional neural network (CNN) [26] and two bi-
directional gated recurrent unit (GRU) layers [9]. The decoder contains a word-
embedding layer and two GRU layers. The overall flow of the model is shown in
Fig. 5, and the encoder–decoder structure is shown in Fig. 6.1

Traditional recurrent neural networks (RNN) cannot output positional informa-
tion. Our key insight is that instead of outputting the whole error-free sentence, we
make the decoder only output five words around the proposed correction position,
e.g., the correction word and its four neighboring words (two before, two after). If
there are not enoughwords, the decoder will output the flags<bos> or<eos> instead
for beginning-of-sentence and end-of-sentence, respectively. To locate the correction
position, we compare the output with the input sentence word-by-word, and choose
the position that aligns with most words. For the example in Fig. 5, we first tokenize
the input and add two <bos> and two <eos> to the start and end of the tokens. Then
we compare the output with the input:

Input: <bos> <bos> thanks the reply <eos> <eos>
CS: <bos> thanks for the reply
CI: <bos> thanks the reply

Above, “CS” means compare for substitution, which finds the best alignment for
substitution (it uses all five words of the output trying to align with the input); “CI”
means compare for insertion, which finds the best alignment for insertion (it only
uses the first and last two words of the output for alignment, as the center word is the
insertion correction). In the example, CI has best alignment of four tokens (<bos>,

1 The model and data processing codes are available at https://github.com/DrustZ/CorrectionRNN.

https://github.com/DrustZ/CorrectionRNN
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Fig. 5 The encoder–decoder model for text correction. The model outputs five words in which the
middle word is the correction. In this way, we get the correction’s location

thanks, the, reply), thus “for” will be inserted between “thanks” and “the.” If the
number of aligned tokens is the same in both comparisons, we would use insertion
in our implementation.

Wenowexplain the details of the encoder and the decoder (Fig. 6). For the encoder,
because there might be typos and rare words in the input, operating on the character
level is more robust and generalizable than operating on the word level. We first
apply the character-level CNN [26] composed of Character Embedding, Multiple
Conv. Layers andMax-over-time Pool layers (Fig. 6, left). Our character-level CNN
generates an embedding for each word at the character level. The character embed-
ding layer converts the characters of a word into a vector of L × Ec dimensions.
We set Ec to 15, and fixed L to 18 in our implementation, which means the longest
word can contain 18 characters (longer words are discarded). Words with fewer than
18 characters are appended with zeroes in the input vector. We then apply multiple
convolution layers on the vector. After convolution, we apply max-pooling to obtain
a fixed-dimensional (Ew) representation of the word. In our implementation, we used
convolution filters with width [1, 2, 3, 4, 5] of size [15, 30, 50, 50, 55], yielding a
fixed vector with the size of 200. Ec was set to 200 in the decoder.

We also needed to provide the correction information for the encoder.We achieved
this by feeding the correction into the same character-level CNN, and concatenated
the correction embedding with the embedding of the current word. This yielded a
vector of size 2Ew, which was then fed into two bi-directional GRU layers. The
hidden size H of GRU was set to 300 in encoder and decoder.
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Fig. 6 Illustration of the encoder and decoder, which is every vertical blue box in Fig. 5. L is the
length of characters in a word; Ec is the character embedding size; H is the hidden size; Ew is the
word embedding size; Nw is the word dictionary size

The decoder first embedded the word in a vector of size Ew, which was set to
200. Then it was concatenated with the attention output. We used the same attention
mechanism as Bahdanau et al. [6]. Two GRU layers and a log-softmax layer then
followed to output the predicted word.

4.3 Data Collection and Processing

We used the CoNLL 2014 Shared Task [40] and its extension dataset [6] as a part
of the training data. The data contained sentences from essays written by English
learners with correction and error annotations. We extracted the errors that were
either insertion or substitution errors. In all, we gathered over 33,000 sentences for
training.

To gather even more training data, we perturbed several large datasets containing
normal text. We used the Yelp reviews (containing two million samples) and part
of the Amazon reviews dataset (containing 130,000 samples) generated by Zhang
et al. [67]. We treated these review data as if they were error-free texts, and applied
artificial perturbation to them. Specifically, we applied four perturbation methods:

1. Typo simulation. In order to simulate a real typo, we applied the simulation
method similar to Fowler et al. [16]. The simulation treated the touch point dis-
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tribution on a QWERTY layout as a 2-D Gaussian spatial model, and selected a
character based on the sampling coordinates. We used the empirical parameters
of the spatial model from Zhu et al. [68]. For each sentence in the review dataset,
we randomly chose a word from the sentence, and simulated the typing procedure
for each character of the word until the simulated word was different from the
original word. We then applied a spellchecker to “recover” the typo. This maneu-
ver was to simulate the error of auto-correction functions, where the “corrected”
word actually becomes a different word. We then used the “recovered” word as
a typo if it was different from the original word, or used the typing simulation
result if the spellchecker successfully recovered the typo.

2. Dropping words To enable the model to learn about insertion corrections, we
randomly dropped a word from a sentence, and labeled the dropped word as
the correction. We prioritized dropping common stop words first if any of them
appeared in the sentence, because people were most likely to omit words like a,
the, my, in, and very.

3. Word deformation We randomly changed or removed a few characters from a
word. If the word was a verb, we would replace it with a word sharing the same
lexeme. For example, we would pick one of broken, breaking, breaks, or broke to
replace break. If the word was a noun, we would use a different singular or plural
word. For example, we would replace star with stars. Otherwise, we would just
remove a few characters from the word.

4. Semanticword substitutionThis perturbation enabled themodel to learn seman-
tic information. For a given word in the sentence, we looked for words that were
semantically similar to it andmade a substitution.We used theGloVe [44] Twitter-
100 model from Gensim [45] to represent similarity. Synonyms and antonyms
were generated using this method.

For each sentence in the review dataset, we randomly applied a perturbation
method. We then combined the perturbed data with the CoNLL data, and filtered
out sentences containing less than 3 words or more than 20 words. In all, the final
training set contained 5.6 million phrases.

For testing, we used two datasets: CoNLL 2013 Shared Task [39], which was
also a grammatical error correction dataset, and the Wikipedia revision dataset [62],
which contains real-word spelling errors mined from Wikipedia’s revision history.
We generated 1665 phrases from the CoNLL 2013 dataset and 1595 phrases from
the Wikipedia dataset.

4.4 Training Process

We implemented our model in PyTorch [43]. We only included lowercase alphabet-
ical letters (a–z) and ten numerals (0–9) in the character vocabulary of the encoder.
We used the Adam optimizer with a learning rate of 0.0001 (1e-4) for the encoder
and 0.0005 (5e-4) for the decoder, and a batch size of 128. We applied weight clip-
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ping of [−10,+10], and a teacher forcing ratio of 0.5. We also used dropout with
probability 0.2 in all GRU layers. For the word embedding layer in the decoder, we
labeled words with frequencies less than 2 in the training set as <unk> (unknown).

4.5 Results

Table1 shows the evaluation results on the two testing datasets. The recall is 1 because
all our testing data contained errors. We regarded a prediction as correct if the error
position predicted was correct using the comparison algorithm described above.

4.6 Other Implementation Details

We developed a custom Android keyboard and a notebook application to implement
our three text correction interaction techniques. Our keyboard was based on the
Android Open-Source Project (AOSP)2 from Google. In building on top of this
keyboard,we added the long-press interaction on suggestedwords forDrag-n-Throw.

The notebook application was built on an open-source project Notepad,3 and
most of the interactions were implemented as part of the notebook application. For
Drag-n-Drop, when a user touched within the last word area (within 100 pixels of
the (x, y)-coordinate of the last character), the interaction was initiated. We used the
default magnifier on the Android system and added a transparent view showing the
correction above the finger as it moves.

For Drag-n-Drop and Magic Key, the keyboard needed to communicate with the
notebook application. The keyboard used the Android Broadcast mechanism to send
the correction and endpoint of the throw gesture of Drag-n-Throw. When the infor-
mationwas received, the notebookwould searchwithin the three lines near the release
point. For each line, the notebook extracted up to 60 surrounding characters near the
release point, and sent them to a server running the correction model. The server
then replied with possible correction options and the corresponding probabilities.
The notebook then selected the most likely option to update the correction. To avoid

Table 1 The performance of our correction model on the two testing datasets

Dataset Accuracy (%)

CoNLL 2013 75.68

Wikipedia revisions 81.88

2 https://android.googlesource.com/platform/packages/inputmethods/LatinIME/.
3 https://github.com/farmerbb/Notepad.

https://android.googlesource.com/platform/packages/inputmethods/LatinIME/
https://github.com/farmerbb/Notepad
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the correction happening too far away from the throwing endpoint, we constrained
the x-coordinate of the correction to be within 250 pixels of the finger-lift endpoint.

For theMagic Key technique, the keyboard notified the notebook when the magic
key was pressed or dragged. The notebook would treat the last word typed as the
correction, and sent the last 1000 characters to the server. The server then split the
text into groups of 60 characters with overlaps of 30 characters, and predicted a
correction for each group. When the notebook received the prediction results, it first
highlighted the nearest option, and then switched to further error options when the
key was dragged left. For substitution corrections, it would highlight the whole word
to be substituted; for insertion corrections, it would highlight the space where the
correction was to be inserted.

The server running the correction model handled responses via HTTP requests.
To increase the accuracy of the model for typos, we first calculated the matching
score between each token of the input text and the correction using the Levenshtein
algorithm [31]. The score equaled the number of matches divided by the total char-
acter number of the two words. If the score of a word in the sentence was above
0.75, we treated the word as the error to be corrected. Otherwise, we fed the text and
correction into the aforementioned neural network model.

5 Type, Then Correct: Experiment

Weevaluated three aspects of our correction techniques: (1) timing and efficiency; (2)
success rate of Drag-n-Throw andMagic Key; and (3) users’ subjective preferences.
We conducted an experiment containing two tasks: a correction task and a compo-
sition task. The correction task purely evaluated the efficiency of the interactions,
and the composition task evaluated the usability and success rate of the intelligent
techniques in more realistic scenarios.

5.1 Participants

We recruited 20 participants (8 male, 12 female, aged 23–52) for the study. We
used emails, social media, and word-of-mouth for recruitment. All participants were
familiar with entering and correcting text on mobile devices. The experiment lasted
1 hour, and participants were compensated $20 USD for their time.

5.2 Apparatus

A Google Pixel 2 XL was used for the study. The phone had a 6.0” screen with a
1440–2880 resolution. We added logging functions from the notebook application
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to record correction time. The server running the correction model had a single GTX
1080.

5.3 Phrases Used in the Correction Task

Both tasks utilized a within-subjects study design. For the correction task, we chose
30 phrases from the test dataset onwhich the correctionmodel had been 100%correct
because we wanted purely to evaluate the performance of the interaction technique,
not of the predictive model. We split the phrases evenly into three categories: typos,
word changes, and insertions. Typos required replacement of a few characters in a
word; word changes required replacing a whole word in a phrase; and insertions
required inserting a correction. For each category, we had five near-error phrases
where the error positions were within the last three words; and five far-error phrases
where the error positions were farther away. The reason was to see whether error
positions would affect correction efficiency. Examples of phrases in each category
are provided in the appendix.

5.4 Procedure

Participants were first introduced to our different interaction techniques, including
the categories of errors thatDrag-n-Throw andMagic Keywere able to correct. Then
participants practiced the three techniques with three practice phrases each. After
practicing, the 30 phrases as well as their corresponding corrections were presented
to the participants. Then they began to correct the phrases using four techniques:
(1) today’s de facto cursor-positioning and backspace-based method, (2) Drag-n-
Drop, (3) Drag-n-Throw, and (4) Magic Key. The order of the four techniques was
counterbalanced using a balanced Latin Square.

When the correction task started, the participant would be shown the next phrase
to be corrected on a desktop computer screen, as well as how to correct it. The
notebook application would display the phrase with an error. After the participant
corrected the error, a dialog box appeared asking the participants to enter the next
phrase. The experimenter then showed the next phrase on the computer. When the
participant was ready, she entered the next phrase by tapping the OK button. The
interface is shown in Fig. 7. The rationale for showing how to correct the phrase on
a computer screen was to filter out the learning effect and visual search time caused
by the unfamiliarity of the phrases, and to isolate the interaction time.

After the correction task, the participants started composing messages freely.
They were told to type for 3 minutes as they would in normal messaging situations.
However, they were told not to correct any errors during typing. After finishing their
compositions, they then corrected all errors with the four interaction techniques.
This composition task endeavored to evaluate usability in a more realistic scenario.
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a c

b

Fig. 7 a The notebook application showing the test phrase. b The intended correction displayed
on the computer screen. c After each correction, a dialog box appeared

When participants were correcting errors with Drag-n-Throw and Magic Key, the
experimenter recorded whether any failure happened in order to calculate the error
rate.

When the two tasks ended, participants filled out a NASA-TLX survey [47] and
a usability survey adapted from the SUS questionnaire [8] for each interaction.

6 Type, Then Correct: Results

For the correction task, 2400 phrases were collected in total. For the correction task,
we focus on task completion times; for the composition task, we focus on the success
rate of the two intelligent interaction techniques and users’ preferences.

6.1 Correction Time

Figure8 shows correction times for the four techniques. In addition to overall times,
the correction times for near-error and far-error phrases are also shown. We log-
transformed correction times to comply with the assumption of conditional nor-
mality, as is often done with time measures [32]. We used linear mixed model
analyses of variance [17, 33], finding that there was no order effect on correc-
tion time (F(3, 57) = 1.48, n.s.), confirming that our counter-balancing worked.
Furthermore, technique had a significant effect on correction time for all phrases
(F(3, 57) = 26.49, p < 0.01), near-error phrases (F(3, 57) = 29.02, p < 0.01),
and far-error phrases (F(3, 57) = 17.04, p < 0.01), permitting us to investigate
post hoc pairwise comparisons.

We performed six post hoc paired-sample t-tests with Holm’s sequential Bonfer-
roni procedure [20] to correct for Type I error rates, finding that for all phrases,
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Fig. 8 Average correction times in seconds for different interaction techniques (lower is better).
Drag-n-Throw was the fastest for all phrases and far-error phrases, whileMagic Key was the fastest
for near-error phrases. Error bars are +1 SD

the de facto cursor-based method was significantly slower than Drag-n-Throw
(t (19) = 6.66, p < 0.01) and Magic Key (t (19) = 4.79, p < 0.01); Drag-n-Drop
was also significantly slower than Drag-n-Throw (t (19) = 7.49, p < 0.01) and
MagicKey (t (19) = 5.62, p < 0.01). For near-error phrases, the de factomethodwas
significantly slower than Drag-n-Throw (t (19) = 5.58, p < 0.01) and Magic Key
(t (19) = 7.02, p < 0.01); Drag-n-Drop was also significantly slower than Drag-
n-Throw (t (19) = 5.00, p < 0.01) and Magic Key (t (19) = 7.44, p < 0.01). For
far-error phrases, Drag-n-Throw was significantly faster than all other interactions:
the de factomethod (t (19) = −5.64, p < 0.01),Drag-n-Drop (t (19) = −6.60, p <

0.01), and Magic Key (t (19) = −3.68, p < 0.01).
We then looked at different correction types. Figure9 shows the average correction

times for typos, word changes, and insertions. Again, we used linear mixed model
analyses of variance [17, 33] on log correction time [32]. Technique had a statistically
significant effect for all correction types: typo (F(3, 57) = 5.11, p < 0.01), word
change (F(3, 57) = 10.87, p < 0.01), and insertion (F(3, 57) = 55.55, p < 0.01).

We then performed post hoc paired-sample t-tests with Holm’s sequential Bonfer-
roni procedure, finding that for typos, the de facto cursor-based method was signifi-
cantly slower than Drag-n-Throw (t (19) = 3.80, p < 0.01); Drag-n-Drop was also
significantly slower thanDrag-n-Throw (t (19) = 2.70, p < 0.05). Forword change,
the de facto cursor-based method was significantly slower than all other techniques:
Drag-n-Drop (t (19) = 3.54, p < 0.01), Drag-n-Throw (t (19) = 5.58, p < 0.01),
and Magic Key (t (19) = 3.74, p < 0.01). For insertion, Drag-n-Drop was signif-
icantly slower than all other interactions: the de facto method (t (19) = 5.72, p <

0.01),Drag-n-Throw (t (19) = 11.17, p < 0.01), andMagicKey (t (19) = 10.92, p <
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Fig. 9 Average correction times in seconds for different correction types (lower is better). Drag-
n-Throw was the fastest for all three types. Error bars are +1 SD

0.01); also, the de facto cursor-based method was significantly slower than Drag-n-
Throw (t (19) = 5.45, p < 0.01) and Magic Key (t (19) = 5.20, p < 0.01).

6.2 Success Rate

In the text composition task, we recorded errors when participants were usingDrag-
n-Throw and Magic Key. With Drag-n-Throw, participants made 108 errors in all,
and 95 of them were successfully corrected, a success rate of 87.9%. Among the
successfully corrected errors, nine were attempted more than once because the cor-
rections were not applied to expected error positions. With Magic Key, participants
made 101 errors in all, and 98 of them were successfully corrected, a success rate of
97.0%.

6.3 Subjective Preference

The composite scores of the SUS usability [8] and TLX [47] surveys for different
interaction techniques are shown in Fig. 10. Participants generally enjoyed using
Magic Key and Drag-n-Throw more than the de facto cursor-based method and
Drag-n-Drop. Also, the two deep learning techniques were perceived to have lower
workload than the other two.
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Fig. 10 Composite usability (higher is better) and NASA-TLX (lower is better) scores for different
techniques. Magic Key was rated as the most usable and having the lowest workload

7 JustCorrect: Simplifying the Text Correction Based on
TTC

In this section, we present the second project, JustCorrect, which is an extension of
the Type, Then Correct (TTC) project, and simplifies the correction interaction one
step further. The interaction flow is demonstrated in Fig. 11. Before explaining the
technical details, we first show a usage scenario.

Sarah was texting a message to her friend Tom when she typed: We worked on
the project lsst week. She discovered a mis-spelling: lsst. Instead of moving the
cursor five characters back, deleting the wrong characters, and typing the correct
characters, Sarah simply typed the word last and pressed the edit button. JustCorrect
automatically replaced lsst with last. Sarah also noticed that it might be better to
replace worked with focused, so she typed focused at the end and pressed the edit
button again to correct the word. Lastly, she wanted to insert the modifier mainly
before focused. She gesture typed mainly and JustCorrect automatically completed
the task for her. In this case, JustCorrect was triggered by switching from tap typing
to gesture typing. The final sentence then became We mainly focused on the project
last week. In this example, Sarah successfully corrected a typo, substituted a word,
and inserted a new word without ever adjusting the cursor position.

7.1 The Post hoc Correction Algorithm

The key to JustCorrect lies in successfully inferring a user’s editing intention based
on the entered word and the prior context. The post hoc correction algorithm takes
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Fig. 11 This figure shows how JustCorrect works. 1. The user enters a sentence with an error jimo
using tap typing; 2. To correct jimo to jumps, they can either tap-type jumps and press the editing
button (2a), or switch to gesture type jumps (2b). 3. JustCorrect then substitutes jimo with jumps.
Two alternative correction options are also presented. The editing procedure involves no manual
operations except entering the correct text
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Table 2 An example of eight substitution candidates. They are generated by replacing a word in
the sentence “a quick fox jimo over a lazy dog” with “jumps.” Si means that i th word in the sentence
wi is replaced by w∗. SubScorei is substitution score for ranking substitution candidates. SSi , ESi ,
and WSi are scores from Sentence channels, Edit Distance, and Word Embedding, respectively

Substitution
candidates

SubScorei SSi ESi W Si

S1: jumps quick
fox jimo over a
lazy dog

0.56 0 0 0.56

S2: a jumps fox
jimo over a lazy
dog

0.89 0.2 0.2 0.48

S3: a quick
jumps jimo over
a lazy dog

0.42 0.42 0 0

S4: a quick fox
jumps over a lazy
dog

1.71 1 0.6 0.11

S5: a quick fox
jimo jumps a
lazy dog

0.75 0.18 0 0.57

S6: a quick fox
jimo over jumps
lazy dog

0.56 0 0 0.56

S7: a quick fox
jimo over a
jumps dog

1.11 0.11 0 1

S8: a quick fox
jimo over a lazy
jumps

0.48 0.18 0 0.31

the current entered sentence S and an editing word w∗ as input, and revises S by
either substituting a word wi in S with w∗, or inserting w∗ at an appropriate position.
The post hoc correction algorithm offers three post hoc correction suggestions, with
the top suggestion automatically adopted by default and the others easily selected
with only one additional tap.

Take the sentence S = a quick fox jimo over a lazy dog. The user inputs jumps as
the editing word w∗. Because the sentence has eight words, there are eight substi-
tution and nine insertion possibilities: _a_quick_fox_jimo_over_a_lazy_dog_. The
nine possible insertion positions are indicated by the underscores. The post hoc cor-
rection algorithm then generates eight substitution candidates (S1 − S8), as shown
in Table2, and nine insertion candidates (I1 − I9) as shown in Table3.

The algorithm then ranks the substitution candidates according to the substitution
scores, and ranks the insertion candidates according to the insertion scores. These
scores are later compared to generate ultimate correction suggestions.
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Table 3 An example of nine insertion candidates. They are generated by inserting “jumps” before
or after every word in the sentence “a quick fox jimo over a lazy dog.” Ii means w∗ is inserted at
the i th insertion location. I nser Scorei is insertion score for ranking insertion candidates

Insertion candidates I nser Scorei

I1: jumps a quick fox jimo over a lazy dog 0.06

I2: a jumps quick fox jimo over a lazy dog 0.04

I3: a quick jumps fox jimo over a lazy dog 0.52

I4: a quick fox jumps jimo over a lazy dog 1

I5: a quick fox jimo jumps over a lazy dog 0.91

I6: a quick fox jimo over jumps a lazy dog 0.24

I7: a quick fox jimo over a jumps lazy dog 0

I8: a quick fox jimo over a lazy jumps dog 0

I9: a quick fox jimo over a lazy dog jumps 0.5

7.2 Substitution Score

The substitution score reflects how likely a substitution candidate represents the user’s
actual editing intention. We look for robust evidence of the substituted word along
three dimensions: orthographic (i.e., character) distance, syntactosemantic (i.e.,
meaning) distance, and sequential coherence (i.e., making sense in context). More
specifically, for the i th substitution candidate Si , its substitution score SubScorei is
defined as

SubScorei = ESi + WSi + SSi , (1)

where ESi is editing similarity, WSi is word embedding similarity, and SSi is the
sentence score for substitution candidates (explained below). The edit distance chan-
nel ESi is intended to handle spelling corrections. The edit distance between a typo
and a correct word is usually small [57].

On the other hand, when replacing a word with a more preferred choice, e.g.,
replacing “great” with “fantastic,” or replacing “road” with “path,” the two words
are both valid spellings and usually close in meaning. The word embedding channel
WSi captures similar meanings. Finally, the sentence channel SSi ensures the overall
coherence of the word choice or replacement within its context.

7.2.1 Edit Distance Channel

The edit distance channel calculates the editing similarity for each substitution candi-
date. The Levenshtein edit distance [31] between two strings is the minimum number
of single-character edits including deletions, insertions, or substitutions needed to
transform one string into another string. The editing similarity ESi is defined as
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ESi = L(w∗,wi )

max(|w∗|, |wi |) , (2)

wherew∗ is the correction andwi is the ith word in the previous text.max(|w∗|, |wi |)
denotes the max length of w∗ and wi .

7.2.2 Word Embedding Channel

The word embedding channel estimates the semantic and syntactic similarity WSi
between the editing word w∗ and the substituted word wi in Si . In this channel,
words from the vocabulary are mapped to vectors derived from statistics on the co-
occurrence of words within documents [13]. The distance between two vectors can
then be used as a measure of syntactic and semantic difference [1].

We trained our word embedding model over the “Text8” dataset [37] using the
Word2Vec skip-gram approach [38]. The cosine similarityWSC(w∗,wi ) is then cal-
culated as the WSi [1]. WSi was normalized in the range [0, 1].

7.2.3 Sentence Channel

The sentence channel estimates the normalized sentence score of Si using a language
model—a model that estimates the probability of a certain sequence of words.

To compute the language model probability for a given sentence, we trained a 3-
gram language model using the KenLMLanguageModel Toolkit [19]. The language
model takes each substitution candidate sentence Si as the input, and outputs its
estimated log probability P(Si ). By normalizing P(Si ) in the range of 0 to 1, we get
the normalized sentence score SSi :

SSi = P(Si ) − min(P(Sj ))

max(P(Sj )) − min(P(Sj ))
, ( j = 1, 2, . . . , N ), (3)

wheremin(P(Sj )) andmax(P(Sj )) are the minimum andmaximum sentence chan-
nel scores among all the N substitution possibilities, assuming the sentence S has
N words. The language model itself was trained over the Corpus of Contemporary
American English (COCA) [11] (2012 to 2017), which contains over 500 million
words.

7.3 Insertion Score

For insertion candidates, we only use the sentence channel for insertion scores, as
there are no word-to-word comparisons for insertion candidates. Assuming S has N
words and therefore N + 1 candidates for insertion, the insertion score I nser Scorei
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for the candidate Ii is calculated as

I nser Scorei = P(Ii ) − min(P(I j ))

max(P(I j )) − min(P(I j ))
, ( j = 1, 2, . . . , N + 1), (4)

wheremin(P(I j )) andmax(P(I j )) are the minimum and maximum sentence chan-
nel scores amongall the N + 1 insertionpossibilities (I1, I2, . . . , IN+1). I nser Scorei
is also normalized in [0,1].

7.4 Combining Substitution and Insertion Candidates

The post hoc correction algorithm combines the substitution and insertion candidates
to generate correction suggestions by calculating each candidate’s scores. We com-
pare substitution and insertion candidates by their sentence channel scores because it
is the common component in both score calculations. The candidates with the highest
top-3 scores would be shown on the interface. If all three candidates are of the same
error kind (substitution/insertion), we change the last candidate with the top one of
the other kind to ensure the diversity of the suggestions. The top suggestion will be
automatically committed to the text (see Sect. 7, Part 3).

8 JustCorrect: Experiment

We evaluated the usability of three forms of JustCorrect: JustCorrect-Gesture,
JustCorrect-Tap, and JustCorrect-Voice. These variations are different JustCorrect
techniques with different input modalities, as explained below.

8.1 Participants

Werecruited16participants (4 females) from19 to40years old (Mean = 26.4, Std. =
4.4). All were right-handed. The self-reported median familiarity with tap typing,
gesture typing, and voice input (1: not familiar, 5: very familiar) were 5.0, 3.5, and
2.5 respectively. Seven participants had gesture typing experience. The participants
were instructed to use their preferred hand posture throughout the study.
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8.2 Apparatus

A Google Nexus 5X device (Qualcomm Snapdragon 808 Processor, 1.8GHz hexa-
core 64-bit Adreno 418GPU, RAM: 2GB LPDDR3, Internal storage: 16GB) with
a 5.2-inch screen (1920×1080 LCD at 423 ppi) was used for the experiment.

8.3 Design

The study was a within-subjects design. The sole independent variable was the text
correction method with four levels:

• Cursor-based Correction. This was identical to the existing de facto cursor-based
text correction method on the stock Android keyboard.

• JustCorrect-Tap. After entering a word with tap typing, the user presses the editing
button to invoke the post-hoc correction algorithm (see Fig. 11).
Taking the sentence “a quick fox jimo over a lazy dog,” for example, if the user
wants to replace “jimo” with “jumps,” she tap types the editing word “jumps” and
then presses the editing button (see Fig. 11). The post-hoc correction algorithm
takes “jumps” as the editing word and outputs “a quick fox jumps over a lazy
dog.”

• JustCorrect-Gesture. A user performed JustCorrect with gesture typing [29, 63,
64]. After entering the correction word w∗ with a gesture and the finger lifts
off, the system applied the post-hoc correction algorithm to correct the existing
phrase with the word. The other interactions were the same as those in JustCorrect-
Tap. The only difference is that in JustCorrect-Tap, a button was used to trigger
JustCorrect because tap typing required a signal to indicate the end of inputting
a word, while this step is omitted in JustCorrect-Gesture because gesture typing
naturally indicates the end of entering a word when the finger lifts.

• JustCorrect-Voice. A user performed JustCorrect with voice input. The user first
pressed the voice input button on the keyboard and spoke the editing word. The
post-hoc correction algorithm took the recognized word from a speech-to-text
recognition engine as the editing wordw∗ to edit the phrase.We used theMicrosoft
Azure speech-to-text engine [5] for speech recognition. The remaining interactions
were identical to the previous two conditions.

8.4 Procedure

Each participant was instructed to correct errors in the same set of 60 phrases in
each condition, and the orders of the sentences were randomized. We randomly
chose 60 phrases with omission and substitution errors from mobile typing dataset
of Palin et al. [42]. This dataset included actual input errors from 37, 370 users when
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Table 4 Examples of phrases in the experiment. The first three sentences contained substitution
errors. The last sentence contained an omission error

Sentences with errors Target sentences

1. Tjank for sending this Thanks for sending this

2. Should systematic manage the migration Should systems manage the migration

3. Try ir again and let me know Try it again and let me know

4. Kind like silent fireworks Kind of like silent fireworks

typing with smartphones and their target sentences. We focused on omission and
substitution errors since the post-hoc correction algorithm was designed to handle
these two types of errors. We also filtered out sentences with punctuation or number
errors because our focus was on word correction. Among 60 phrases, 8 contained
omission errors and the rest contained substitution errors. The average (SD) edit
distance between the sentence with errors and target sentences was 1.9(1.2). Each
phrase contained an average (SD) of 1.1(0.3) errors. The average length of a target
phrase in this experiment was 37 ± 14 characters. The largest phrase length was
68 characters, and the shortest was 16 characters. Table4 shows four examples of
phrases in experiment.

In each trial, participants were instructed to correct errors in the “input phrase”
so that it matched the “target phrase” using the designated editing method. Both the
input phrase and the target phrase were displayed on the screen. The errors in the
input phrase were underlined to minimize the cognitive effort required to identify
errors across conditions, as shown in Fig. 12. The participantswere required to correct
errors in their current trial before advancing to their next trial.

Should a participant fail to correct the errors in the current trial, they could use
the undo button to revert the correction and redo it, or use the de facto cursor-
based editing method. We kept the cursor-based method as a fallback in each editing
condition because our JustCorrect techniques were proposed to augment rather than
replace it. We recorded the number of trials corrected by this fallback mechanism in
order to measure the effectiveness of each JustCorrect technique.

Prior to each condition, each participant completed a warm-up session to famil-
iarize themselves with each method. The sentences in the warm-up session were
different from those in the formal test. After the completion of each condition, par-
ticipants took a 3-minute break. The order of the four conditionswas counterbalanced
using a balanced Latin Square.

In total, the experiment included: 16 participants × 4 conditions × 60 trials =
3,840 trials.
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Fig. 12 A user editing a sentence using JustCorrect-Gesture. The target sentence is displayed at
the top of the screen, and the sentence with errors is displayed below. The underlines show two
errors in the phrase: this –> that, making –> working. The user is shown gesture typing the word
that to correct the first error

Fig. 13 Mean (95% CI) text correction times for each method for successful trials

8.5 Results

8.5.1 Text Correction Time

We defined the “text correction time” as the duration from when a sentence was
displayed on the screen to when it was submitted and completely revised. Thus, this
metric conveys the efficiency of each JustCorrect text correction technique.

Figure13 shows text correction time for trials that were successfully corrected
using the designated editing method in each condition (unsuccessful trials are
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Fig. 14 Mean (95% CI) text correction times for the tasks successfully completed on the first
attempt

described below in the next subsection). The mean ± 95% CI of text correc-
tion time was 6.21 ± 0.59s for the de facto cursor-based technique, 6.05 ± 0.83s
for JustCorrect-Gesture, 5.62 ± 0.70 s for JustCorrect-Tap, and 10.22 ± 1.14s for
JustCorrect-Voice. A repeated measures ANOVA showed that the text correction
technique had a significant main effect on overall trial time (F3,45 = 71.96, p <

0.001). Pairwise comparisons with Bonferroni correction showed that differences
were statistically significant between all pairs (p < 0.001) except for JustCorrect-Tap
versus JustCorrect-Gesture (p = 0.17) and JustCorrect-Gesture versus the cursor-
based technique (p = 0.67).

To understand the effectiveness of the algorithm under different conditions, we
analyzed cases that were successfully edited in the first editing attempt. In total,
there were 3328 such trials, among 3840 total trials. We grouped these trials by edit
distance between the target sentence and the incorrect sentence. The average text
correction times on different methods are shown in Fig. 14. When the edit distance
was 1, the correction times in de facto cursor-based technique were close to those in
the gesture-based and tap-based techniques. When the edit distance was 2, 3, or 4,
the gesture- and tap-based techniques were faster than the de facto baseline.

8.5.2 Success Rate

We define the success rate as the percentage of correct trials out of all trials for
a given correction technique. Figure15 shows success rates across conditions. The
mean± 95%CI for success rate for each input technique was: 100.0 ± 0% for the de
facto cursor-based technique, 96.2 ± 2.2% for JustCorrect-Gesture, 97.1 ± 0.03%
for JustCorrect-Tap, and 95.1 ± 0.03% for JustCorrect-Voice. A repeated measures
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Fig. 15 Success rate by input technique. While not 100%, the three interactions of JustCorrect
achieved pretty close success rate to the cursor-based interaction

Fig. 16 The median preference rating for cursor-based correction, JustCorrect-Gesture,
JustCorrect-Tap, and JustCorrect-Voice. JustCorrect Tap received the highest rating

ANOVA showed that text editing technique had a significant effect on the overall
success rate (F3,45 = 14.31, p < 0.001). Pairwise comparisons with Bonferroni cor-
rection showed the differencewas significant between JustCorrect-Tap versus cursor-
based, JustCorrect-Gesture versus cursor-based, JustCorrect-Voice versus cursor-
based (p < 0.01). All other pairwise comparisons were not statistically significant.

8.5.3 Subjective Feedback

At the end of the study, we asked the participants to rate eachmethod on a scale of 1 to
5 (1: dislike, 5: like). As shown in Fig. 16, the median rating for cursor-based editing,
JustCorrect-Gesture, JustCorrect-Tap, and JustCorrect-Voice were 3.0, 4.0, 5.0, and
2.5, respectively. A non-parametric Friedman test of differences among repeated
measure was carried out to compare the ratings for the four conditions. There was a
significant difference between the methods (Xr

2(3) = 17.29, p < 0.001).
Participants were also asked which method(s) they would like to use during text

entry on their phones. Twelve participantsmentioned theywould use JustCorrect-Tap
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and eight would also like to use JustCorrect-Gesture. Six participants also consid-
ered the de facto cursor-based method useful, especially for revising short words
or character-level errors. Only two participants liked to use JustCorrect-Voice for
text editing, while most participants had privacy concerns about using it in a public
environment.

8.6 Discussion

We introduced two projects in this chapter: Type, Then Correct (TTC), and JustCor-
rect. We first discuss the user study results of TTC, followed by the discussion of
JustCorrect.

In TTC,Drag-n-Throw performed fastest among different correction types.More-
over, its performance was not affected by whether the error was far away or not
(Fig. 8).Magic Key also achieved reasonable speeds across different correction types.
For near-errorswithin the last three words, it even surpassedDrag-n-Throw, because
the errors would be highlighted and corrected with just two taps. For far-errors,
participants had to drag atop the Magic Key a few times to highlight the desired
error, leading to longer correction times.Drag-n-Drop performed the slowest over all
phrases, which was mainly caused by the insertion corrections. As shown in Fig. 9,
it was faster than the de facto cursor-based method for typos and word changes,
but significantly slower than other interactions for insertions. To insert a correction
between two words, a user had to highlight the narrow space between those words.
Many participants spent a lot of time adjusting their fingers in order to highlight
the desired space. They also had to redo the correction if they accidentally made a
substitution instead of an insertion. Our undo key proved to be vital in such cases. To
evaluate the performance of our algorithm in more realistic scenarios, we analyzed
the results from text composition tasks. Drag-n-Throw achieved a success rate of
87.9%. A failure was when two possible error candidates were too close to each
other. For example, if the user wanted to insert “the” in the phrase “I left keys in
room,” there were two possible positions (before keys and before room), but only
one of them would be corrected.Magic Key achieved a higher success rate of 97.0%,
as it searched every possible error in the text.

As for participants’ subjective preferences, 12 of 20 participants liked Magic
Key the most. The major reason was convenience: all the actions were done on the
keyboard. P1 commented, “Just one button handles everything. I don’t need to touch
the text anymore. It was also super intelligent. I am lazy, and that’s why I enjoyed it
so much.” Another reason was thatMagic Key provided feedback (highlights) before
committing the correction, making the user confident about the target of their actions.
As P4 pointed out, “It provides multiple choices, and the uncertain feeling is gone.”
The main critique ofMagic Key was about the dragging interaction required to move
among error candidates. P5 commented: “If the text is too long and the error is far
away, I have to drag a lot to highlight the error. Also, the button is kinda small, and
hard to drag.”
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Interestingly, we found that all three participants above age 40 had positive feed-
back about the two intelligent correction techniques, and negative feedback about the
de facto cursor-based method. P14, aged 52, commented, “I dislike the cursor-based
method most. I have a big finger, and it is hard to tap the text precisely. Throw is
easy and works great. I also likeMagic Key, because I don’t need to interact with the
text.” Older adults are known to perform touch screen interactions more slowly and
with less precision than younger adults [14], and the intelligent correction techniques
might benefit them by removing the requirement of precise touch. Moreover, people
walking on the street or holding the phone with one hand might also benefit from the
interactions, because touching precisely is difficult in such situations.

In JustCorrect, our investigation led to the followingfindings. First, both JustCorrect-
Gesture and JustCorrect-Tap showed good potential as correction methods. Both
JustCorrect-Gesture and JustCorrect-Tap successfully corrected more than 95% of
the input phrases. They both saved average correction time over the de facto cursor-
based correction method. These two methods were especially beneficial for cor-
recting sentences with large editing distances relative to the target sentences. As
shown in Fig. 14, for sentences with an editing distance of 4, JustCorrect-Gesture
and JustCorrect-Tap reduced correction time by nearly 30% over the cursor-based
method.

Second, JustCorrect-Gesture and JustCorrect-Tap exhibited their own pros and
cons. Participants had differing preferences: users who were familiar with gesture
typing liked JustCorrect-Gesture because it did not require pressing the editing but-
ton, while other participants preferred JustCorrect-Tap because they mostly used tap
typing for text entry. JustCorrect-Gesture saved the editing button-tap compared to
JustCorrect-Tap because gesture typing naturally signals the end of entering a word
by the lifting of the finger. On the other hand, in JustCorrect-Gesture, gesture typing
is used to correct text only, limiting its scope of usage.

Third, contrary to thepromisingperformanceof JustCorrect-Gesture and JustCorrect-
Tap, JustCorrect-Voice under-performed. The reason was that JustCorrect required
a user to first enter the editing word. However, the existing speech-to-text recog-
nition engine often performed poorly when recognizing a single word in isolation,
especially for short words. We discovered that entering common words such as for,
to, and are are challenging when using voice, which caused difficulty in correcting
phrases with errors on these words.

There is an exciting point in both projects: employing the power of machine
learning to automate the text correction and realize interactions that were not possible
before. The advantage of deep learning is that longer context can be incorporated in
the language models than the traditional n-gram-based methods, which enables the
models to “understand” the intention of the user on a deeper level.
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8.7 Future Work

On the basis of our work here, we propose four possible future directions: (1) Punc-
tuation handling: currently both TTC and JustCorrect do not handle punctuation, so
errors like “lets” (let’s) currently cannot be corrected. (2) Adding better feedback
mechanics to reduce the uncertainty of the outcome: although the interactions were
intelligent and did the work right most of the time, they were not transparent to the
user, and the outcome of the interactions was not obvious. For example, participants
felt unconfident when using the Drag-n-Throw, as there was a lack of feedback as to
where the corrections would be applied. Adding proper feedback, such as highlight-
ing the surrounding text of the throwing position to provide cues about where the
correction will occur. (3) Multilingual correction support: the two interaction tech-
niques could be applied to other languages as well, such as the Chinese language.
(5) Interactions beyond keyboard correction: the concept can also be applied to other
correction scenarios, such as voice input and handwriting.

9 Conclusion

In this chapter,we demonstrated howartificial intelligence could be applied to the text
correction interaction on touch screens. The first project, Type, Then Correct (TTC),
includes three novel interaction techniques with one common concept: to type the
correction and apply it to the error, without needing to reposition the text cursor or use
backspace, which break the typing flow and slow touch-based text entry. The second
project, JustCorrect, brought the concept further by removing the need to manually
specify the error position. Both projects utilized machine learning algorithms in
NLP fields to help identify the possible error text. The user studies showed that both
TTC and JustCorrect were significantly faster than de facto cursor-based correction
methods and garnered more positive user feedback. They provide examples of how,
by breaking from the desktop paradigmof arrowkeys, backspacing, andmouse-based
cursor positioning, we can rethink text entry on mobile touch devices and develop
novel methods better suited to this paradigm.
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