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Figure 1. Gesture heatmap examples illustrating user variation during gesture articulation measured as localized absolute and
relative turning angles (“alpha” and “flower”), articulation speed (“spiral”), and shape distance error from a template (“star”).

NOTE: Heatmaps were generated with our tool, GHoST (Gesture HeatmapS Toolkit).

ABSTRACT
We introduce gesture heatmaps, a novel gesture analysis technique
that employs color maps to visualize the variation of local features
along the gesture path. Beyond current gesture analysis practices
that characterize gesture articulations with single-value descriptors,
e.g., size, path length, or speed, gesture heatmaps are able to show
with colorful visualizations how the value of any such descriptors
vary along the gesture path. We evaluate gesture heatmaps on three
public datasets comprising 15,840 gesture samples of 70 gesture
types from 45 participants, on which we demonstrate heatmaps’
capabilities to (1) explain causes for recognition errors, (2) charac-
terize users’ gesture articulation patterns under various conditions,
e.g., finger versus pen gestures, and (3) help understand users’ sub-
jective perceptions of gesture commands, such as why some gestures
are perceived easier to execute than others. We also introduce chro-
matic confusion matrices that employ gesture heatmaps to extend
the expressiveness of standard confusion matrices to better under-
stand gesture classification performance. We believe that gesture
heatmaps will prove useful to researchers and practitioners doing
gesture analysis, and consequently, they will inform the design of
better gesture sets and development of more accurate recognizers.
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1. INTRODUCTION
As touch-screen interfaces continue to be the dominant form of

interaction with mobile devices, it is important to consider best prac-
tices for supporting smooth and accurate touch and gesture-based
interfaces. One can consider the problem space in two parts: that of
the best ways to support user needs, expectations, and abilities in
the design of the gestures themselves [19,30,31,33], and that of the
best ways to recognize gestures through the design of recognition al-
gorithms [3,28,34]. Both components would benefit from a broader
understanding of how users actually articulate gestures. Previous
work has examined this question from several angles, such as users’
consensus for multi-stroke gesture production [2], analysis of the
articulation characteristics of specific user groups [14], the effect of
gesture implementer on articulation [27], and explorations of how
gestures vary relative to each other [29]. Several tools have been
developed to enable designers to assess recognition performance
and analyze users’ gestures [2,5,18,29]. However, researchers and
practitioners still lack adequate tools to readily visualize and explore
gesture articulation patterns.

We introduce gesture heatmaps (see Figure 1), a novel gesture
analysis technique that employs color maps to visualize the vari-
ation of local features along the gesture path. Gesture heatmaps
go beyond today’s gesture analysis practices that employ single-
value descriptors to characterize gesture articulation, e.g., size, path
length, or speed [2,14,27,29,31] by providing rich visualizations of
how such descriptors vary along the gesture path. We demonstrate
the use of gesture heatmaps with three case studies involving pub-
lic datasets comprising 15,840 samples of 70 gesture types from
45 participants. Specifically, we show how gesture heatmaps are
able to (1) explain causes for recognition errors, (2) characterize
users’ gesture performance under various articulation conditions,
e.g., finger versus pen gestures, and (3) help designers understand
users’ subjective perceptions of gestures, such as why some gestures
are perceived easier to execute than others. To this end, we also
introduce new concepts, such as the chromatic confusion matrix that
extends the standard confusion matrix with gesture heatmaps.



The contributions of this paper are: (1) the introduction of a novel
gesture visualization technique, gesture heatmaps, that focuses on
exposing variations in local features along the gesture path; (2) an
exploration of gesture heatmaps with public datasets, uncovering
new findings related to the relationship between users’ gesture artic-
ulation patterns, recognizers’ classification performance, and users’
subjective perceptions about gesture commands; and (3) a tool to
compute gesture heatmaps and chromatic confusion matrices, the
Gesture HeatmapS Toolkit (GHoST). Our work enables a deeper
understanding of users’ gesture articulation patterns, which subse-
quently will be useful to researchers and practitioners for improving
touch and gesture interaction by designing better gesture sets and
more accurate gesture recognizers.

2. RELATED WORK
We review in this section techniques and tools for analyzing users’

gesture articulation patterns. We also point to relevant literature
employing heatmaps for visualizing scientific data.

2.1 Techniques to study gesture articulation
Understanding the way users articulate stroke gestures is essential

to designing good gesture sets and developing robust recognizers.
To this end, researchers have proposed several techniques and, in
many cases, delivered companion toolkits to support analysis of
users’ gesture articulation patterns [2,14,18,27,29]. These previous
techniques employed geometric and kinematic features to character-
ize gesture articulations [2,14,29], used gesture descriptors to group
gestures into perceptually-similar classes [18,30,31], and analyzed
articulation consensus across users [2,33]. For example, several
tools are available to assist in designing highly-recognizable gesture
sets. The Gesture Design Tool [18] informs designers about classifi-
cation errors by computing and presenting distance and confusion
matrices. MAGIC [5] is another tool designed to assist practitioners
to record motion gestures and visualize recognition performance
measures on those gestures.

Researchers have employed feature analysis to characterize users’
gesture articulation patterns and to uncover particular aspects of
stroke gesture input under various articulation conditions. For exam-
ple, Tu et al. [27] compared finger and pen gestures using geometric
and kinematic features and found that finger-drawn gestures were
larger and faster than pen gestures, but similar in articulation time
and proportional shape distance. Kane et al. [14] compared gesture
articulations of blind and sighted users, and reported significant
differences in gesture speed, size, and shape. Anthony et al. [2]
analyzed user consensus for multi-stroke articulation in terms of
preferred number of strokes, stroke ordering, and stroke direction,
which they measured as agreement rates [33]. They reported high
agreement within users (.91), lower agreement between users (.55),
and pointed to several connections between gesture complexity
and consensus of gesture articulation. Agreement rates can now
be computed automatically with the GEsture Clustering toolKit
(GECKo) [2]. Vatavu et al. [29] introduced relative accuracy mea-
sures to characterize the degree by which single and multi-stroke
gesture articulations vary from templates stored in the training sets
of gesture recognizers. The authors delivered the Gesture RElative
Accuracy Toolkit (GREAT) that computes geometric, kinematic, and
articulation relative accuracy measures [29]. The gesture recogni-
tion literature also contains many features [6,24,32] that can be used
to further characterize users’ gesture articulations in more depth.
For example, Rubine’s statistical classifier [24] employs a set of 11
geometric and kinematic features, Blagojevic et al. [6] described
114 features, and Willems et al. [32] employed the g-48 gesture set
to recognize multi-strokes using SVM and MLP classifiers.

Researchers have also looked at people’s perceptions about ges-
ture commands in order to identify perceptually-similar classes [19,
22,30,31]. For example, Long et al. [19] investigated the visual simi-
larity of pen gestures and derived a computable model for perceptual
similarity using gesture features, such as curviness, that correlated
R2=.56 with user-reported similarity. Vatavu et al. [31] found that
subjects were highly consistent in estimating the execution difficulty
of single-stroke gestures, leading to two estimation rules based on
production time that approximated absolute and relative perceived
difficulty with 75% and 90% accuracy, respectively. Recently, Rekik
et al. [22] extended the study to include multi-stroke gestures. Sub-
jects were also consistent in their perception of gesture scale (e.g.,
large versus small gestures), which is predictable with 90% accuracy
using a rule based on the area size of the gesture bounding box [30].

2.2 Using heatmaps to inform design
Heatmaps are a common technique to visualize users’ interac-

tive behavior, most frequently in terms of mouse cursor movement
and eye gaze [12,21], but also for touch patterns on mobile de-
vices [16,25]. The ultimate goal of heatmap analysis in HCI is to
pinpoint usability problems, to allow designers to understand their
users’ interaction patterns and improve their designs. For example,
Huang et al. [12] showed that mouse cursor position closely relates
to eye gaze, and used heatmaps of click and cursor movement posi-
tions to understand and improve the way people use search engines.
Navalpakkam and Churchill [21] employed both cursor and eye gaze
heatmaps in a study devoted to measuring and predicting aspects
of users’ web experience, such as frustration and reading struggles.
Heatmaps have also been used to visualize touch patterns on mobile
devices. For instance, Lettner and Holzmann [16] suggested the use
of heatmaps to visualize users’ touch paths on mobile devices in
order to detect usability issues, e.g., significantly more touches in
the vicinity of a target may indicate users having problems acquiring
that target from the first attempt. Schaefers et al. [25] employed
heatmaps of touch points to uncover users’ preferred patterns for
articulating swipe gestures on mobile devices.

3. GESTURE HEATMAPS
Pseudo-coloring numerical data represents a standard information

visualization technique to display scalar values in a non-numerical
way [8,20]. The goal is to present the viewer with an overall im-
age of the variation within the data and, consequently, to allow
understanding of complex numerical information with the use of ap-
propriate colors. A color map (e.g., the rainbow map), is employed
to compute the color of each value point in the data by means of
interpolation. Color maps usually exploit perceptual cues with their
selected range of colors. For example, “warm” orange and red colors
usually indicate more magnitude in the data, while “cold” colors,
such as green and blue, are used to encode data values with smaller
magnitudes. We build on the large literature of heatmap visualiza-
tion and its applications to different areas of study [8,21,23,25,26]
to introduce gesture heatmaps to provide thorough characterization
of users’ gesture articulation patterns with the use of appropriately
colored rendering of localized gesture features. In this section, we
present technical details of how to construct a colorful heatmap for
stroke gestures in order to render values of localized gesture features,
and we discuss several color scheme choices that we believe are best
suited for this goal.

3.1 Computing gesture heatmaps
We use gesture heatmaps to visualize the variation that is present

during articulation of stroke gestures, such as the shape error of
gesture candidates with respect to predefined templates [28,34],
differences in articulation speed within and between users [29], or



the amount of shape deformation that users naturally apply to the
geometry of the gesture shape during articulation under various
conditions [2,29]. Consequently, gesture heatmaps are computed
from gesture samples captured from users, such as those used to
train recognizers [3,28,34]. Let T denote such a dataset composed
of gestures represented as a series of 2-D points with timestamps:{

pi = (xi, yi, ti) ∈ R2 × R+ | i = 1..n
}

(1)

We assume that all the gestures in the set have been normalized
with respect to their sampling rate and their location in the plane,
i.e., all the gestures have the same number of points n, and were
translated to origin so that their centroids are now (0, 0). The ges-
ture re-sampling step is required by the gesture task axis extraction
algorithm that aligns individual points belonging to different ges-
tures [29], as we explain further in the paper. In this work, we use
n=64 sampling points to represent gestures, a value that was used
in the $1 recognizer [34]. The translation-to-origin pre-processing
step is required so that the geometrical features that we compute
are invariant to the specific location where gestures have actually
been produced on the interactive touch-screen area, i.e., we make
sure that the feature values we work with are translation-invariant.
These two pre-processing steps are straightforward to implement,
and pseudo-code for implementing them has already been made
available in the gesture recognition literature [3,28,34]. Note that
we do not normalize gestures with respect to scale or rotation (which
are other common gesture pre-processing techniques, usually ex-
ecuted before gesture recognition [3,28,34]), because we want to
capture the full amount of shape deformation that users naturally
produce during articulation.1

Let f be a gesture feature defined at each point pi of the gesture
path. For example, f(pi) may be the local turning angle or the local
articulation speed at point pi. We discuss in detail the features that
we use in the Case Studies section of the paper. Let C be a color map
represented as an array of colors, {Ci | i = 1..|C|}, that we assume
already sorted in ascending order in terms of users’ perceptions of
the relative differences between different colors [1,11,17]. Percep-
tual ordering of colors means that the first entries in the color map
are intuitively perceived as having “less” amount of magnitude (e.g.,
usually expressed with brightness or saturation) when compared
with subsequent colors in the map. We discuss our choices for color
maps in the next section. Using interpolation between consecutive
colors in the array, we can create fine-resolution transitions between
these colors and, consequently, we can assume that C contains a
sufficient number of entries. Each feature value is then mapped to a
color from C using a linear interpolation technique:

1. Normalize the value of the feature f(pi) in [0..1]:

fnorm(pi) =
f(pi)− min

i=1..n
f(pi)

max
i=1..n

f(pi)− min
i=1..n

f(pi)
(2)

2. Use the normalized feature value to index the color map,
Cbfnorm·|C|c. For example, if the normalized feature value
is .721 and the color map contains 600 distinct colors, the
corresponding color will be Cb.721×600c = Cb432.6c = C432.

The colors corresponding to feature values for consecutive points
pi and pi+1 on the gesture path are used to render the stroke segment
[pipi+1] with a linear color gradient interpolating the colors of its
two extremities using arc-length as the interpolation parameter. The
result is a smooth color gradient going from the first to the last

1However, depending on the purpose of the study, gestures could undergo
normalization by scale and/or rotation [3,28,34].

point of the gesture path reflecting changes in the feature values.
Please note that heatmap colors need to be rendered on top of an
actual gesture shape, which would ideally be the representative
articulation of that gesture type. The literature offers several options
for selecting this representative articulation, such as using a pre-
defined template [27] or the gesture task axis [29] in one of its forms:
designer-defined, centroid of all gestures, or the sample closest to
the centroid [29] (p. 282). In this work, we adopt the latter approach,
and choose the shape of the gesture heatmap to be the sample from
the dataset that is closest to the centroid of all gestures of the same
type. Figure 2 illustrates the representative gesture shape of a set of
samples with speed values mapped to colors.

Figure 2: A representative shape of a gesture set (in yellow in
the left image) is rendered with colors to highlight variation in
a gesture feature (right). In this example, the heatmap shows
variation in speed for the “alpha” symbol, measured from 220
samples from 11 participants [31]. Note how speed increases
during the straight parts, and decreases during the loop.

3.2 Color schemes
Traditionally, heatmap visualizations have employed the rainbow

color scheme, which has become the prevalent color map in the
information visualization community [8]. At the same time, some
work has shown that the pseudo-colors of the rainbow map do not
represent the optimal choice to visualize data effectively [8,17,23].
For example, Borland and Taylor II [8] pointed to several usability
problems for the rainbow color map, such as the lack of perceptual
ordering of the colors of the light spectrum, the uncontrolled varia-
tion in luminance for these colors, and potential misleads that may
occur during data interpretation. Despite these problems, the rain-
bow color map is still heavily used to display data in the scientific
community, even by information visualization researchers [8].

Beyond rainbow colors, alternative color schemes have been pro-
posed to better exploit people’s capacity to perceive differences
between hues and luminance. Moreland [20] lists criteria for good
color maps, such as the ability of the heatmap to maximize percep-
tual resolution, to provide intuitive perception of color order, and to
produce aesthetically pleasing images. One simple coloring scheme
is represented by graylevel scales that use shades of gray to encode
levels of amplitude in the data. The graylevel scale is effective be-
cause the human visual system is sensitive to changes in luminance
that can be interpreted accordingly as changes in the amplitude of
data values. However, brightness perception has been found to be
dependent on context, such as the brightness of the surrounding area,
making the same color appear differently in different contexts, which
is known as the simultaneous contrast effect [26]. Moreland [20]
explored diverging color maps that transition from one color to
another by passing through an unsaturated color, such as white, and
showed the advantages of these color maps compared to the rainbow
color scheme. Light and Bartlein [17] suggested alternatives for the
rainbow colors, such as a modified spectral color scheme, colors pro-



duced by single-hue progressions (e.g., from white to purplish-blue),
and diverging progression between two hues (e.g., from blue to gray,
or the orange-white-purple diverging scheme). Finally, the Col-
orBrewer web site and application [1] provides hand-crafted color
scheme suggestions for visualizing sequential (grayscale), diverging,
and qualitative data.

Informed by the aforementioned literature, we adopted in this
work the following color schemes to visualize our gesture heatmaps:
Ê Diverging color map. Two different colors are used to indicate
the minimum and maximum magnitude of the values present in the
data. The leftmost color of the scale, corresponding to the minimum
magnitude, changes gradually into a neutral color (e.g., white) posi-
tioned at the center of the scale, and then gradually turns into the
second, rightmost color, corresponding to the maximum magnitude
in the data. This type of double-ended color scheme is useful to visu-
alize ratio data (i.e., data that has a clear zero point), by indicating on
which side of zero a given value lies. This color scheme represents
our default choice for gesture heatmap visualizations of features
that have values located on both sides of an explicit zero point, such
as turning angle, curvature, acceleration, etc. Because diverging
color maps lack a natural order of colors, it is common practice to
choose extremity colors that are usually associated with low/high
and cold/hot connotations [20]. Examples are red and yellow colors
associated to warm and blue and green to cold, which seems to be a
perception invariant across subjects and cultures [11]. We adopted
one of the hand-crafted color schemes available on ColorBrewer
[1] that employs blue and red diverging colors. (See Figure 1 on the
first page showing local turning angles for the “alpha” symbol.)
Ë Sequential (grayscale) color map. This color map interpolates
colors gradually from light to dark, with dark denoting the maxi-
mum magnitude in the data. It is our default choice for visualizing
features whose values do not contain a significant midpoint, such
as features represented by values that are all located on one side of
the zero point. Examples from our case study features would be
speed or Euclidean shape distance values that are always positive. In
this case, the visualization literature recommends using a sequence
of lightness steps combined with a single hue to visualize such
data [17]. We used again ColorBrewer [1] to select two hand-crafted
sequential schemes with green and orange hues. (See the “flower”
and “spiral” gesture heatmaps of Figure 1 showing the variation in
relative turning angle and articulation speed along the gesture path.)
Ì Rainbow color map. Despite being criticized in the litera-
ture [8,17,23], we decided to implement this color scheme as well
due to its popularity and wide adoption even in the information
visualization community [8]. Cold colors (blue and green) encode
low magnitude in the data, while warm colors (orange and red) are
mapped to high-magnitude values. (See the “star” gesture heatmap
of Figure 1 computed to show the Euclidean shape distance.)

4. CASE STUDIES
Gesture heatmaps are general visualizers of any feature that is

ultimately the designer’s choice. Here we illustrate the use of ges-
ture heatmaps with three case studies that cover important aspects
of gesture interaction design: (1) we reveal causes of erroneous
classification by using gesture heatmaps to visualize the gesture ar-
ticulation shape distance used by the $1 gesture recognizer [34]; (2)
we show how gesture heatmaps can be used to understand people’s
subjective perceptions about gesture commands by visualizing the
articulation speed for the execution difficulty datasets [31]; (3) we
employ gesture heatmaps to characterize users’ gesture articulation
differences between finger and pen gestures on the MMG multi-
stroke gesture dataset [3,4]. Overall, we provide results from 15,840
gesture samples of 70 gesture types from 45 participants.

4.1 Understanding gesture recognition errors
We show in the following how gesture heatmaps can point to

causes leading to recognition errors that cannot otherwise be re-
vealed with today’s standard measures for assessing recognition
performance, such as error rates and confusion matrices. Being
highly visual in nature, gesture heatmaps highlight “hot” parts of a
gesture shape that exhibit high variance, helping practitioners to op-
timize their gesture shapes and maximize recognition performance.
For this case study, we employ the dataset of Wobbrock et al. [34] on
which the performance of the $1 gesture recognizer was evaluated2.
We only report results for the subset of gestures articulated at fast
speed, as they had the highest rate of recognition errors [34] (p. 165).
This dataset is composed of 1,600 samples of 16 distinct gesture
types articulated by 10 participants for 10 times each.

The performance of a gesture recognizer is evaluated today using
accuracy or error rates [3,18,24,28,34]. High recognition accuracy
(and, implicitly, low recognition errors) signal a high-performing
gesture recognizer. These measures are useful to understand recog-
nition performance overall and to compare recognition performance
between experimental conditions, e.g., the $1 recognizer was found
7% more accurate than Rubine’s recognizer, and equally accurate
as the Dynamic Time Warping cost function [34] (p. 165). To find
out more about recognition performance, practitioners can compute
recognition rates per gesture type that indicate poorly-recognized
gestures, e.g., see the performance of the “circle” and “question
mark” symbols in Figure 3 with 75% and 92% recognition rates3,
significantly lower than the performance of the other gesture types
(χ2(15)=196.184, p<.01). Practitioners can also resort to confu-
sion matrices that characterize error rates in more depth by showing
how often one gesture type is misrecognized for another. For exam-
ple, Figure 4 reveals that the 8% error rate of “question mark” is
mostly caused by the “right square bracket” and “right curly brace”
symbols. Long et al. [18] showed that practitioners can success-
fully employ these numbers to select highly-recognizable gestures
for their applications. However, numbers only are not informative
enough to explain the cause of recognition errors. Recognition per-
centages are valuable means to sum up the level of performance,

Figure 3: User-independent recognition rates for the gestures of
the $1 dataset computed with $1’s Euclidean cost function [34].

2http://depts.washington.edu/aimgroup/proj/dollar/
3We compute and report average recognition rates for the Euclidean cost
function and the Nearest-Neighbor classification technique (i.e., the $1 rec-
ognizer) in the user-independent scenario using the methodology from [28]
(p. 275). We vary the number of training participants P and training
samples per gesture type T in a geometric progression from 1 to 8 (i.e.,
P = 1, 2, 4, 8, and T = 1, 2, 4, 8). All gestures were re-sampled to n=64
points, uniformly scaled, and translated to origin, as in [3,28,34].

http://depts.washington.edu/aimgroup/proj/dollar/


Figure 4: Standard confusion matrix (user-independent) for
the $1 gesture set and $1’s Euclidean cost function [34].

but they cannot tell us why a recognizer has troubles with a certain
gesture. Knowing more about the why of recognition errors will help
us to more intelligently design gesture sets and choose recognizers
not likely to encounter the same types of recognition errors. Next,
we show how gesture heatmaps uncover causes of recognition errors,
while we introduce the chromatic confusion matrix.

The $1 recognizer computes the sum of Euclidean distances be-
tween points to discriminate between gesture types [34] (p. 162).
This cost function can also be interpreted as a feature, i.e., the rela-
tive shape error between candidate p and template q [29] (p. 280):

ShE(p, q) =

n∑
i=1

‖pi − qi‖ (3)

Because shape error is computed at each point on the gesture path,
we can visualize it using gesture heatmaps for which the color of
each point is in direct correspondence with the shape error between
the two gestures at that point precisely. We generated heatmaps
for all the gesture types in the $1 dataset and arranged them in
the form of a confusion matrix so that heatmap colors reflect the
amount of shape error between a candidate and a template; see
Figure 5. The candidate shown for each gesture type is actually the
user-independent gesture task axis of Vatavu et al. [29], computed
from all the samples available in the set for that gesture type (in our
case, 100 articulations = 10 participants × 10 executions).

Note how gesture heatmaps provide more information than the
standard confusion matrix about the cause of recognition errors. For
instance, the diagonal of the chromatic matrix shows candidates
compared to gestures of the same type for which shape errors are
low (an expected result) and, therefore, all color hues are mostly
blue. However, color intensity increases toward “hot” hues, such
as orange and red, for those gesture parts of the candidate that are
most dissimilar from their corresponding parts on the template, and
decrease toward “cold” green and blue hues for similar gesture parts.
For instance, the cause of the “question mark” symbol being misrec-
ognized as right curly and square braces appears more clear now:
the shape of the question mark superimposes almost perfectly on the
shapes of these other gestures, which causes low shape error values
between their corresponding points, shown by the high proportion
of blue segments in that pairing. The same can be said for other
gesture pairs, such as “circle” and “triangle”, left and right “curly

braces”, “curly braces” and “square brackets”, “v” and “check”,
etc. Shape errors are low for these gesture types because they fol-
low the same articulation direction (e.g., going from top to bottom
for braces, brackets, and the question mark), while their specific
shape characteristics (e.g., the upper curl of the question mark or
the middle curly point of the curly braces) are sometimes overtaken
in magnitude by the variation induced by different users articulating
these shapes (which can be seen in the background gestures shown
for each candidate heatmap). On the other hand, we can easily iden-
tify the most dissimilar gestures in the set, such as “delete mark”,
“star”, or x”, that present large shape errors for almost all their parts
(reflected with orange and red hues).

When we know the features that might impact the performance
of a recognizer, such as shape error being critical to the way $1
recognizes gestures, gesture heatmaps enable us to visually compare
those features quickly for candidate gesture sets, and re-design the
shape of gesture pairs which will be too similar for this recognizer.
For example, once practitioners have identified the causes lead-
ing to recognition errors, they can proceed to rectify these causes,
without necessarily having to remove a particular gesture from the
set [18]. For example, the articulation direction of the “circle” can
be reversed so that it won’t conflict any longer with that of the “tri-
angle”, knowing (and seeing now concretely) that the $1 recognizer
matches points in their order of input. Also, the shape design of the
curly braces can specifically include a more pointed curl, which will
slightly shift the centroid of these shapes toward the left, increasing
therefore the shape error with respect to the “question mark” and
“right square bracket” symbols. The same approach could be adopted
for the second part of the “check” symbol, making it even longer
to better disambiguate it from the “v” shape. Such changes acting
only on some parts of the gesture shape can improve recognition
accuracy, without removing that gesture from the set, as was the
only option with previous approaches [18].

4.2 User perception of execution difficulty
We next show how gesture heatmaps are valuable in uncovering

connections between objective articulation performance (e.g., execu-
tion speed), and people’s subjective perceptions about the gestures
they articulate, usually collected as Likert ratings [31,33]. Prior
work by Vatavu et al. [31] found that people’s perceptions about
the execution difficulty of stroke gestures can be reliably estimated
using kinematic measurements on the gesture path. The authors
reported 96% positive correlation between perceived difficulty and
articulation time, and 87% negative correlation with articulation
speed. The longer it takes people to articulate a gesture shape or
the slower they are during articulation, the more likely people will
rate that shape as more difficult to produce. However, there is no
explanation in that work of the causes of these high correlations.
In the following, we point to possible explanations for this phe-
nomenon by visualizing articulation speed values4 for the gesture
types used in the execution difficulty work. There are two gesture
datasets reported in [31] composed of 5,040 and 4,400 samples
of 38 distinct gesture types collected from 25 participants with 20
executions each5. We employ one dataset to derive possible causes
for the difficulty perception phenomenon, which we validate on the
gestures belonging to the second set.

Figure 6 shows gesture heatmaps generated for localized articula-
tion speed measured at each point pi as the ratio of the path length

4We focus on the articulation speed because time heatmaps are not interesting
for this analysis, as time increases monotonically along the gesture path.
However, local speed values change according to the gesture shape.

5http://www.eed.usv.ro/~vatavu/index.php?menuItem=downloads

http://www.eed.usv.ro/~vatavu/index.php?menuItem=downloads


Figure 5: Gesture heatmaps for the 16 gestures of the $1 dataset [34] showing the Shape Error [29,34] between candidates and
templates in the form of a chromatic confusion matrix. NOTES: Cold colors (e.g., blue and green) show small shape errors between
candidates and templates, which may cause recognition errors. The matrix was generated with our toolkit, GHoST, in the user-
independent scenario. The scale shows values in normalized pixel values (i.e., all gestures were scaled down to [0,1]×[0,1]).

between points pi−1 and pi+1 and the corresponding time duration:

si =
‖pi−1 − pi‖+ ‖pi − pi+1‖

ti+1 − ti−1
(4)

Each gesture has a ranking number showing its position in the list
of all gestures in ascending order by perceived execution difficulty.
These rankings are median values computed from the ratings col-
lected from participants [31] (p. 96). Note how our speed gesture
heatmaps actually show with colors the bell-shaped velocity profiles
observed in motor control studies [10], with speed increasing along
the stroke path until it reaches its midpoint, after which speed starts
to decrease. Please note however that motor control theory’s def-
inition of a “stroke” is different from that commonly accepted in
HCI as the path between two consecutive touch-down and touch-up
events (see also [13]). For example, the “strike” gesture (index 16,
Figure 6, left), although being a unistroke, is actually decomposable
into six distinct ballistic movements, according to models in motor

control theory. Looking at the heatmaps of the first dataset (Figure 6,
left) we see that shapes with few such fundamental movements
are rated less difficult to execute, such as “circle” (one ballistic
movement), digit “3” (two movements), “6” (one movement), letter
“m” (three movements), “sail” (four movements), and so on. The
heatmaps of these gestures use hot orange and red colors showing
fast articulation speeds. As the gesture shape becomes more com-
plex with more turning points, relative articulation speed decreases
as our gesture heatmaps correctly reflect with brighter colors. When
we look at the gestures of the second dataset (Figure 6), we see that
these observations hold true: complex trajectories that need to be
articulated with more ballistic strokes are shown in brighter colors
corresponding to slower relative speeds, as users have to continu-
ously accelerate and decelerate along the gesture path. These speed
patterns may be one reason why people perceive these gestures as
more difficult to execute. For example, the “spiral” shape (index
8, Figure 6, right) allows continuous acceleration, while the “star”
requires five decelerations along its path.



Figure 6: Gesture heatmaps showing articulation speed values for the two execution difficulty datasets of Vatavu et al. [31]. NOTES:
Brighter colors show slow speeds, which correlated negatively with perceived difficulty [31], and thus indicate gesture parts that
make gestures difficult to articulate. Numbers in the top-left corner show gesture ranking in ascending order of perceived difficulty.

We believe these observations are useful to explain, at least par-
tially, the complexity of the difficulty perception phenomenon re-
ported in [31]. While we do not provide the decisive answer to this
question in this work (nor is it our goal) because of the complexity
of this phenomenon (e.g., the effect of practice, familiarity, writer
speed, etc.), we believe we open new paths toward new gesture
discoveries. For example, we think that gesture heatmaps may be
used to spot ballistic strokes, which we believe to be in connection
with Isokoski’s approach for measuring geometric complexity [13],
hopefully leading to advances in assessing gesture complexity. Also,
ballistic movements could lead to a more suitable segmentation of
a gesture shape into primitives, which may be used to increase the
performance of the Curves Lines Corners (CLC) model [9] for esti-
mating gesture production time by considering actual user-generated
interruptions in the gesture path instead of decomposition of that
path into standard geometric primitives. While we only point at
these fruitful lines of work, we are eager to see how researchers
will use our gesture heatmaps to explain more subtle connections
between user perception and gesture articulation.

4.3 Finger versus stylus gestures
We next show how gesture heatmaps can reveal more discoveries

about users’ gesture articulation patterns and how these discoveries
connect to previous work, as we look at the effect of gesture imple-
menter (i.e., finger or stylus) on articulation. Previous work [27]
found that gesture implementer has no influence on the values of
the proportional shape distance for single-stroke gestures. Another
study [4] found recognition differences between multi-stroke ges-
tures articulated with a finger versus a stylus, i.e., higher recognition
accuracy with the $N recognizer was seen on gestures made with
a finger. Because recognizers like $1, $N, and $P [3,4,28,34] em-
ploy the shape distance as the recognizer cost function, variations
in this feature have the potential to impact recognition accuracy
significantly. Therefore, in this case study, we use Shape Error
gesture heatmaps (eq. 3) to understand more about the articulation
differences caused when employing the finger versus the stylus. We
employ the MMG dataset [4] composed of 9,600 samples of 16
distinct multi-stroke gestures collected from 20 participants using
either the finger or the stylus6. Because gestures in this set vary in
terms of stroke ordering and stroke direction [4,29], we computed
Shape Error with the $P alignment technique that minimizes the
sum of Euclidean distances between pairs of points [28].

6https://depts.washington.edu/aimgroup/proj/dollar/ndollar.html

Gesture heatmaps showed in Figure 7 indicate differences in the
accuracy (in terms of Shape Error) at which users produce gestures
with the finger versus the pen. For example, finger articulation of
“D” and “P” show the most concentrated regions of high shape error
(Figure 7, left, orange and red), while the articulations of the same
shapes using the stylus are displayed in green and yellow, indicating
much lower shape error with this implementer. In contrast, “H”
and “N” articulated by a stylus show the highest shape errors, but
again do not exhibit high shape error when articulated by the finger.
These gesture types are also among the most highly-confused pairs
by the $N-Protractor recognizer [4] (p. 120). Mann-Whitney U
tests confirmed significant differences (at p<.01) between the mean
Shape Errors for 12 out of all 16 gesture types (exceptions were
“arrowhead”, “asterisk”, “five point star”, and “X”).

Beyond pointing to overall differences between articulations (e.g.,
there is more shape error when articulating “P” with the finger than
the pen), gesture heatmaps can also point to localized “hot” spots
on the gesture shape that exhibit large shape errors. For example,
strokes’ start and end points are shown with more intense colors,
e.g., see “arrowhead”, “line”, “I”, “asterisk”, etc., showing that large
shape errors occur frequently at these locations. This observation
connects to the concern in the sketching community to remove
hooks that occur at the end of strokes (caused by users lifting the
stylus off of the surface) in order to increase recognition accuracy
of sketch input [15] (p. 11). This finding may inform the designer
to replace a multi-stroke gesture with the single-stroke equivalent
where applicable, e.g., “N” can be articulated with three strokes (as
it was in the MMG set), but also as a single-stroke. We believe that
“hot” point scrutiny will help practitioners understand better how
users articulate gestures, and thus, improve their gesture set designs.

5. CONCLUSION
We introduced in this work gesture heatmaps as a practical visual-

ization technique to aid researchers during gesture analysis. To this
end, we release the Gesture HeatmapS Toolkit (GHoST) as open
source software7 that computes heatmap visualizations for both user-
dependent and independent scenarios, and exports results as .csv
and .bmp files. Future work will explore animations and motion
features [7] for stroke gestures. It is one of the goals of this work
to encourage researchers to explore gesture heatmaps in order to
uncover new findings about users’ gesture articulation behavior, to
design better gesture sets, and to develop more accurate recognizers.

7http://depts.washington.edu/aimgroup/proj/dollar/ghost.html

https://depts.washington.edu/aimgroup/proj/dollar/ndollar.html
http://depts.washington.edu/aimgroup/proj/dollar/ghost.html


Figure 7: Shape error heatmaps for gestures articulated with the finger and the stylus [3,4]. Note how gesture heatmaps point to
localized “hot” spots on the gesture shape that exhibit large shape errors, such as strokes’ start and end points (orange and red).
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