
$Q: A Super-Quick, Articulation-Invariant Stroke-Gesture
Recognizer for Low-Resource Devices

Radu-Daniel Vatavu
MintViz Lab MANSiD Center

University Stefan cel Mare of Suceava
Suceava 720229, Romania

vatavu@eed.usv.ro

Lisa Anthony
Department of CISE
University of Florida

Gainesville, FL 32611, USA
lanthony@cise.ufl.edu

Jacob O. Wobbrock
Information School DUB Group

University of Washington
Seattle, WA 98195, USA

wobbrock@uw.edu

ABSTRACT
We introduce $Q, a super-quick, articulation-invariant point-
cloud stroke-gesture recognizer for mobile, wearable, and
embedded devices with low computing resources. $Q ran up
to 142× faster than its predecessor $P in our benchmark eval-
uations on several mobile CPUs, and executed in less than 3%
of $P’s computations without any accuracy loss. In our most
extreme evaluation demanding over 99% user-independent
recognition accuracy, $P required 9.4s to run a single classifi-
cation, while $Q completed in just 191ms (a 49× speed-up)
on a Cortex-A7, one of the most widespread CPUs on the
mobile market. $Q was even faster on a low-end 600-MHz
processor, on which it executed in only 0.7% of $P’s computa-
tions (a 142× speed-up), reducing classification time from two
minutes to less than one second. $Q is the next major step for
the “$-family” of gesture recognizers: articulation-invariant,
extremely fast, accurate, and implementable on top of $P with
just 30 extra lines of code.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g., HCI):
User Interfaces − Input devices and strategies.

Author Keywords
Gesture recognition; stroke recognition; $1; $P; $Q; $-family;
point-cloud recognizer; mobile devices; low-resource devices.

INTRODUCTION
In recent years, we have seen the tremendous proliferation
of small electronic devices of all kinds [40,41,52,54]. Smart-
phones are the most prevalent of these, but other, smaller
devices are now widespread, such as smartwatches, activity-
monitoring wristbands, augmented reality glasses, Bluetooth
earbuds, memory sticks, GPS trackers, nano-projectors, and
others. All these smart devices embed CPUs that need to ex-
ecute code quickly, especially for applications that process
human input, such as gesture interfaces. As small as these

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MobileHCI ’18, September 3–6, 2018, Barcelona, Spain.
© 2018 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5898-9/18/09...$15.00.
https://doi.org/10.1145/3229434.3229465

Figure 1. Classification times for $P and $Q (left) on five CPU architec-
tures common for today’s mobile, wearable, and embedded platforms
for a set of 16 distinct stroke-gestures with user-independent accuracy re-
quirements of >99%. Speed-ups of 46× on average and up to 142× over
$P [50] make $Q very fast and suitable for next generation miniaturized
low-resource devices, like the Gear Fit smartwatch shown at right.

devices are, new smaller devices emerge regularly, and con-
tinued miniaturization seems inevitable for some time [14].
Amazingly, ARM has shipped 86 billion chips to date (such as
the CPU architectures referred to in Figure 1) that are used to
power 95% of today’s smartphones, 80% of digital cameras,
and 35% of all electronic devices [4].

Input on such small devices has largely been restricted to one
or two buttons. Some devices, such as smartwatches, have
touch-sensitive screens, but sophisticated input like text entry
is still challenging due to a dearth of screen space. Research
efforts have looked at novel input schemes such as tapping
rhythms [52] to extend the range of input possibilities, but the
opportunity remains to make interaction with these devices
better. The challenge is exacerbated by the fact that the small-
est devices are often also “low-resource devices,” meaning
they lack the processing power and memory that larger de-
vices have. New input schemes are needed that are suitable for
tiny low-resource devices, but more expressive than merely
pressing a button.

One type of input that has seen significant uptake in recent
years is gesture recognition. Although gestures come in many
forms [30], stroke-gestures have gone mainstream, appear-
ing in every touch screen-based product as swipes and
flicks, atop virtual keyboards like Swype (www.swype.com) or
ShapeWriter [25,56], and in the “insert special characters” fea-
ture in Google Docs, to name a few. A decade ago, the $1
gesture recognizer [53] provided simple, easy-to-build stroke-

https://doi.org/10.1145/3229434.3229465
www.swype.com

gesture recognition that not only programmers could imple-
ment, but also interaction designers, rapid prototypers, and
students from a variety of design and engineering disciplines.
The $1 gesture recognizer inspired a series of follow-ons, such
as Protractor [27], $N [2,3], $P [49,50], $3 [24], 1¢ [19],
CircGR [10], Quick$ [38], Penny Pincher [43,44], and Jack-
knife [45], among others.

Arguably the most flexible and powerful of the “$-family” of
gesture recognizers is $P [50] due to its unique feature of
representing gestures as point clouds. This representation
makes $P an articulation-invariant recognizer, i.e., it classi-
fies gestures correctly no matter how users articulate them in
terms of the number of strokes, stroke types and directions,
or stroke orderings.To achieve this performance, $P relies on
solving a point-to-point correspondence problem between two
point clouds, which is an example of the classic “assignment
problem” [11,15], adapted to and reformulated in the context
of stroke gesture representation, matching, and classification.
However, $P is not well suited to low-resource devices, not
having been implemented for that purpose.

In order to bring powerful stroke-gesture recognition to low-
resource devices, we introduce $Q, a major advance over the
$P recognizer. $Q is a super-Quick highly-optimized recog-
nizer that uses a mere 3% of the computations of $P without
losing any recognition accuracy, which makes it computation-
ally affordable on low-resource devices. We implemented $Q
on five CPU architectures representative of today’s low to high-
end mobile, wearable, and embedded platforms (see Figure 1)
and found that $Q achieves speed-ups of 46× on average and
up to 142×, compared to $P. For instance, $Q evaluated over
1,000 templates in just 82ms on the Cortex-A53 mobile CPU,
compared to $P’s 5.8 seconds.

With this work we contribute both theoretical and practical
advances to the state-of-the-art in stroke-gesture recognition:

1. We perform the first thorough evaluation of $P’s classifi-
cation time performance, showing that $P [50], the most
flexible gesture recognizer today, is simply unsuited for
efficient operation on low-resource devices. Moreover, we
show that standard code optimization techniques are not
enough to make $P suited for such devices, e.g., the opti-
mized $P took 2.7 s to compute on our fastest CPU. Waiting
nearly three seconds for each gesture to be recognized is
clearly infeasible for interactive applications.

2. We designed $Q informed by key observations about effi-
cient point-cloud matching that we transcoded into clear,
theoretically-sound algorithmic formalisms implementable
on any platform. In this process, we introduced the first
theoretical lower bound for matching point clouds.

3. We conducted a thorough evaluation of $Q by consider-
ing user-dependent and user-independent scenarios, various
configurations of the template set, and multiple CPU archi-
tectures, which showed massive speed improvements of $Q
over $P: $Q is up to 142× faster and requires only 3% of
$P’s computations without any accuracy loss.

4. We provide clear pseudocode for $Q to enable implementa-
tion on any mobile, wearable, or low-resource gadget.

$Q is the next major evolution for the $-family: fast, accurate,
and enabling gesture recognition on a host of current and
future devices with little or limited computing power.

RELATED WORK
We discuss in this section prior work on gesture recognition.
For the purposes of this work, we define a “gesture” to be
any path traced onto a touch-sensitive surface by a user with a
finger or stylus [53,55]. We thereby differentiate this type of
gesture from the body of work exploring 3-D, spatial, mid-air,
whole-body, and whole-hand gestures.
Stroke-Gesture Recognition
Gesture classification algorithms for touch input have ranged
from designs specifically focused on recognizing individual let-
ters and shapes [2,3,27,28,39,50,53] to complex fully sketched
diagrams [16,17,20,21]. Stroke-gestures have been explored
not only for smartphones and smartwatches [27,54], but also
for new wearable prototypes enabling input through cloth-
ing [40,41] or even directly on the skin [18].

The area of gesture recognition most relevant to our work is
the so-called “$-family” of stroke-gesture recognition algo-
rithms. In the nearly ten years since Wobbrock et al. [53]
introduced their $1 unistroke gesture recognizer, there has
been a growing trend in the use of template-based matching al-
gorithms for recognition of touch gestures, such as extensions
of $1 to multistroke recognition in $N [2], closed-form speed-
ups like Protractor and $N-Protractor [3,27], and articulation-
invariant approaches, such as $P [50]. The $-family has also
inspired other researchers to use similar naming schemes to
denote a likeminded philosophy of providing formerly hard-to-
implement capabilities in a more prototype-friendly form; e.g.,
the Quick$ [38] and 1¢ [19] recognizers, the 1e filter [12],
the 1F filter [47], Penny Pincher [43,44], and Jackknife [45].
Efforts to optimize gesture recognition have considered identi-
fying the lowest resampling rate and bit depth that still allow
for accurate recognition [46,48], or selecting the best fit tem-
plates for training the recognizer, such as Pittman et al.’s [33]
metaheuristics-inspired approach to prototype selection. This
line of work on $-family recognizers has formed a tangent
from state-of-the-art machine learning based approaches, such
as Hidden Markov Models [42], deep neural networks [13],
or feature-based statistical classifiers [20]. The $-family al-
gorithms have remained relevant due to their simplicity of
implementation, making them easy to port to new platforms,
and their ability to perform very accurately with few templates.
Gesture Recognition on Low-Resource Devices
Protractor [27] was the first template-matcher proposed specif-
ically for low-resource device demands. The algorithm ex-
tended $1 [53] to use a closed-form matching step, whereas
$1 used a more computationally expensive Golden Section
Search [34] to iteratively find the best angular alignment be-
tween two stroke-gestures during their comparison. Li eval-
uated Protractor’s performance on a low-resource device (a
528-MHz ARM-11 CPU) and reported a nearly 60-fold per-
formance improvement over $1 [27].

Other prior work introduced methods to improve the compu-
tational complexity of the $1 recognizer: the Quick$ recog-
nizer [38], 1¢ [19], the 1F filter [47], or Penny Pincher [43,44].

Quick$ [38] sacrificed some implementation simplicity by
employing offline hierarchical clustering of the template ges-
tures and used a branch and bound search strategy to match
candidate gestures to templates. The 1¢ recognizer [19] used
a rotation-invariant 1-D representation of stroke-gestures that,
just like Protractor, removed the need for the search strategy
used by $1. The 1F filter [47] focused on pruning the template
set using a gesture feature to approximate the best match, and
only required a local search rather than a full search of all
possible templates. Penny Pincher [43,44] was characterized
by high accuracy and rapid execution, especially in the case
of time-limited recognition, although it was less flexible than
$P, i.e., “it is not intrinsically a multistroke recognizer” [43]
(p. 201). A more recent recognizer, Jackknife [45], proved
very accurate with few templates but, because of its founda-
tion on Dynamic Time Warping [23,32], it addressed mostly
unistrokes and could not recognize multi-stroke gestures with
the articulation-invariant flexibility of $P.

Unlike other approaches, $P can handle any combination
of templates and candidates: $P can recognize gestures ac-
curately no matter how users wish to articulate them [50].
Thus, in this work, from all possible gesture classification
approaches, we focus on $P, the current most flexible gesture
classifier.

The $P Point-Cloud Recognizer
The recognizer with the highest flexibility for the widest range
of stroke-gestures so far is $P, introduced by Vatavu et al. [50].
In this section, we overview the principles of point-cloud
gesture recognition, and we reproduce the $P pseudocode
from Vatavu et al. [50] (p. 280) that serves as the starting
point for our next-generation $-family recognizer, $Q.

$P represents stroke-gestures as clouds of points and discards
any timestamp information associated with the individual
points. This specific representation enables $P to deliver ac-
curate classifications no matter how users choose to produce
gestures in terms of different numbers of strokes, stroke or-
derings, and stroke directions. To evaluate the dissimilarity
between two gestures, a candidate C and a template T , $P
computes an approximate optimal alignment between their
point clouds using the following formula [50] (p. 279):

$P(C,T) =
n−1

∑
i=0

(
1− i

n

)
·min

j(?)

∥∥Ci−Tj
∥∥ (1)

where point Ci from the candidate has been matched with
point Tj from the template under the constraint that point Tj
is closest to Ci and has not been matched before with any
other point from C (? in Eq. 1). The Euclidean distances be-
tween points (

∥∥Ci−Tj
∥∥) are weighted by a factor normalized

in [0..1] that shows the confidence of a particular matching:
weights decrease linearly from 1 to 1/n, where n is the num-
ber of points in each cloud. (Note that the number of points
in each cloud are the same because of a point-resampling
procedure [25,46,53].)

To produce a classification result, the $P recognizer computes
dissimilarity scores between the candidate gesture C and each
template T from the template set and assigns C to the class of

$P-RECOGNIZER (POINTSpoints, TEMPLATES templates)

1: n← 32
2: NORMALIZE(points, n)
3: score← ∞

4: for each template in templates do
5: NORMALIZE(template, n)
6: d← GREEDY-CLOUD-MATCH(points, template, n)
7: if d < score then
8: score← d
9: result← template

10: return 〈result,score〉

GREEDY-CLOUD-MATCH (POINTS points, POINTS template, int n)

1: ε ← .50
2: step←

⌊
n1−ε

⌋
3: min← ∞

4: for i = 0 to n−1 step step do
5: d1← CLOUD-DISTANCE(points, template, n, i)
6: d2← CLOUD-DISTANCE(template, points, n, i)
7: min← MIN(min, d1, d2)
8: return min

CLOUD-DISTANCE (POINTS points, POINTS tmpl, int n, int start)

1: matched← new bool[n]
2: sum← 0
3: i← start // start matching with pointsi
4: do
5: min← ∞

6: for each j such that not matched[j] do
7: d← EUCLIDEAN-DISTANCE(pointsi, tmpl j)
8: if d < min then
9: min← d

10: index← j
11: matched[index]← true
12: weight← 1− ((i− start +n) MOD n)/n
13: sum← sum+weight ·min
14: i← (i+1) MOD n
15: until i == start // all points are processed
16: return sum

EUCLIDEAN-DISTANCE (POINT a, POINT b)

1: return
(
(ax−bx)

2 +(ay−by)
2
)0.5

Figure 2. Pseudocode of the main parts of the $P recognizer (classifica-
tion algorithm and cloud distance) from Vatavu et al. [50] (p. 280), which
we use in this work as the starting point for $Q.

its closest template, as follows:

C ∈ class of T ? where T ? = argminT {$P(C,T)} (2)

Figure 2 reminds the reader of the main parts of $P for easy
reference when following our discussions about $Q.

Summary
Out of all stroke-gesture recognition approaches available to
practitioners, we focus on $P due to its high accuracy and
flexibility: $P delivers > 99% recognition rates with just a
few templates [50], adapts easily to various contexts of use
and user groups [1,31,49] and, most importantly, enables users
to articulate gestures as they wish and still be recognized, a
feature difficult to match by other recognizers. Unfortunately,
$P is quite costly for low-resource devices, as we are about
to show in the next section, because of its quadratic com-
plexity [50] (p. 278). Consequently, there is still need for
improvement in the state-of-the-art for gesture recognition
algorithms of the $-family type. In this work, we focus on
making point cloud gesture recognition fast and robust on the
miniaturized, low-resource devices of today and tomorrow.

EVALUATION OF $P ON LOW-RESOURCE DEVICES
In this section, we conduct the first thorough evaluation of
$P’s time performance on several mobile CPU architectures
and we show that even a carefully code-optimized version of
$P is not enough for efficient operation on such devices. First,
we introduce our methodology for evaluating classification
performance, which we use throughout this paper.

Evaluation Methodology
We evaluate classification time, user-dependent, and user-
independent recognition rates using the following procedures.

User-Dependent Recognition Rates
We compute user-dependent recognition rates as a function
of the number of samples per gesture type (T) available in
the recognizer’s template set. The procedure to compute user-
dependent rates is as follows: T samples for each gesture type
are selected at random for a given user (T varies from 1 to 8)
and one additional sample, different from the first T, is selected
as the candidate gesture to be submitted for classification.
This procedure is repeated 100 times for each T=1 to 8 and
each user, and results are averaged into the user-dependent
recognition rate, expressed as a percentage. We adopted this
procedure from the $-family gesture recognizers [2,3,50,53].

User-Independent Recognition Rates
We compute user-independent recognition rates as a function
of the number of participants (P) from which templates are
collected and the number of samples per gesture type (T) from
each participant. P participants are selected at random for
gathering templates (P varies from 1 to 8), and one additional
participant, different from the first P, is selected for testing.
T samples are selected at random for each gesture type from
each of the P training participants (T varies from 1 to 8). One
sample for each gesture type is selected at random from the
testing participant and submitted for classification. This proce-
dure is repeated 100 times for each P and 100 times for each T,
and results are averaged into the user-independent recognition
rate, expressed as a percentage. This same procedure was
employed to evaluate the user-independent accuracy rate of
the $P gesture recognizer [50].

Experiment Design
We framed our evaluation process as a controlled experiment
with four independent variables:

1. RECOGNIZER, nominal variable, representing various ges-
ture recognition approaches. In this work, we compare $P
with a code-optimized version of $P (described in the next
section), and $P with $Q, respectively.

2. T, the number of templates per gesture type. In this work,
we evaluate four conditions for T starting from 1 template
up to 8 templates per gesture type following a geometric pro-
gression with common ratio 2, i.e., with each new condition,
T doubles from 1 to 2, 4, and 8 templates, respectively.

3. P, the number of participants from which gesture samples
are gathered as templates. Just as for T, we evaluate four
conditions for P as well: 1, 2, 4, and 8 training participants.

4. CPU, the architecture on which we evaluate the classifica-
tion speed of $P and $Q. CPU is an ordinal variable with

four conditions: high-end (Cortex-A53), midrange (Cortex-
A9), entry-level (Cortex-A7), and low-end (Cortex-A5).

P and T determine the size of the template set and, conse-
quently, affect the classification speed of our recognizers for
a given CPU. Our worst-case scenario is P × T = 8 × 8 =
64 templates per gesture type that corresponds to the slowest
speed, but also to the highest (user-independent) recognition
accuracy (>99%), as we are about to show.

We evaluate the performance of gesture recognizers with the
following dependent variables:

1. CLASSIFICATION-TIME represents the time, in millisec-
onds, necessary for a RECOGNIZER to compute the classifi-
cation result. We evaluate classification time as a function
of the number of samples in the template set by considering
all the P×T combinations (1, 2, 4, 8, 16, 32, and 64), which
correspond to sets of 16 to 1024 templates.

2. TIME-SAVINGS, the percentage of CPU time saved by a
fast recognizer, e.g., $Q, compared to the baseline $P:(

1− CLASSIFICATION-TIME($Q)

CLASSIFICATION-TIME($P)

)
·100% (3)

3. RECOGNITION-RATE represents the recognition accuracy
(user-dependent or user-independent) for a given training
configuration, reported as a percentage.

Benchmark Devices and CPU Architectures
To reach a thorough understanding of $P and $Q’s classifica-
tion time performance in practice, we measured the dependent
variables on several CPU architectures designed for a wide
range of mobile devices, from low-power wearables up to
high-end, high-performance smartphones:

1. Cortex-A53 (high-end) is a CPU architecture on 64 bits
(ARMv8-A) applicable for devices that require high perfor-
mance in power-constrained environments, such as high-end
smartphones, low-power servers, and Smart TVs [7]. We
evaluated the Cortex-A53 architecture with the Samsung
Galaxy A3 smartphone (model number SM-A300FU, An-
droid v6.0.1) that includes this CPU running at 1.2 GHz
(Quad-Core) and 1.5 GB RAM.

2. Cortex-A9 (midrange) is a CPU architecture on 32 bits
(ARMv7-A) applicable for low-power, cost-sensitive con-
sumer devices [9]. We evaluated the Cortex-A9 with the
ASUS Transformer Pad tablet (model number TF300T,
Android v4.0) that includes this CPU running at 1.2 GHz
(Quad-Core) and 1 GB RAM.

3. Cortex-A7 (entry-level) is a CPU architecture on 32 bits
(ARMv7-A) designed for a wide range of devices demand-
ing a balance between power and performance, particularly
rich UI based wearables, with over a billion units shipped
in production [8]. We evaluated the Cortex-A7 architec-
ture with the AllView VIVA C7 tablet (Android v4.4.2)
that includes this CPU running at 1.0 GHz (Dual-Core) and
512 MB RAM.

4. Cortex-A5 (low-end) is a CPU architecture on 32 bits
(ARMv7) designed for devices that require an extremely
low-power, low-area profile, such as feature phones and

wearables [6]. We evaluated the Cortex-A5 architecture
with the Samsung Galaxy Young smartphone (model num-
ber GT-S6310N, Android v4.1.2) that includes this CPU
running at 1.0 GHz (Single-Core) and 768 MB RAM.

These CPU architectures have already been deployed in many
types of mobile devices, home and consumer devices, and
embedded designs. In fact, the ARM-based CPU market share
covers 95% of the smartphone market and as of this writing,
over 86 billion chips with ARM cores have been produced [4].
Also, these architectures are representative of trends in CPU
technology for mobile, wearable, and embedded platforms,
such as shifting from single-core to multi-core computing,
from 32-bit to 64-bit apps, and improving instruction sets.
Android Studio was used to compile a Java implementation of
$P for the recommended Android API level of each device.

Gesture Dataset
We evaluate classification time performance on the MMG
gesture dataset of Anthony and Wobbrock [3]. The dataset
comprises 16 distinct gesture types performed by 20 partici-
pants with 10 executions per gesture type. Overall, the dataset
contains 9596 gestures performed using the finger and the
stylus on a tablet device. The dataset is available from the
“$N Multistroke Recognizer” web page [3] and is the same
dataset used in the original $P paper [50]. All gestures were
preprocessed before recognition by following the recommen-
dations from the $-family literature [2,3,50,53]: gestures were

uniformly resampled into n=64 points, scaled down to the
unit box with shape preservation, and translated to the origin.

$P’s Classification Time on Mobile CPUs
Figure 5 illustrates the user-dependent and user-independent
recognition rates delivered by the $P recognizer as a function
of the number of training templates (T) and participants (P)
in the template set. $P delivers 99% user-dependent accuracy
with T=4 templates per gesture type (Figure 5a), reaches 99.1%
user-independent accuracy starting from P×T = 32 templates,
and goes up to 99.5% for P×T = 64 templates (Figure 5b).
Figure 6 shows the influence of the number of templates per
gesture type (P×T) on $P’s classification time for each CPU
architecture. To reach >99% user-independent accuracy, $P
needs about 6 s on the fastest CPU (Cortex-A53), more than 8 s
on Cortex-A9 and Cortex-A7, and about 12 s on the low-end
Cortex-A5 CPU. These results show that $P is not suited for
interactive applications on mobile platforms. The next section
shows how $P can be made faster using standard textbook code
optimization techniques but, even still, $P remains inefficient
for operation on low-resource devices.

A Code-Optimized Version of $P
We looked at several ways to improve the classification time
of $P on our mobile CPUs by resorting to code optimization
techniques accessible to any programmer [22,29]. As it will
be seen, however, despite improvements in $P’s execution
speed, known optimization techniques do not give $P enough
speed-up for interactive use on low-resource devices.

Figure 5. Recognition rates for user-dependent (a) and user-independent (b) template sets for optimized $P compared to original $P. Notes: Higher is
better. Error bars represent 95% confidence intervals.

Figure 6. Classification times for optimized $P compared to original $P. Notes: Lower is better. Error bars are too small to be visible.

CLOUD-DISTANCE (POINTS points, POINTS template, int n, int start)

1: unmatched← {0,1,2, ...,n−1} // indices of unmatched points from template
2: i← start // start the matching from this index in the points cloud
3: weight← n // weights decrease from n to 1
4: sum← 0 // computes the cloud distance between points and template
5: do
6: min← ∞

7: for each j in unmatched do
8: d← SQR-EUCLIDEAN-DISTANCE (points[i], template[j])
9: if d < min then

10: min← d
11: index← j
12: REMOVE(unmatched, index) // implementable in O(1)
13: sum← sum+weight ·min
14: weight← weight−1 // weights decrease from n to 1
15: i← (i+1) MOD n // advance to the next point in points
16: until i == start
17: return sum

SQR-EUCLIDEAN-DISTANCE (POINT a, POINT b)

1: return (ax−bx)
2 +(ay−by)

2

Figure 7. Code-level optimizations in the $P’s CLOUD-DISTANCE func-
tion reduce CPU time by 42.1% on average compared to original $P.
Highlighted text shows changes with respect to the $P recognizer.

First, we noted that unnecessary computations are performed
in the original CLOUD-DISTANCE function (Figure 2) when
searching for points from the second cloud that have not been
matched yet to points from the first cloud. This part has been
implemented by $P with the matched array, which stores at
index j a boolean value indicating whether point j from the
second cloud has been matched or not (see line 6 in the original
CLOUD-DISTANCE function, Figure 2). With this implemen-
tation, j has to loop through all the points of the second cloud
when searching for an unmatched point, which represents a
very naive search strategy. A faster approach would have j
only enumerate the points that have not been matched yet.
Therefore, we refactored the matched array of boolean values
into a list of integers, unmatched, which we initialize with
values from 0 to n− 1. As points from the second cloud
are matched, their indices are removed from the list and are
not considered by the next iterations. This refactoring saves
n(n+1)/2 conditional tests from being executed.1 Modified
lines are highlighted in light gray in the new $P pseudocode
illustrated in Figure 7.

Second, the square root of the Euclidean distance represents
computational overhead, because only the relative order of
distances is needed and not their absolute magnitudes when
searching for the closest point j from the second cloud to
match point i from the first cloud (lines 7 to 10 in the original
CLOUD-DISTANCE function, Figure 2). Also, dividing all
the weights by n (Figure 2, line 12) represents unnecessary
computational overhead as well. These two observations can
help save precious floating point operations.2 Lines affected
by these two changes are highlighted in yellow in Figure 7.

1If-statements affect the efficiency of built-in branch prediction strate-
gies of modern CPUs [22].

2For low-resource CPUs, the Floating Point Unit (FPU) comes as
an optional feature [5,6] and, thus, may not always be available to
speed up floating-point arithmetic.

Time savings effected by these code optimizations were con-
siderable: 45.0% on average and 53.8% for the fastest CPU
(Cortex-A53); see Figure 6 on the previous page. The opti-
mized $P produced a classification result in 2713ms versus
5838ms for the most demanding scenario (P×T=8×8=64,
corresponding to a user-independent >99% requirement of
classification accuracy) on the Cortex-A53; it took 4826ms
versus 8362ms on Cortex-A9, 5603ms versus 9380ms on
Cortex-A7, and 6851ms versus 11,862ms on the Cortex-A5.
Figure 5 shows recognition rates for optimized $P versus orig-
inal $P. Removing the square root of the Euclidean distance
also caused a small increase in recognition accuracy, from
98.0% to 98.7% for user-dependent training and from 95.7%
to 96.7% for user-independent training. The slight increase
in accuracy is due to the sum of squared distances placing
progressively greater weight on points farther apart.

Nevertheless, although speed-ups are considerable with the
optimized $P, they are still far from real-time responsive. Thus,
we pursued a new recognizer for low-resource devices, $Q.

THE $Q GESTURE RECOGNIZER
In this section, we present $Q, our next-generation, fast and
accurate $-family gesture recognizer. First, we outline the de-
sign guidelines that we adopted for $Q. Second, we introduce
new algorithmic techniques for articulation-invariant point-
cloud gesture matching that reduce >97% of the computations
needed by $P. Overall, our new algorithmic improvements
make $Q run 46.4× faster on average and up to 142× faster
than original $P on common mobile CPU architectures.

$Q Design Philosophy
We adopted the following guidelines for our algorithmic design
and analysis process to improve gesture classification time
performance on low-resource devices:

1. Simplicity. The algorithmic design of $Q must be in line
with the general raison d’être of the $-family [2,3,19,24,27,
38,43,44,50,53], which is to provide practitioners with rec-
ognizers that are “easy to understand, build, inspect, debug,
and extend” with just a few lines of code [53]. Because of
the diversity of professions involved in Human-Computer
Interaction (developers, user interface designers, interaction
designers, usability specialists, etc.), the new $Q recog-
nizer must be implementable on top of $P without much
additional effort even by novice programmers.

2. Accuracy and flexibility. $Q must not compromise the
high recognition accuracy and flexible articulation-invariant
matching of its predecessor point-cloud recognizer, $P. It is
important not to trade off accuracy for speed gains, as pre-
vious research has shown that even a few percent increase
in recognition errors can affect user satisfaction [26]. As it
turns out, $Q is actually slightly more accurate than $P.

3. Efficiency on any platform. $Q must be fast, anywhere.
Note that speed-ups (usually of about 20%) are easily ob-
tained with faster hardware. For example, changing the
target platform and running our implementation of $P on a
Quad-Core 1.2 GHz CPU (Cortex-A9) instead of a Single-
Core 1.0 GHz CPU (Cortex-A5) improved classification

time by 24.4%. In this work, we target algorithmic im-
provements that are hardware-independent and, therefore,
improve classification time on any platform.

$Q Design and Implementation
$P implements Nearest-Neighbor classification [51] (pp. 93-
105) by comparing the candidate gesture with each template
and, with each comparison, updating an internal reference to
the template with the lowest dissimilarity from the candidate
(see variable min, lines 8-10 in the original CLOUD-DISTANCE
function, Figure 2). However, because the dissimilarity score
is computed in the form of a sum (Eq. 1), the value of this sum
can become, at some point during its computation, already
larger than the minimum score found until that point. From
that moment on, completing the matching process between the
candidate and the template represents unnecessary computa-
tion, because we already know that the minimum score cannot
be improved by the current sum. Therefore, it makes sense to
stop the computation of Eq. 1 at that point. Rakthanmanon et
al. [35,36] employed such a strategy to speed up the execution
time of Dynamic Time Warping (DTW) for querying very
large time series. $Q similarly implements early abandon-
ment during the point-cloud matching process. Preliminary
evaluations (a thorough evaluation of $Q is presented next in
this section) showed a reduction in CPU workload by 85.7%
on average compared to original $P. The extra time savings
compared to the optimized version of $P was 43.6%.

We can further save valuable computation time by calling the
CLOUD-DISTANCE function only when needed. For example,
if we could know in advance that the cloud distance between
the candidate and a template cannot be less than a lower bound
(LB) and that the minimum (best so far) distance is already
smaller than LB, then calling CLOUD-DISTANCE would sim-
ply be a waste of computing resources. Lower bounding has
been employed in the data mining community [35,36] for
speeding up DTW [23,37] but, so far, has not been utilized for
matching point clouds. In the following, we define a lower
bound for $Q as any function LB that satisfies:

LB(C,T)≤ $Q(C,T) for all gestures C and T (4)

where $Q(C,T) evaluates similarly to Eq. 1, except that
weights are no longer divided by the size of the point cloud, n,
and Euclidean distances are now squared Euclidean distances:

$Q(C,T) = ∑
k

wk ·min
j(?)

∥∥Ck−Tj
∥∥2 (5)

where wk are weights that decrease from n−1 to 1.

We can now introduce a lower bound for the cloud distance by
removing the constraint of having strict 1-to-1 point matchings
and allowing any point from C to be matched to any point from
T , even if they were matched before. The dissimilarity score
will be smaller than the exact cloud distance, because there
are more options to choose pairs of points from C and T .
Assuming starting point i, the lower bound is:

LBi(C,T) = ∑
k

wk · min
j=0,n−1

∥∥Ck−Tj
∥∥2 (6)

CLOUD-MATCH (POINTS points, POINTS template, int n, int min)

1: ε ← 0.5
2: step←

⌊
n1−ε

⌋
3: //compute lower bounds for both matching directions between points and template
4: LB1← COMPUTE-LOWER-BOUND(points, template, step, template.LUT)
5: LB2← COMPUTE-LOWER-BOUND(template, points, step, points.LUT)
6: for i← 0 to n−1 step step do
7: if LB1[i/step] < min then
8: min← MIN(min, CLOUD-DISTANCE(points, template, n, i, min))
9: if LB2[i/step] < min then

10: min← MIN(min, CLOUD-DISTANCE(template, points, n, i, min))
11: return min

CLOUD-DISTANCE (POINTS points, POINTS template, int n, int start, float minSoFar)

1: unmatched← {0,1,2, ...,n−1} // indexes of unmatched points from template
2: i← start // start the matching from this index in the points cloud
3: weight← n // weights decrease from n to 1
4: sum← 0 // computes the cloud distance between points and template
5: do
6: min← ∞

7: for each j in unmatched do
8: d← SQR-EUCLIDEAN-DISTANCE(points[i], template[j])
9: if d < min then

10: min← d
11: index← j
12: REMOVE(unmatched, index) // implementable in O(1)
13: sum← sum+weight ·min
14: if sum≥ minSoFar then
15: return sum // early abandoning of computations
16: weight← weight−1 // weights decrease from n to 1
17: i← (i+1) MOD n // advance to the next point in points
18: until i == start
19: return sum

Figure 8. $Q introduces key algorithmic improvements to point-cloud
matching. Highlighted text shows changes with respect to $P’s pseu-
docode. LUT stands for “look-up table” and is described in the paper.

Note that multiple lower bounds need to be computed: one
for each starting point i (because of the coefficients wk used
in Eq. 6 that apply, in order, starting from point i) and for
each matching direction (because of the asymmetric nature of
matching, if Tj is the closest point for Ck, it doesn’t necessar-
ily follow that Ck is the closest point from Tj); see Figure 8.
Also, lower bounds need to evaluate fast to be effective. (A
naïve implementation of Eq. 6 requires O(n2) time to com-
pute.) Therefore, we introduce a new look-up point-matching
technique that implements searching for the closest point in
O(1) time and the lower bound in O(n).

Let m×m be a 2-D grid of equally-spaced points superim-
posed on top of the point cloud of a gesture C (Figure 9). For
each point (x,y) in the grid, we compute its closest point from
C, say Ci, and store index i in the LUT. When we need to
compute the closest point from a template to point Ci, we just
approximate the x and y coordinates of the template point to
coordinates in the grid, for which the look-up table returns the
closest point from C, reducing an O(n) search to a mere O(1)
arithmetic operation. A lower bound (Eq. 6) can thus be com-
puted in O(n) time and all lower bounds in O(n1.5). Because
$Q matches gestures in both directions, both the LUTs of the
candidate and template gestures must be available. However,
while the LUT of the candidate needs to be computed online,
the LUT of each template gesture can be computed offline
and stored together with the gesture points in the template set.
Moreover, lower bounds for consecutive starting points can be
derived directly from previous computations, as indicated by

Figure 9. A grid of points superimposed on the point cloud C of an “as-
terisk” gesture. The look-up table of cloud C will contain at location x,y
the index of the point Ci from C closest to (x,y), i.e. LUT[x,y]= i.

the following recurrence relation:

LB[i/step] = LB[0]+ i ·SAT[n−1]−n ·SAT[i−1] (7)

where SAT implements a summed area table for fast access to
cumulative summations, with SAT[j] (j = 0..n−1) being the
sum of Euclidean distances between points 0 to j of the first
cloud to their closest points in the second cloud:

SAT[j] =
j

∑
t=0

min
k=0,n−1

‖Ct −Tk‖ (8)

and i goes from 0 to n−1 in steps of step; see the pseudocode
from Figure 8. Equations 7 and 8 help compute all the lower
bounds in just O(n) time instead of O(n1.5); see the Appendix.

Gesture points need to be rescaled to match the size of the grid,
but this operation can be done during preprocessing (see the
NORMALIZE and SCALE functions in the full pseudocode of
$Q at the end of this paper). Our experimentation showed that
grids of 64×64 points deliver a good compromise between
extra memory demands (4KB per gesture) and recognition
accuracy.3 The time complexity to compute look-up tables is
O(n ·m2), but LUTs can be precomputed and loaded together
with gesture templates from the template set, thus removing
the dependency on m2 and resulting in O(n) complexity.

Figure 10 shows user-dependent and user-independent recog-
nition rates for $Q versus original $P. Recognition rates in-
creased from 98.0% to 98.7% on average for user-dependent
training (gain +0.7%) and from 95.7% to 96.7% for user-
independent training (gain +1.0%), respectively, due to the
square root effect explained above in the paper. However, time
savings are now massive: $Q completed in 82ms versus $P’s
5838ms for our high recognition performance test case on the
Cortex-A53 architecture (71.5× speed-up); it took 156ms ver-
sus 8362ms on Cortex-A9 (53.6× speed-up), 192ms versus
9380ms on Cortex-A7 (48.9× speed-up), and computed in
just 200ms versus $P’s required time of 11,862ms on Cortex-
A5 (59.3× speed-up); see Figure 11. Overall, $Q executed in
only 3% of $P’s computations on all our CPU architectures.

3This result is in accordance with Vatavu [48], who showed that 4-5
bits per channels x and y are sufficient for recognizers to discriminate
gestures accurately. So, m = 64 means 6 bits for x and y.

Figure 10. Recognition rates for user-dependent (a) and user-independent (b) template sets for $Q compared to original $P. Notes: Higher is better.
Error bars represent 95% confidence intervals.

Figure 11. Classification times for $Q compared to original $P. Notes: Lower is better. Error bars are too small to be visible.

THE ALGORITHMIC COMPLEXITY OF $Q
The $P recognizer is known to have a polynomial time com-
plexity of O(τ ·n2.5), where n is the size of the point cloud and
τ the size of the template set. However, the time complexity of
$Q is difficult, if not impossible, to calculate exactly, because
its execution is not affected only by the size of the input data
(n and τ , respectively), but also by the gestures themselves,
as the efficiency of the lower bounding and early abandoning
filters at any given step of the algorithm depend on what kind
of data they have seen up to that point. Nevertheless, we want
to get an understanding of $Q’s theoretical complexity, at least
in approximate form. To this end, we computed classification
times for $Q for gestures sampled in n points going from 10
to 90, in steps of 10, and for template sets of size τ increasing
from 160 to 1440, corresponding to a number of templates per
gesture type from 10 to 90, in steps of 10.4

In the following, we want to find a reasonable functional ap-
proximation f (n,τ) for the classification time of $Q. We know
that f (n,τ) is at least a0 · n · τ + a1 · τ + a2 · n0.5 · τ , because
$Q needs to compute the lower bounding function for each
template in O(n · τ), calculate the minimum matching score
across all templates in O(τ), while lower bounds are compared
with the minimum score for all templates and all n0.5 starting
points in O(n0.5 · τ) time; a0, a1, and a2 are constants hidden
in the O(·) notations that reflect how fast these steps run on
various CPUs. Because our experimental results showed that
lower bounding and early abandoning reduce about 97% of the
computations of $P, we expect that the number of runs of the
point cloud matching procedure with the complexity O(n2.5)
will be limited to only few templates from the template set. We
also expect that the rest of the templates, who bypass the lower
bounding step, will only require a few point matchings until
the early abandoning comes into effect, making point-cloud
matchings execute in O(n). With these considerations, our
functional form estimate for the runtime complexity of $Q is:

f (n,τ) = a0 ·n · τ +a1 · τ +a2 ·n0.5 · τ +a3 ·n2.5 +a4

We found that this model showed a very good fit (R2=.996,
F(4,76)=4736.118, p<.001) to our classification time data,
producing a0=0.0014, a1=0.0176, a2=−0.0072, a3=0.0009,
and a4=−0.0065 for the Cortex-A53 CPU.5 Based on these
findings, we can estimate a time complexity of O(τ ·n+n2.5)
for $Q, which reduces to a linear growth in n and τ , O(τ ·n),
for large training sets (τ � n1.5). The speed gain of $Q over
$P gets larger with more samples available in the template set.

$Q SUPER-QUICK RUNTIME ON A VERY LOW-END CPU
We wanted to learn how much extra performance $Q can de-
liver on a very low-end CPU. To this end, we did one more
experiment, running $Q on an ARM processor released be-
fore the Cortex-A series. Our choice was the ARM-1136,
a 600-MHz CPU implementing the ARMv6 architecture [5].

416 distinct gesture types × 90 templates per gesture type = 1440.
5As mentioned, these constants change with the CPU, as they reflect the
various speed of running basic operations. For instance, values were a0 =
0.0031, a1 = 0.0407, a2 =−0.0166, a3 = 0.0015, and a4 = 0.7326 for the
Cortex-A9 CPU (R2 = .997).

Classification times measured on ARM-1136 showed that orig-
inal $P took 33.3s on average to classify a candidate gesture
when the number of templates per gesture type (T) varied from
1 to 64. Also, $P needed almost 2 minutes (115.3s) to perform
a single classification when T was 64. However, $Q took less
than one second (813ms) to produce the same classification
result in the worst-case scenario, with a speed-up of 142× and
a time savings of 99.3%. On average, $Q classified a gesture
on the ARM-1136 in just 389ms, representing a speed-up of
86× and 98.8% time savings compared to $P’s 33.3 seconds!

CONCLUSION
We have shown a massive speed-up of the already-powerful
$P recognizer [50], resulting in the new $Q, a super-quick
articulation-invariant gesture recognizer for low-resource de-
vices. $Q uses less than 3% of the computations of $P, making
it capable of interactive speeds on a variety of architectures
with limited computing capabilities. We achieved this perfor-
mance by applying successive optimization layers to $P, from
standard coding tricks that reduced CPU time by 42%, to an
early abandoning filter that reduced another 44% with just
one extra line of code (86% overall gain), to a more complex,
yet very efficient lower-bounding filter that achieved a total
reduction of 97% CPU time compared to $P.

$Q can speed up classification performance on high-end de-
vices as well, such as notebooks and touch tables, not just on
low-resource devices. Thus, $Q can be used effectively in
“time-budget” scenarios, where the gesture recognizer is given
just a limited CPU time to run [43]. For high-end devices, only
some of $Q’s speed-up layers would probably be more than
enough to boost $P’s classification performance considerably.
Conveniently, these layers can be activated independently. For
example, the standard code optimization and the early aban-
doning layers are easily implementable with changes affecting
a maximum of 7 lines of $P code, yet will likely deliver sig-
nificant speed-ups on a wide range of high-end devices.

Complete pseudocode of the $Q stroke-gesture recognizer is
provided in the Appendix. $Q is implementable on top of
$P with only 30 extra lines of code and, overall, $Q has only
100 lines of platform-independent code. We also provide C#,
Java (Android), and JavaScript implementations of $Q at http:
//depts.washington.edu/madlab/proj/dollar/qdollar.html.

$Q sets the new standard in classification speed and recog-
nition accuracy for articulation-invariant gesture recognizers,
being capable of supporting numerous future applications on
devices of all capabilities and types. We expect $Q to accel-
erate innovations in gesture input for mobile, wearable, and
embedded scenarios, enabling the community to implement
very fast and accurate gesture recognition for such platforms.

ACKNOWLEDGMENTS
R.D. Vatavu acknowledges support from the project PN-III-P2-
2.1-PED-2016-0688 (209PED/2017), UEFISCDI, Romania.
L. Anthony acknowledges partial support from the NSF Grant
Award #IIS-1552598. J.O. Wobbrock acknowledges a Google
Faculty Award. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the
authors and do not necessarily reflect these agencies’ views.

http://depts.washington.edu/madlab/proj/dollar/qdollar.html
http://depts.washington.edu/madlab/proj/dollar/qdollar.html

REFERENCES
1. L. Anthony, Q. Brown, J. Nias, and B. Tate. 2015.

Children (and Adults) Benefit from Visual Feedback
During Gesture Interaction on Mobile Touchscreen
Devices. Int. J. Child-Comp. Interact. 6 (2015), 17–27.
DOI:http://dx.doi.org/10.1016/j.ijcci.2016.01.002

2. Lisa Anthony and Jacob O. Wobbrock. 2010. A
Lightweight Multistroke Recognizer for User Interface
Prototypes. In Proc. of GI ’10. 245–252.
http://dl.acm.org/citation.cfm?id=1839214.1839258

3. Lisa Anthony and Jacob O. Wobbrock. 2012.
$N-protractor: A Fast and Accurate Multistroke
Recognizer. In Proc. of GI ’12. 117–120.
http://dl.acm.org/citation.cfm?id=2305276.2305296

4. ARM. 2016. Humanizing the Digital World: The world’s
leading semiconductor intellectual property (IP) supplier.
(2016). http://www.arm.com/about/company-profile/

5. ARM. 2017a. ARM1136 processor. (2017). https://www.
arm.com/products/processors/classic/arm11/arm1136.php

6. ARM. 2017b. Cortex-A5 processor. (2017). http://www.
arm.com/products/processors/cortex-a/cortex-a5.php

7. ARM. 2017c. Cortex-A53 processor. (2017).
http://www.arm.com/products/processors/cortex-a/

cortex-a53-processor.php

8. ARM. 2017d. Cortex-A7 processor. (2017). https://www.
arm.com/products/processors/cortex-a/cortex-a7.php

9. ARM. 2017e. Cortex-A9 processor. (2017). http://www.
arm.com/products/processors/cortex-a/cortex-a9.php

10. R. Balcazar, F.R. Ortega, K. Tarre, A. Barreto, M. Weiss,
and N.D. Rishe. 2017. CircGR: Interactive Multi-Touch
Gesture Recognition Using Circular Measurements. In
Proc. of ISS ’17. ACM, New York, NY, USA, 12–21.
DOI:http://dx.doi.org/10.1145/3132272.3134139

11. Rainer Burkard, Mauro Dell’Amico, and Silvano
Martello. 2009. Assignment Problems. Society for
Industrial and Applied Mathematics, Philadelphia, PA.

12. G. Casiez, N. Roussel, and D. Vogel. 2012. 1eFilter: A
Simple Speed-based Low-pass Filter for Noisy Input in
Interactive Systems. In Proc. of CHI ’12. 2527–2530.
DOI:http://dx.doi.org/10.1145/2207676.2208639

13. D.C. Cireşan, U. Meier, L.M. Gambardella, and J.
Schmidhuber. 2010. Deep, Big, Simple Neural Nets for
Handwritten Digit Recognition. Neural Computation 22,
12 (Dec. 2010), 3207–3220. DOI:
http://dx.doi.org/10.1162/NECO_a_00052

14. Tim Cross. 2016. After Moore’s Law. The Economist.
(March 2016). http://www.economist.com/
technology-quarterly/2016-03-12/after-moores-law

15. Jack Edmonds. 1965. Paths, trees, and flowers. Canadian
Journal of Mathematics 17 (1965), 449–467.
http://dx.doi.org/10.4153/CJM-1965-045-4

16. T.A. Hammond and R. Davis. 2009. Recognizing
Interspersed Sketches Quickly. In GI ’09. 157–166.
http://dl.acm.org/citation.cfm?id=1555880.1555917

17. Tracy Hammond and Brandon Paulson. 2011.
Recognizing Sketched Multistroke Primitives. ACM TiiS
1, 1, Article 4 (Oct. 2011), 34 pages. DOI:
http://dx.doi.org/10.1145/2030365.2030369

18. Chris Harrison, Desney Tan, and Dan Morris. 2011.
Skinput: Appropriating the Skin As an Interactive Canvas.
Commun. ACM 54, 8 (Aug. 2011), 111–118. DOI:
http://dx.doi.org/10.1145/1978542.1978564

19. J. Herold and T. F. Stahovich. 2012. The 1¢Recognizer:
A Fast, Accurate, and Easy-to-implement Handwritten
Gesture Recognition Technique. In Proc. of SBIM ’12.
http://dl.acm.org/citation.cfm?id=2331067.2331074

20. L.B. Kara and T.F. Stahovich. 2004. Hierarchical Parsing
and Recognition of Hand-sketched Diagrams. In Proc. of
UIST ’04. ACM, 13–22. DOI:
http://dx.doi.org/10.1145/1029632.1029636

21. L.B. Kara and T.F. Stahovich. 2005. An Image-based,
Trainable Symbol Recognizer for Hand-drawn Sketches.
Comput. Graph. 29, 4 (2005), 501–517. DOI:
http://dx.doi.org/10.1016/j.cag.2005.05.004

22. Kris Kaspersky. 2003. Code Optimization: Effective
Memory Usage. A-List Publishing.

23. Eamonn Keogh. 2002. Exact Indexing of Dynamic Time
Warping. In Proc. of VLDB ’02. 406–417.
http://dl.acm.org/citation.cfm?id=1287369.1287405

24. Sven Kratz and Michael Rohs. 2010. A $3 Gesture
Recognizer: Simple Gesture Recognition for Devices
Equipped with 3D Acceleration Sensors. In Proc. of IUI

’10. ACM, New York, NY, USA, 341–344. DOI:
http://dx.doi.org/10.1145/1719970.1720026

25. Per-Ola Kristensson and Shumin Zhai. 2004. SHARK2:
A Large Vocabulary Shorthand Writing System for
Pen-based Computers. In Proc. of UIST ’04. ACM,
43–52. DOI:http://dx.doi.org/10.1145/1029632.1029640

26. Mary LaLomia. 1994. User Acceptance of Handwritten
Recognition Accuracy. In Companion CHI ’94. 107–108.
DOI:http://dx.doi.org/10.1145/259963.260086

27. Yang Li. 2010. Protractor: A Fast and Accurate Gesture
Recognizer. In Proc. of CHI ’10. 2169–2172. DOI:
http://dx.doi.org/10.1145/1753326.1753654

28. Hao Lü, James A. Fogarty, and Yang Li. 2014. Gesture
Script: Recognizing Gestures and Their Structure Using
Rendering Scripts and Interactively Trained Parts. In
Proc. of CHI ’14. ACM, 1685–1694. DOI:
http://dx.doi.org/10.1145/2556288.2557263

29. Steve McConnell. 2004. Code Complete: A Practical
Handbook of Software Construction, 2nd Ed. Microsoft
Press. http://www.cc2e.com/Default.aspx

30. David McNeill. 1992. Hand and Mind: What Gestures
Reveal about Thought. University of Chicago Press.

31. Martez E. Mott, Radu-Daniel Vatavu, Shaun K. Kane,
and Jacob O. Wobbrock. 2016. Smart Touch: Improving
Touch Accuracy for People with Motor Impairments with
Template Matching. In Proc. of CHI ’16. 1934–1946.
DOI:http://dx.doi.org/10.1145/2858036.2858390

http://dx.doi.org/10.1016/j.ijcci.2016.01.002
http://dl.acm.org/citation.cfm?id=1839214.1839258
http://dl.acm.org/citation.cfm?id=2305276.2305296
http://www.arm.com/about/company-profile/
https://www.arm.com/products/processors/classic/arm11/arm1136.php
https://www.arm.com/products/processors/classic/arm11/arm1136.php
http://www.arm.com/products/processors/cortex-a/cortex-a5.php
http://www.arm.com/products/processors/cortex-a/cortex-a5.php
http://www.arm.com/products/processors/cortex-a/cortex-a53-processor.php
http://www.arm.com/products/processors/cortex-a/cortex-a53-processor.php
https://www.arm.com/products/processors/cortex-a/cortex-a7.php
https://www.arm.com/products/processors/cortex-a/cortex-a7.php
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://dx.doi.org/10.1145/3132272.3134139
http://dx.doi.org/10.1145/2207676.2208639
http://dx.doi.org/10.1162/NECO_a_00052
http://www.economist.com/technology-quarterly/2016-03-12/after-moores-law
http://www.economist.com/technology-quarterly/2016-03-12/after-moores-law
http://dx.doi.org/10.4153/CJM-1965-045-4
http://dl.acm.org/citation.cfm?id=1555880.1555917
http://dx.doi.org/10.1145/2030365.2030369
http://dx.doi.org/10.1145/1978542.1978564
http://dl.acm.org/citation.cfm?id=2331067.2331074
http://dx.doi.org/10.1145/1029632.1029636
http://dx.doi.org/10.1016/j.cag.2005.05.004
http://dl.acm.org/citation.cfm?id=1287369.1287405
http://dx.doi.org/10.1145/1719970.1720026
http://dx.doi.org/10.1145/1029632.1029640
http://dx.doi.org/10.1145/259963.260086
http://dx.doi.org/10.1145/1753326.1753654
http://dx.doi.org/10.1145/2556288.2557263
http://www.cc2e.com/Default.aspx
http://dx.doi.org/10.1145/2858036.2858390

32. C.S. Myers and L.R. Rabiner. 1981. A comparative study
of several dynamic time-warping algorithms for
connected-word recognition. The Bell System Technical
Journal 60, 7 (1981), 1389–1409. DOI:
http://dx.doi.org/10.1002/j.1538-7305.1981.tb00272.x

33. Corey Pittman, Eugene M. Taranta II, and Joseph J.
LaViola, Jr. 2016. A $-Family Friendly Approach to
Prototype Selection. In Proc. of IUI ’16. ACM, 370–374.
DOI:http://dx.doi.org/10.1145/2856767.2856808

34. William H. Press, Saul A. Teukolsky, William T.
Vetterling, and Brian P. Flannery. 1992. Numerical
Recipes in C (2nd Ed.): The Art of Scientific Computing.
Cambridge University Press, New York, NY, USA.

35. T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B.
Westover, Q. Zhu, J. Zakaria, and E. Keogh. 2012.
Searching and Mining Trillions of Time Series
Subsequences Under Dynamic Time Warping. In Proc. of
KDD ’12. 262–270. DOI:
http://dx.doi.org/10.1145/2339530.2339576

36. T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B.
Westover, Q. Zhu, J. Zakaria, and E. Keogh. 2013.
Addressing Big Data Time Series: Mining Trillions of
Time Series Subsequences Under Dynamic Time
Warping. ACM Trans. Knowl. Discov. Data 7, 3 (2013),
10:1–10:31. DOI:http://dx.doi.org/10.1145/2500489

37. Chotirat Ann Ratanamahatana and Eamonn Keogh. 2005.
Three Myths about Dynamic Time Warping. In Proc. of
SDM ’05. 506–510.

38. J. Reaver, T. F. Stahovich, and J. Herold. 2011. How to
Make a Quick$: Using Hierarchical Clustering to
Improve the Efficiency of the Dollar Recognizer. In Proc.
of SBIM ’11. ACM, New York, NY, USA, 103–108. DOI:
http://dx.doi.org/10.1145/2021164.2021183

39. Dean Rubine. 1991. Specifying Gestures by Example. In
Proc. of SIGGRAPH ’91. ACM, New York, NY, USA,
329–337. DOI:http://dx.doi.org/10.1145/122718.122753

40. T. Scott Saponas, Chris Harrison, and Hrvoje Benko.
2011. PocketTouch: Through-fabric Capacitive Touch
Input. In Proc. of UIST ’11. ACM, 303–308. DOI:
http://dx.doi.org/10.1145/2047196.2047235

41. Stefan Schneegass and Alexandra Voit. 2016.
GestureSleeve: Using Touch Sensitive Fabrics for
Gestural Input on the Forearm for Controlling
Smartwatches. In Proc. of ISWC ’16. ACM, 108–115.
DOI:http://dx.doi.org/10.1145/2971763.2971797

42. Tevfik Metin Sezgin and Randall Davis. 2005.
HMM-based Efficient Sketch Recognition. In Proc. of
IUI ’05. ACM, New York, NY, USA, 281–283. DOI:
http://dx.doi.org/10.1145/1040830.1040899

43. Eugene M. Taranta, II and Joseph J. LaViola, Jr. 2015.
Penny Pincher: A Blazing Fast, Highly Accurate $-family
Recognizer. In Proc. of GI ’15. 195–202.
http://dl.acm.org/citation.cfm?id=2788890.2788925

44. Eugene M. Taranta, II, Andrés N. Vargas, and Joseph J.
LaViola. 2016. Streamlined and Accurate Gesture

Recognition with Penny Pincher. Comput. Graph. 55, C
(April 2016), 130–142. DOI:
http://dx.doi.org/10.1016/j.cag.2015.10.011

45. Eugene M. Taranta II, Amirreza Samiei, Mehran
Maghoumi, Pooya Khaloo, Corey R. Pittman, and
Joseph J. LaViola Jr. 2017. Jackknife: A Reliable
Recognizer with Few Samples and Many Modalities. In
Proc. of CHI ’17. ACM, 5850–5861. DOI:
http://dx.doi.org/10.1145/3025453.3026002

46. Radu-Daniel Vatavu. 2011. The Effect of Sampling Rate
on the Performance of Template-based Gesture
Recognizers. In Proc. of ICMI ’11. ACM, 271–278. DOI:
http://dx.doi.org/10.1145/2070481.2070531

47. Radu-Daniel Vatavu. 2012a. 1F: One Accessory Feature
Design for Gesture Recognizers. In Proc. of IUI ’12.
ACM, New York, NY, USA, 297–300. DOI:
http://dx.doi.org/10.1145/2166966.2167022

48. Radu-Daniel Vatavu. 2012b. Small Gestures Go a Long
Way: How Many Bits Per Gesture Do Recognizers
Actually Need?. In Proc. of DIS ’12. ACM, 328–337.
DOI:http://dx.doi.org/10.1145/2317956.2318006

49. Radu-Daniel Vatavu. 2017. Improving Gesture
Recognition Accuracy on Touch Screens for Users with
Low Vision. In Proc. of CHI ’17. 4667–4679. DOI:
http://dx.doi.org/10.1145/3025453.3025941

50. Radu-Daniel Vatavu, Lisa Anthony, and Jacob O.
Wobbrock. 2012. Gestures As Point Clouds: A $P
Recognizer for User Interface Prototypes. In Proc. of
ICMI ’12. ACM, New York, NY, USA, 273–280. DOI:
http://dx.doi.org/10.1145/2388676.2388732

51. Andrew Webb. 2002. Statistical Pattern Recognition, 2nd
Ed. John Wiley & Sons, West Sussex, England.

52. Jacob O. Wobbrock. 2009. TapSongs: Tapping
Rhythm-based Passwords on a Single Binary Sensor. In
Proc. of UIST ’09. ACM, New York, NY, USA, 93–96.
DOI:http://dx.doi.org/10.1145/1622176.1622194

53. Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li.
2007. Gestures Without Libraries, Toolkits or Training: A
$1 Recognizer for User Interface Prototypes. In Proc. of
UIST ’07. ACM, 159–168. DOI:
http://dx.doi.org/10.1145/1294211.1294238

54. Chao Xu, Parth H. Pathak, and Prasant Mohapatra. 2015.
Finger-writing with Smartwatch: A Case for Finger and
Hand Gesture Recognition Using Smartwatch. In Proc. of
HotMobile ’15. ACM, 9–14. DOI:
http://dx.doi.org/10.1145/2699343.2699350

55. Shumin Zhai, Per Kristensson, Caroline Appert, Tue
Andersen, and Xiang Cao. 2012. Foundational Issues in
Touch-Surface Stroke Gesture Design: An Integrative
Review. Found. Trends HCI 5, 2 (Feb. 2012), 97–205.
DOI:http://dx.doi.org/10.1561/1100000012

56. Shumin Zhai and Per-Ola Kristensson. 2003. Shorthand
Writing on Stylus Keyboard. In Proc. of CHI ’03. ACM,
New York, NY, USA, 97–104. DOI:
http://dx.doi.org/10.1145/642611.642630

http://dx.doi.org/10.1002/j.1538-7305.1981.tb00272.x
http://dx.doi.org/10.1145/2856767.2856808
http://dx.doi.org/10.1145/2339530.2339576
http://dx.doi.org/10.1145/2500489
http://dx.doi.org/10.1145/2021164.2021183
http://dx.doi.org/10.1145/122718.122753
http://dx.doi.org/10.1145/2047196.2047235
http://dx.doi.org/10.1145/2971763.2971797
http://dx.doi.org/10.1145/1040830.1040899
http://dl.acm.org/citation.cfm?id=2788890.2788925
http://dx.doi.org/10.1016/j.cag.2015.10.011
http://dx.doi.org/10.1145/3025453.3026002
http://dx.doi.org/10.1145/2070481.2070531
http://dx.doi.org/10.1145/2166966.2167022
http://dx.doi.org/10.1145/2317956.2318006
http://dx.doi.org/10.1145/3025453.3025941
http://dx.doi.org/10.1145/2388676.2388732
http://dx.doi.org/10.1145/1622176.1622194
http://dx.doi.org/10.1145/1294211.1294238
http://dx.doi.org/10.1145/2699343.2699350
http://dx.doi.org/10.1561/1100000012
http://dx.doi.org/10.1145/642611.642630

PSEUDOCODE FOR THE $Q RECOGNIZER
We provide complete pseudocode for $Q. In the following,
POINT is a structure that exposes x, y, and strokeId properties;
strokeId is the stroke index a point belongs to and is filled by
counting touch down/touch up events; x and y are integers in
the set {0,1, ...,m−1}, where m is the size of the look-up table.
POINTS is a list of points and TEMPLATES a list of POINTS
with associated gesture class data. The pseudocode assumes
that templates have already been preprocessed (when loading
the template set, for instance).

$Q-RECOGNIZER (POINTS points, TEMPLATES templates)

1: n← 32, m← 64 // defaults for cloud size (n) and size of the look-up table (m)
2: NORMALIZE(points, n, m) // templates have already been normalized
3: score← ∞

4: for each template in templates do
5: d← CLOUD-MATCH(points, template, n, score)
6: if d < score then
7: score← d
8: result← template
9: return 〈result,score〉 // the closest template from the set and the smallest score

CLOUD-MATCH (POINTS points, POINTS template, int n, int min)

1: step←
⌊
n0.5

⌋
2: //compute lower bounds for both matching directions between points and template
3: LB1← COMPUTE-LOWER-BOUND(points, template, step, template.LUT)
4: LB2← COMPUTE-LOWER-BOUND(template, points, step, points.LUT)
5: for i← 0 to n−1 step step do
6: if LB1[i/step] < min then
7: min← MIN(min, CLOUD-DISTANCE(points, template, n, i, min))
8: if LB2[i/step] < min then
9: min← MIN(min, CLOUD-DISTANCE(template, points, n, i, min))

10: return min

CLOUD-DISTANCE (POINTS points, POINTS template, int n, int start, float minSoFar)

1: unmatched← {0,1,2, ...,n−1} // indices of unmatched points from template
2: i← start // start the matching from this index in the points cloud
3: weight← n // weights decrease from n to 1
4: sum← 0 // computes the cloud distance between points and template
5: do
6: min← ∞

7: for each j in unmatched do
8: d← SQR-EUCLIDEAN-DISTANCE(points[i], template[j])
9: if d < min then

10: min← d
11: index← j
12: REMOVE(unmatched, index) // implementable in O(1)
13: sum← sum+weight ·min
14: if sum≥ minSoFar then
15: return sum // early abandoning of computations
16: weight← weight−1 // weights decrease from n to 1
17: i← (i+1) MOD n // advance to the next point in points
18: until i == start
19: return sum

COMPUTE-LOWER-BOUND (POINTS points, POINTS template, int step, int[,] LUT)

1: LB← new float[n/step+1] // multiple lower bounds, one for each starting point
2: SAT ← new float[n] // summed area table for fast computations (see text)
3: // first, compute the lower bound for starting point index 0
4: LB[0]← 0
5: for i← 0 to n−1 do
6: index← LUT [points[i].x, points[i].y]
7: d← SQR-EUCLIDEAN-DISTANCE(points[i], template[index])
8: SAT[i]← (i == 0)?d : SAT[i−1]+d
9: LB[0]← LB[0]+(n− i) ·d

10: // compute the lower bound for the other starting points (see formula in the text)
11: for i← step to n−1 step step do
12: LB[i/step]← LB[0]+ i ·SAT[n−1]−n ·SAT[i−1]
13: return LB

The following pseudocode implements gesture preprocessing:
resampling, translation to origin, rescaling into the m×m grid,
and computation of the look-up table. Except for the new
COMPUTE-LUT function and changes in the SCALE function,
this pseudocode is practically the same as for $P [50] (p. 280).

NORMALIZE (POINTS points, int n, int m)

1: points← RESAMPLE(points, n)
2: TRANSLATE-TO-ORIGIN(points, n)
3: SCALE(points, m)
4: LUT← COMPUTE-LUT(m, points, n)

RESAMPLE (POINTS points, int n)

1: I← PATH-LENGTH(points) / (n−1)
2: D← 0
3: newPoints←

{
points[0]

}
4: for i← 1 to n−1 do
5: if points[i].strokeId == points[i−1].strokeId then
6: d← EUCLIDEAN-DISTANCE(points[i−1], points[i])
7: if (D+d)≥ I then
8: q.x← points[i−1].x +(I−D)/d · (points[i].x - points[i−1].x)
9: q.y← points[i−1].y +(I−D)/d · (points[i].y - points[i−1].y)

10: APPEND(newPoints, q)
11: INSERT(points, i, q) // q will be the next points[i]
12: D← 0
13: else D← D+d
14: return newPoints

TRANSLATE-TO-ORIGIN (POINTS points, int n)

1: c← (0,0) // will compute the centroid of the points cloud
2: for each p in points do
3: c← (c.x + p.x, c.y + p.y)
4: c← (c.x/n, c.y/n)
5: for each p in points do
6: p← (p.x − c.x, p.y − c.y)

SCALE (POINTS points, int m)

1: xmin← ∞, xmax ←−∞, ymin← ∞, ymax ←−∞

2: for each p in points do
3: xmin← MIN(xmin, p.x)
4: ymin← MIN(ymin, p.y)
5: xmax ← MAX(xmax, p.x)
6: ymax ← MAX(ymax, p.y)
7: s←MAX(xmax− xmin,ymax− ymin)/(m−1) // scale factor
8: for each p in points do
9: p← ((p.x− xmin)/s, (p.y− ymin)/s) // p.x and p.y are now integers in 0...m−1

COMPUTE-LUT (POINTS points, int n, int m)

1: LUT ← new int[m,m]
2: for x← 0 to m−1 do
3: for y← 0 to m−1 do
4: min← ∞

5: for i← 0 to n−1 do
6: d← SQR-EUCLIDEAN-DISTANCE(points[i],new POINT(x,y))
7: if d < min then
8: min← d
9: index← i

10: LUT [x,y]← index
11: return LUT

PATH-LENGTH (POINTS points)

1: d← 0 // will compute the path length
2: for i← 1 to n−1 do
3: if points[i].strokeId == points[i−1].strokeId then
4: d← d + EUCLIDEAN-DISTANCE(points[i−1], points[i])
5: return d

SQR-EUCLIDEAN-DISTANCE (POINT a, POINT b)

1: return (a.x−b.x)2 +(a.y−b.y)2 // much faster to compute without the sqrt()

EUCLIDEAN-DISTANCE (POINT a, POINT b)

1: return sqrt(SQR-EUCLIDEAN-DISTANCE(a,b))

	Introduction
	Related Work
	Stroke-Gesture Recognition
	Gesture Recognition on Low-Resource Devices
	The $P Point-Cloud Recognizer
	Summary

	Evaluation of $P on low-resource devices
	Evaluation Methodology
	User-Dependent Recognition Rates
	User-Independent Recognition Rates
	Experiment Design
	Benchmark Devices and CPU Architectures
	Gesture Dataset

	$P's Classification Time on Mobile CPUs
	A Code-Optimized Version of $P

	The $Q gesture recognizer
	$Q Design Philosophy
	$Q Design and Implementation

	The algorithmic complexity of $Q
	$Q Super-Quick Runtime on a very low-end CPU
	Conclusion
	Acknowledgments
	REFERENCES
	Pseudocode for the $Q recognizer

