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Figure 1: Nearly one thousand executions for the “person” symbol [46], performed by 34 users, with 52 different production patterns identified.
These samples represent just 2.5% of the total number of 40,305 gestures that we analyzed for this study. NOTE: colors show stroke ordering
and were automatically produced by GECKo, a gesture clustering toolkit that we release as a companion software application to this study.

ABSTRACT

Little work has been done on understanding the articulation patterns
of users’ touch and surface gestures, despite the importance of such
knowledge to inform the design of gesture recognizers and gesture
sets for different applications. We report a methodology to ana-
lyze user consistency in gesture production, both between-users and
within-user, by employing articulation features such as stroke type,
stroke direction, and stroke ordering, and by measuring variations
in execution with geometric and kinematic gesture descriptors. We
report results on four gesture datasets (40,305 samples of 63 gesture
types by 113 users). We find a high degree of consistency within-
users (.91), lower consistency between-users (.55), higher consis-
tency for certain gestures (e.g., less geometrically complex shapes
are more consistent than complex ones), and a loglinear relationship
between number of strokes and consistency. We highlight implica-
tions of our results to help designers create better surface gesture
interfaces informed by user behavior.

Index Terms: H.5.2 [Information interfaces and presentation (e.g.,
HCI)]: User interfaces-input devices and strategies.

1 INTRODUCTION

Touch and surface gesture interaction is becoming a dominant form
of everyday interaction as smartphones and tablet computers come
to be more widespread. In addition to standard swipe, flick, and
pinch gestures, sketch- or handwriting-based gestures are being
used for a variety of applications [5, 23, 28]. Supporting gesture
interaction requires recognizers to be integrated into the system and
trained to the specific gestures the system will support. However,
most recognizers have inherent limitations in the types of gestures
they can discriminate (cf., [1, 25]). In the past, recognition algo-
rithms have been tailored to specific applications, and much trial-
and-error is employed while tweaking recognition parameters and
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thresholds in order to improve recognition rates on a specific ges-
ture set [2]. Long et al. [25] observed that individual gestures within
a gesture set affect recognition of each other, leading to post-hoc re-
moval of specific gestures to tweak performance [8].

In this context, little work has been done to understand the range
of users’ gesture articulation patterns (which may impact recogni-
tion), despite the fact that currently popular gesture recognizers like
$1 [50], $N [2, 3], and Protractor [24] require an explicitly-defined
template for each gesture articulation to be recognized. Other rec-
ognizers, such as $P [43], were specifically designed to ignore
articulation differences altogether, which led indeed to improved
recognition accuracy, but with the side effect of losing the capabil-
ity to discriminate between directional strokes [43] (p. 278). For
an example of the degree of variability possible with multistroke
gestures, Figure 1 illustrates nearly 1,000 executions for the “per-
son” symbol [46], among which we identified 52 distinct produc-
tion patterns. Even a simple “asterisk” can be articulated in up to
23 ·3! = 48 different ways in terms of stroke direction and ordering
(Figure 2 shows 14 of them). If we knew more about how users ac-
tually make gestures (e.g., which articulations are most common),
we could design recognizers that capitalize on critical consistencies
and differences in within- and between-user articulation in order to
improve accuracy. We could also design gesture sets that run less
risk of conflicts due to how users make gestures [25].

We analyze in this paper user consistency in touch and pen ges-
ture production, focusing on (a) articulation features, such as num-
ber of strokes, stroke ordering, and stroke direction, and (b) ex-
ecution variation, captured by geometric and kinematic descrip-
tors. We report consistency in gesture articulation patterns for four
previously published datasets including 40,305 samples of 63 ges-
ture types produced by 113 users. Specifically, we find a high de-
gree of consistency within users (.91), lower consistency between

Figure 2: Fourteen different ways to articulate an “asterisk” identified
among 200 executions from 20 users [3].



users (.55), higher consistency for certain gesture types (e.g., less
geometrically complex shapes are more consistent than complex
shapes), and a loglinear relationship between number of strokes and
consistency. The contributions of this work are as follows: (1) a
methodology and supporting tool for clustering gesture sets and
analyzing user consistency in stroke gesture articulation (reported
as agreement rates [48]); (2) a set of operationalized gesture fea-
tures that can be used to characterize user consistency in articulat-
ing stroke gestures; (3) empirical findings on within- and between-
user consistency on real gestures; and (4) practical implications for
gesture interface prototypers to improve the performance of their
designs. We are the first to examine how consistent humans are at
producing stroke gestures, and our results are based on the largest
experiment ever conducted on gesture input behavior (40,305 ges-
ture samples) with high replicability (gesture data is from public
datasets, and our gesture clustering tool is public released).

2 RELATED WORK

2.1 User Consistency and User-Defined Gestures
Little work has attempted to understand the full range of users’
gesture articulation patterns. One example is Hammond and Paul-
son [15], who examined the number of strokes users drew when
sketching primitive shapes (e.g., lines, squares, circles, and curves),
in order to inform the design of a multistroke sketch recognizer.
Sezgin and Davis [37] used observed consistencies in stroke or-
dering to improve sketch recognition in domains such as course-
of-action diagrams and circuit diagrams. Kane et al. [18] investi-
gated gesture differences between blind and sighted users, Mauney
et al. [30] explored the impact of different cultures on gesture ar-
ticulation, and Tu et al. [40] studied pen versus finger gestures.
However, no one has conducted as thorough an examination of user
consistency (e.g., many different users, domains, gesture types, and
features) as we present.

Agreement between user gestures has been examined in the con-
text of user-defined gestures, as a replacement for expert designs
that may be too tailored to technical constraints [49]. In fact, Mor-
ris et al. [31] noted that expert designers tend to propose gesture sets
that are too complex compared to user-elicited gestures. Wobbrock
et al. [49] defined a methodology for eliciting user-defined gesture
sets by asking users, given the effect of a gesture, to demonstrate
the cause that would invoke it. Many studies have since been con-
ducted following this approach (for a survey, see Vatavu [42]), with
all results showing user consistency in proposing gestures for simi-
lar tasks, even across domains [22]. A somewhat different method-
ology to explore the joint user-sensor motion space was introduced
by Williamson and Murray-Smith [47]. Their work employs posi-
tive reinforcement to reward the originality of users while exploring
the space of motions they are able to perform and sensors are able
to capture. However, none of these studies have examined low-level
features of user-defined gestures in order to understand how to build
recognizers that can accommodate them.

These user-defined gesture elicitation studies can be large and
expensive. Predictive models based on users’ perceptions of gesture
similarity represent a suitable alternative to help designers choose
the best set of gestures for an application [26, 44]. For example,
Vatavu et al. [44] investigated gesture execution difficulty, while
Long et al. [26] focused on visual similarity to group gestures. We
use similar features as these approaches but go beyond their sim-
ple demonstrations of user consistency in the perception of gesture
shapes to report consistency in actual gesture articulation.

2.2 User Consistency and Gesture Recognition
Gesture recognition approaches vary but many use features sim-
ilar to the ones we examine in this paper [15, 26, 35, 46]. We
discuss the original work from which we borrow features as they
are introduced in the analysis. By studying user consistency for

features commonly used to recognize gestures, we can estimate
how discriminative the features are and their impact on accuracy.
Furthermore, it is well accepted among handwriting recognition re-
search that recognition rates are higher for user- and task-dependent
cases [11, 29]. Recognition accuracy is usually higher for domain-
specific (e.g., smaller) applications [27], or for writer-dependent
systems in which the recognizer has been trained on the writing of
a given user [38]. This accuracy boost partially comes from users’
internally consistent handwriting [9]. Writer identification research
has also found that handwriting styles can be highly individual [39],
but it is possible to cluster writing styles between users to improve
accuracy of recognition algorithms [9]. Preliminary work in multi-
touch gesture interaction has found similar heterogeneity between
users [36]. We extend such findings on within- and between-user
consistency from handwriting recognition to general gesture recog-
nition, which includes more symbol types to be drawn.

2.3 Kinesthetics and Motor Control
Research in motor control theory has sought to understand the kine-
matic processes that occur during handwriting and, especially, what
affects handwriting variability [10]. Two proposed models of fine
human movement production are the Sigma- and Delta-lognormal
models of the Kinematic Theory of Rapid Human Movements [34].
They state that generation of a complex movement requires the cen-
tral nervous system to generate an action plan in the form of a se-
ries of virtual targets, reached via rapid strokes of the neuromus-
cular system. Kinematic Theory has been used to investigate the
variability of handwriting patterns by considering local fluctuations
of individual strokes and global fluctuations in how these strokes
are sequenced [10]. Modeling of handwriting distortion has gener-
ated synthetic signature and gesture specimens exhibiting the same
lognormal characteristics as genuine human movements [13] while
recognizers trained on such data deliver improved accuracy [12].

Such studies offer mathematically-precise modeling of fine hu-
man movements with proven impact on the design of pattern recog-
nition systems [12, 13]. However, note that motor control theory’s
definition of a “stroke” is different from what HCI researchers usu-
ally define as a pen trajectory between two consecutive pen-down
and pen-up events [17]. In motor control, a stroke is a subcompo-
nent of the pen movement, and exhibits a stereotypical bell-shaped
velocity profile [21]. Unistrokes [14] would therefore be composed
of multiple such strokes. In contrast to motor control theory, which
looks at low-level analysis of human movement production, we
are interested in a high-level understanding of stroke gestures and
user production patterns. We therefore analyze user consistency by
adopting the high-level HCI definition of a stroke. We focus on un-
derstanding differences in the number of strokes, stroke direction,
and stroke ordering as they are naturally produced by users during
single stroke and multistroke gesture articulation. We also aim for
an understanding of user drawing behavior by employing today’s
HCI research tools to assess user consensus [42, 49].

3 STUDY METHOD

To develop an understanding of general patterns of user consistency
both within- and between-users in gesture articulation: (1) we semi-
automatically clustered gesture samples together based on articula-
tion similarities (i.e., number of strokes, stroke orders, and stroke
directions) in order to compute the degree of agreement per gesture
type and dataset; and (2) we computed a set of features for each
of the 40,305 gestures in four previously published datasets in or-
der to understand how variation in feature values may be related to
gesture articulation consistency according to our clustering.

3.1 Gesture Clustering
Recent work has shown the benefits of clustering gestures for re-
organizing the structure of training sets and improving recognition



accuracy [19, 33]. For example, Ouyang and Li [33] employed
clustering to merge similar gesture patterns supplied by many con-
tributors in an attempt to construct a large, and continuously evolv-
ing, gesture dictionary for touchscreen mobile devices. Keskin et
al. [19] used clustering as a preprocessing step to reconfigure the
number and structure of gesture classes according to the actual sim-
ilarity present between samples in the training set.

Inspired by the success of these recent approaches to leverag-
ing clustering algorithms for improving recognition performance,
we also decided to employ gesture clustering techniques, but this
time for the purpose of understanding user consistency in gesture
articulation patterns. We cluster large gesture data sets in order to
identify and group together similar production patterns that people
naturally employ while articulating single stroke and multistroke
gestures. To this end, we implemented the agglomerative hierar-
chical approach [45] (p. 363) with the complete-link method (p.
367), similar to [33]. The clustering technique starts with simple
clusters consisting of one gesture sample only, and then iteratively
merges clusters that are close together with respect to some similar-
ity function. The process stops when the similarity between clus-
ters falls below a given threshold and clusters cannot be merged any
longer. During pretests, we experimented with different similarity
measures inspired by gesture metrics [24, 32, 50] and gesture fea-
tures [46]. We finally adopted a simple definition for gesture simi-
larity by relying on the normalized Euclidean distance [20, 50], as
we found it to deliver the best results. Therefore, for clustering pur-
poses, we define the similarity between gestures a and b as follows:

similarity(a,b) =

{
1− ‖a−b‖

n if S(a) = S(b)
0 otherwise

(1)

where S(a) represents the number of strokes of gesture a; ‖a−b‖
n the

normalized Euclidean distance between gestures a and b [50]; and n
the number of sampling points for each gesture (n = 64) [50]. After
normalization1, the values of similarity(a,b) fall in [0..1], with 0
denoting no similarity at all and 1 denoting a perfect match.

Although accurate, the clustering results obtained using this au-
tomatic procedure were not perfect (as expected, since clustering
relied on the existing body of knowledge on gesture recognizers,
which inherently exhibit classification errors [2, 3, 24, 35, 50]).
However, reporting precise measurements of user gesture articula-
tion consistency requires perfect clustering. Therefore, we adopted
a two-step hybrid clustering approach, in which a human oper-
ator verified the output of the automated clustering process and
performed corrections where necessary by splitting and merging
computer-generated clusters. As manual editing proved tedious, we
developed several gesture visualization techniques to assist the pro-
cess which are now part of the publicly released tool GECKo (GEs-
ture Clustering ToolKit). (We detail these techniques and GECKo
later in the paper.) The hybrid two-step clustering methodology led
to perfect (though subjective) gesture clusters based on the follow-
ing criteria: (a) gesture type, (b) number of strokes, (c) stroke order,
(d) stroke direction, and (e) starting angle (e.g., orientation).

Then, to measure user consistency in producing gestures, we cal-
culated agreement rates based on Wobbrock et al.’s method [48],
previously successfully adopted for evaluating gesture sets [31,
41, 42, 48, 49]. Specifically, if gesture a has been produced
in m different ways, for which we know the clustering partition
P = {P1,P2, ...,Pm}, then the agreement rate of a is defined as:

ARa = ∑
i=1,m

(
|Pi|
|P|

)2
(2)

1Normalization and resampling represent common preprocessing tech-
niques employed by gesture recognizers in order to reduce gesture variabil-
ity and increase classification accuracy [2, 3, 50].

Figure 3: Nine different ways in which a user drew a car [46], con-
sisting in different numbers of strokes, stroke direction, and stroke
ordering. Resultant agreement rate is .22.

where |Pi| represents the number of samples in cluster Pi. For exam-
ple, Figure 3 illustrates different ways of drawing a “car” symbol,
produced by a single user [46], showing articulations that differ in
terms of number of strokes, stroke direction, and stroke ordering.
The agreement rate for this gesture is therefore:
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We calculate agreement rates per gesture type in two conditions:
within-user (using data from one user at a time), and between-users
(by clustering the within-user clusters across all users). This agree-
ment rate analysis is discussed in section 4.

3.2 Gesture Consistency Features

While gesture clusters capture information about preferred gesture
articulation patterns in terms of numbers of strokes, stroke direc-
tion, and stroke ordering, we are also interested in execution vari-
ation of the articulated strokes, which we compute with geometric
and kinematic gesture descriptors. In order to do so, we exam-
ined gesture features from the existing literature on gesture recog-
nition [26, 35, 46]. We started our feature collection by considering
all the features from previous studies that (1) we filtered during a
first theoretical analysis based on their potential to correlate with
articulation consistency, and (2) we filtered again based on actual
measurements and correlation results. This preliminary analysis led
to a final set of twelve representative features (Table 1). The set con-
tains features that describe gesture path length and size [46], ges-
ture structure (i.e., number of strokes), orientation (start and ending
angles), shape (e.g., sharpness and curviness [26]), and kinematics
(i.e., production time and speed [35]).

3.3 Gesture Datasets

We employ several existing gesture datasets in this work: (1) the
Mixed Multistroke Gesture (MMG) corpus [3]; (2) the Algebra
Learner mathematics input corpus [4]; (3) the HHReco geomet-
ric shape dataset [16]; and (4) the NicIcon crisis management
dataset [46]. Key characteristics of these datasets relevant to this
work are given in Table 2. Three of the datasets (MMG, HHReco,
and NicIcon) were collected from adult users entering individual
gesture samples one at a time in a gesture collection tool. The
fourth dataset (Algebra Learner) was collected from middle and
high school users (11− 17 years old) solving algebraic equations
(later hand-segmented and labeled). In all, we employ four datasets
containing gestures of 63 different types executed by 113 unique
users, for a total of 40,305 executions.



Gesture Feature Units Computation

1. Geometric features (selected from Rubine [35], Long et al. [26], Willems et al. [46])

Number of strokes count number of paired pen-down and pen-up events
Path length pixels cumulative sum of the Euclidean distance between adjacent points
Area of the bounding box pixels2 height (ymax− ymin) multiplied by width (xmax− xmin) of the bounding box
Cosine of starting angle - Rubine f1 feature
Cosine of ending angle - similar to Rubine’s f1 but for the end of the gesture
Line similarity - distance between starting and ending points divided by path length
Global orientation degrees angle of the diagonal of the gesture bounding box (Rubine f4)
Total turning angle degrees sum of the absolute value of the angles at each point (Rubine f10)
Sharpness degrees sum of the squared angles at each gesture point (Rubine f11)
Curviness degrees / pixel total turning angle divided by path length (Long et al. [26], feature 13)

2. Kinematic features

Production time ms difference between tmax and tmin

Average speed pixels / ms path length divided by production time

Table 1: Gesture features employed during analysis.

Dataset Users Gestures Multi
strokes

Single
strokes

Total
samples

Max
strokes

Gesture types

MMG [3] 20 16 87% 13% 3,200 5 arrowhead, asterisk, D, exclamation point, five-pointed star, H, half-note,
I, line, N, null symbol, P, pitchfork, six-pointed star, T, X

Algebra [4] 40 20 30% 70% 15,309 2 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, x, y, a, b, c, +, -, =, (, )
HHReco [16] 19 13 60% 40% 7,791 9 arch, callout, crescent, cube, cylinder, ellipse, heart, hexagon, parallelo-

gram, pentagon, square, trapezoid, triangle
NicIcon [46] 34 14 89% 11% 14,005 4 accident, bomb, car, casualty, electricity, fire, fire brigade, flood, gas,

injury, paramedics, person, police, roadblock

Total 113 63 40,305

Table 2: Properties of the four previously published datasets used in this work.

4 GESTURE CONSISTENCY FINDINGS

We found a high degree of within-user agreement (.91, SD = .18),
but a lesser degree of consistency between users (.55, SD = .31). A
Wilcoxon signed-rank test confirmed this difference is significant
(Z = −6.59, p < .001, N = 63). This finding supports prior work
in handwriting recognition [9, 39] and multitouch gestures [36] in-
dicating that users are highly individual and internally consistent,
but that there are also some stylistic “classes” across users that can
be reliably consistent. To understand how agreement in gesture
articulation manifests in gesture execution features, we correlated
between- and within-user agreement rates per gesture type with the
average values for each gesture feature per gesture type (Table 3).
We present the remainder of the findings by examining how these
gesture articulation features are relevant to the agreement rates.

4.1 Relationship of Agreement to Number of Samples

One might expect between-user consistency to depend on how
many and which users the gestures come from. For example, a
dataset consisting entirely of a small set of users of the same age,
handedness, cultural background, etc., might yield 100% agreement
for all gesture types. A dataset of many users of diverse cultures,
languages, ages, etc., might have very low agreement rates between
users. In our case with 113 users, we tested the relationship between
number of users who drew a gesture type and the average between-
user agreement rates and found a moderately strong positive corre-
lation (r = .322, p < .01): the more people whose samples we have
for a given gesture type, the more agreement we find. We do not
have detailed demographic information available for all datasets, so
we cannot confidently remark on diversity, but future work could
examine differences among various cultures (e.g., [30]).

Another measure of the expected agreement one might achieve
given a certain amount of gesture samples is the number of execu-
tions per person per gesture type. How many samples per person
are needed to reach good coverage? In our data, there is no sig-

Feature AR within-user AR between-user

Number of strokes −.687∗∗ −.614∗∗

Speed .530∗∗ .311∗

Sharpness −.395∗∗ −.439∗∗

Total turning angle −.375∗∗ −.436∗∗

Line similarity .313∗ .627∗∗

Path length n.s. −.536∗∗

Area of bounding box n.s. −.470∗∗

Production time n.s. −.418∗∗

Global orientation n.s. .270∗

Curviness n.s. .301∗

Start angle n.s. n.s.
End angle n.s. n.s.

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).

NOTE: N=43 for production time and speed (the Algebra set does not
include timestamps, N=20), N=63 for all other features.

Table 3: Pearson correlation coefficients between gesture features
and agreement rate values. NOTE: features are listed in decreasing
order of the within-users agreement correlation coefficient.

nificant relationship between number of executions and within-user
agreement, but there is a strong negative correlation with between-
user agreement (r =−.495, p < .01). This finding indicates that, as
the number of samples per user increases, the agreement decreases.
We theorize that adding more executions per person may simply ex-
pose extra styles of drawing a gesture that are idiosyncratic to that
user, lowering overall agreement with other users.

4.2 Relationship to Gesture Category and Familiarity

Space prevents us from showing a figure of the agreement rates for
all 63 gesture types that appeared in the four datasets we examined.
Instead, we show a frequency distribution of the percent of gesture
types that had similar agreement values (Figure 4a). We find that
87% of gestures are above .75 within-user agreement, whereas only



Figure 4: User consistency summary: (a) frequency distribution of proportion of gesture types exhibiting similar agreement rates; (b) agreement
rate by gesture category; (c) loglinear relationship between number of strokes and agreement rates.

Gesture Category

Letter a, b, c, x, y, D, H, I, N, P, T, X
Number 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Shape arch, cube, cylinder, ellipse, heart, hexagon, moon, parallelo-

gram, pentagon, square, trapezoid, triangle, 5pt star, 6pt star, line
Symbol callout, pitchfork, accident, bomb, car, casualty, electricity, fire,

fire brigade, flood, gas, injury, paramedics, person, police, road-
block

Sign equal, left-parenthesis, minus, plus, right-parenthesis, arrow-
head, asterisk, exclamation, half note, null

Gesture Familiarity

Familiar a, b, c, x, y, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, equal, left-parenthesis,
minus, plus, right-parenthesis, arrowhead, asterisk, exclamation,
half note, line, null, D, H, I, N, P, T, X, arch, cube, cylinder,
ellipse, heart, hexagon, moon, parallelogram, pentagon, square,
trapezoid, triangle

Nonfamiliar 5pt star, 6pt star, pitchfork, callout, accident, bomb, car, casu-
alty, electricity, fire, fire brigade, flood, gas, injury, paramedics,
person, police, roadblock

Table 4: Gesture category and familiarity groupings.

32% of gestures are above .75 between-user agreement. There are
no gesture types below .50 agreement within users, indicating that
personal outliers are rare. Several gesture types had perfect (1.00)
average within-user agreement (i.e., no variability in how they were
executed for all individual users) including “2”, “arch”, “D”, “el-
lipse”, “heart”, “line”, “moon”, “P”, and “pentagon”. Gesture types
“1”, “left-parenthesis”, “right-parenthesis”, “6”, “3”, and “excla-
mation point” were also above .96 within-user agreement. Only a
few gesture types had perfect between-user agreement: “D”, “line”,
“P”, “2”, “c”. All of these gestures are common gestures that users
probably have written or drawn thousands of times in their lives,
plausibly leading to a practice effect that increases agreement.

To examine this possibility, we considered both the category of
each gesture type and its potential familiarity to the users who drew
it. When we consider the types of gestures that were included in the
datasets we investigated, several categories of gestures emerged:
(a) letters, e.g., “a”, “b”, “c”; (b) numbers, e.g., “1”, “2”, “3”;
(c) shapes, e.g., “square”, “ellipse”, “triangle”; (d) symbols, e.g.,
“callout”, “pitchfork”, “car”; and (e) signs, e.g., “plus”, “minus”,
“equal” (Table 4). We found that agreement rates for letters and
numbers were higher than for other gesture types, such as shapes
and symbols (Figure 4b). Specifically, letters and numbers had
.75 (SD = .22) between-user agreement; other gestures had only
.44 (SD = .31), and this difference was confirmed significant by a
Mann-Whitney U test (U = 195.50, Z =−3.68, p < .0005).

This relationship could be the result of explicit training to write
letters and numbers in a certain way as part of penmanship prac-
tice in school (i.e., in which the manner of making the letters and
numbers are part of teaching their form), or it could simply be the

result of heavy practice of these types of gestures as compared to the
other types. To explore this issue in more depth, we next grouped
gesture types into ones we felt likely to have been practiced (at least
in Western cultures) vs. ones that were not (Table 4). Indeed, we
find that familiar gestures show higher agreement rates both within
users (.95 practiced, .81 not) and between users (.62 practiced, .37
not). A Mann-Whitney U test confirmed a significant difference for
between-users (U = 212.00, Z = −2.94, p < .005). This finding
suggests that increased degree of comfort with a gesture decreases
the variation in articulating that gesture.

4.3 Relationship to Gesture Entry over Time

As an approximation of the effect of practice, we attempted to mea-
sure the degree to which consistency might change over time within
the course of one gesture collection session. We hypothesized that
a learning effect could influence user consistency in gesture pro-
duction patterns, as users articulate more samples of a gesture. As
the number of executions increases for a gesture type, it is likely
for the articulations of that gesture to converge to some “preferred”
production patterns, which would make users seem less consistent
at the beginning, but more consistent as they progress. To test this
hypothesis, we sorted all samples for each user and gesture type
in chronological order, split them half way, and computed agree-
ment rates for each half. However, a Mann-Whitney U test did not
reveal any significant differences for either within- (.88 vs. .90,
U = 515000.500, Z = −1.894, n.s.), nor between-user agreement
rates (.44 vs. .44, U = 919.500, Z = −0.043, n.s.). This finding
shows that the users from our sets exhibited the same level of con-
sistency in their articulation patterns from their initial execution to
the last one, making them equally consistent over time. This finding
seems to hold for blocks of up to 15 gesture executions (as the max-
imum number of samples for a gesture was 30 for the HHReco and
NicIcon sets), but may change with more practice over the course
of a lifetime (i.e., thousands of executions).

4.4 Relationship to Geometric Complexity

We consider a number of our features as indicators of geometric
complexity: number of strokes, total turning angle, line similarity,
and sharpness. If we examine how much agreement there is among
users with respect to number of strokes they generate while drawing
gestures, regression analysis shows a logarithmic model as the best
fit, with the following loglinear relationships (Figure 4c):

(a) within-users: y =−0.162 · ln(x)+0.995 (R2 = .85)

(b) between-users: y =−0.437 · ln(x)+0.799 (R2 = .95)

The relationship has a negative coefficient, meaning that, as number
of strokes increases, agreement rates decrease. Prior work in human
visual perception [7] has found that perceived similarity of objects



is typically correlated with the logarithm of quantitative measure-
ments of those objects. It is therefore interesting that the reverse
relationship also seems to hold (at least for number of strokes): hu-
mans tend to draw objects that are visually similar in a logarithmic
relationship. The high degree of fit for these functions is encourag-
ing; we may be able to use them as predictors of expected agree-
ment on a candidate gesture given the expected number of strokes,
which would help designers choose good gestures.

Another potentially interesting measure of complexity is the to-
tal turning angle of the gesture. If a gesture passes through many
curves and wiggles (such as a “g”) during its path, is it likely to
have higher or lower agreement rates among users executing that
gesture type? Such gesture types tend to give gesture recogniz-
ers more trouble, especially template matchers such as $N [2, 3],
and the reason could be decreased user consistency. We can ex-
plore this relationship by first computing the average total turn-
ing angle per gesture type of all the gestures in the four datasets
we examined, which ranges from min = 148.8◦ (for “line” ges-
tures) to max = 2861.7◦ (“6pt star”), SD = 462.3◦. Indeed, there
was a moderate negative correlation between the total turning angle
and within-user agreement rate (r = −.375, p < .01) and a strong
negative correlation with between-user agreement rate (r =−.436,
p < .01). Both correlations are negative, meaning that agreement
rates decrease as the total turning angle increases. This result is
consistent with the independent measure of complexity mentioned
above, number of strokes; in both cases, increased geometric com-
plexity leads to lower user consistency, even within a single user.

The other two features we identify as relevant to geometric com-
plexity, line similarity and sharpness, exhibit similar relationships
to agreement. The moderate and strong positive correlations to
agreement that line similarity shows (Table 3), and the moderate
and strong negative correlations that sharpness shows, both indi-
cate that lower complexity is related to higher agreement.

4.5 Relationship to Kinematics
When we examined the distribution of agreement rates earlier in
the paper, we noted that there are no gesture types with below .50
within-user agreement, indicating fairly consistent within-user be-
havior. We wondered if this consistency could still be expected
if users are rushed or otherwise distracted, and we examined this
possibility through the production time and average speed features
in our data. Unexpectedly, we found a strong positive relation-
ship between speed and within-user agreement (r = .530, p < .01).
This result indicates that faster gesture entry does not co-occur with
atypical gesture articulation; in fact, the opposite is true. Support-
ing this finding is prior work on the $1 gesture recognizer [50],
which found that faster gestures were better recognized, indicating
higher consistency when rushed. (No significant correlation was
found between production time and within-user agreement, likely
because quicker gestures could also be caused by less complex ges-
tures, already shown to be correlated to agreement.)

In addition, we found a strong negative relationship between pro-
duction time and between-user agreement (r =−.418, p < .01) and
a moderate positive relationship between speed and between-user
agreement (r = .311, p < .05). These results continue to indicate
that, as users enter their gestures faster (and with shorter durations),
agreement actually increases, even between users. This result could
be a factor of confidence: users possibly draw gestures faster when
they feel more comfortable with them. Comfort level could come
from repeated practice of the same gestures (e.g., letters and num-
bers are commonly written), and so is related to our earlier findings
regarding gesture category and familiarity as well.

4.6 Relationship to Gesture Size
Gesture length and area, as indicators of articulation size, are neg-
atively correlated with between-user agreement (r = −.536, and

r = −.470, p < .01) but not significantly correlated with within-
user data. Smaller gestures have higher agreement, most likely be-
cause less variation is possible kinematically in smaller motions.

5 IMPLICATIONS

The implications of these findings apply to the design of application
gesture sets and inform the structure of recognizer training sets.
Also, new classification rules working on top of existing gesture
recognizers can be designed based on the results of this study, for
example, to prune training sets and to improve performance for
specific gesture sets. We list potential improvements that can be
implemented based on our findings of the present study as a set of
guidelines (a-g) for practitioners, and we accompany each specific
guideline with practical examples:

Ê Application gesture set design.
(a) Where possible, prefer unistroke gestures (e.g., commands

examined by [50]) as their execution is more consistent for
both individual users (.97) and between users (.77) than the
execution of multistroke gestures.

(b) Respect emerging standards and/or prefer gestures already
likely to be familiar to users (e.g., letters, shapes, numbers in
general; “pigtail” to select and “cross” to delete, in specific).

(c) In spite of a need to create gestures that are fairly distinc-
tive [25], avoid introducing gestures with too high a degree of
geometric complexity (e.g., large total turning angle).

- Example: Applying criteria (a-c) for the MMG set of ges-
tures [3], we would suggest pruning the “6pt star” gesture, which
had the lowest agreement rate from the set, .73 for within-user and
.21 for between-users, and also the second lowest recognition rate
of 16 gestures, just 93% [3] (p. 120). Applying these principles for
the $1 gesture set [50], we would suggest pruning the curly braces,
which also correlates with users rating them poorly: 2 on a 5-point
Likert scale [50] (p. 166), the lowest rating out of 16 gestures. The
curly braces also had the highest recognition error (1.67%) out of
all gestures of the $1 set [50] (Table 1, p. 166).

Ë Training set design.
(d) Collect more training samples for gestures that appear to be

less consistent (e.g., more strokes) in order to cover more of
their variability within the training set.

(e) Prune the large training sets needed by some recognizers [2, 3],
removing unlikely articulations of multistroke gestures.

- Example: The most important implication of guideline (d)
is that the number of training samples per gesture type does not
need to be the same for all gestures in the set. This is a simple
consequence of our study but no one has actually examined this
option before. Instead, the existing practice of testing recognition
performance of gesture recognizers has only considered equal
sampling for all gesture types [2, 3, 24, 50].

- Example: Recognizers such as $N [2, 3], which represents
all possible permutations of a given gesture to keep user training
costs down, could use guideline (e) to prune the available set
of permutations (or mark some as less likely) once a particular
user enters a few samples. New samples from the same user
are not likely to deviate much from this core pruned set, and
we have already noted that writer-dependent recognition is more
accurate [38]. We also noted that the effect of familiarity with
certain gesture types and categories is strong; previously practiced
letters, numbers, and signs (e.g., handwriting gestures) show much
higher between-user agreement rates. These gesture types are
then candidates for much more aggressive pruning of the possible
gesture articulation space when designing recognizers for them.

Ì Design of supporting classification rules.
(f) Use simple rejection rules to assist recognizers in discriminat-

ing between confusable gesture types with close confidence
scores [2, 3, 50].



(g) Exploit differences in gesture articulation to allow multiple
commands to use the same gesture with different articulations.

- Example: The lower between-user agreement rates (.55) and the
negative correlation between number of executions and between-
user agreement rates indicate it may be more difficult to prune the
gesture space for a multiuser system without cutting gestures that
matter. However, we can use the analysis of the gesture features and
how they relate to agreement in order to prune more precisely. Sim-
ple rules based on guideline (f) can be devised to improve recogni-
tion performance on gesture classes with high degrees of confusion,
such as: (1) if the candidate gesture has 3+ strokes then it can’t be
of type X, Y, or Z because these gesture types are never produced
with more than two strokes; (2) if the turning angle of the candidate
is larger than a given threshold, then it can’t be of type X or Y be-
cause these gesture types consist of simple lines only.
- Example: One challenge of gesture set design is that users of-
ten desire to use the same (or similar) gesture for multiple com-
mands [25], but these are difficult for recognizers to distinguish.
Therefore, gesture sets must be designed considering the impact of
each individual gesture type on the others with respect to possible
recognition confusions [25]. Expert designers can consider gesture
articulation differences to support guideline (f), for instance, allow-
ing users to draw a clockwise circle to select items and a coun-
terclockwise circle to delete items, assuming the recognizer being
used can distinguish between them.

5.1 Impact on Research and Practice
Besides the above, many other applications of our findings can be
imagined for improving the performance of today’s gesture recog-
nition techniques and the design practice of gesture sets for applica-
tions. Furthermore, probably the most important implication of this
work is to draw the community’s attention towards the amount of
(not-before-measured) variation in articulating stroke gestures. We
believe that reporting such findings to the community, while backed
up by the largest experiment ever conducted on gesture input behav-
ior (40,305 gestures), represents a solid starting point for extended
investigation into how users articulate gestures and how that can
be exploited for the design of future surface gesture interfaces. We
look forward to seeing how our findings will be exploited by prac-
titioners and how other researchers will make use of this extensive
dataset on gesture articulation patterns and agreement rates that we
have generated. To this end, we release the logs of our manually
clustered gesture sets2.

5.2 The GECKo Tool
We mentioned the GEsture Clustering toolKit (GECKo) that we im-
plemented to assist a human operator in editing and correcting the
cluster partition initially generated by an automated clustering pro-
cedure. We devised several visualization strategies for gesture ar-
ticulations to make such editing easier. We briefly summarize them
here, as we believe they could prove useful to implement in other
applications that need to display stroke gestures as well. The goal
was to increase the visual similarity of gestures exhibiting the same
number of strokes, stroke directions, and stroke orderings, and to
visually highlight dissimilarity in any of these factors. We found
the following visualization techniques effective: (1) display strokes
in different colors following a fixed color scheme (e.g., first stroke
is always displayed in red, second stroke gray, and so on); (2) high-
light the starting point of each stroke with a small disc; (3) fade
stroke color in the direction of articulation; (4) display the total
number of strokes next to the gesture image. For cases in which
similarity could not be assessed visually, the human operator could
play an animation of the gesture execution. GECKo reports within-

2http://depts.washington.edu/aimgroup/proj/dollar/
gecko.html

Figure 5: GECKo: the gesture clustering toolkit.

and between-user agreement rates after clustering. In the spirit of
providing open toolkits [5, 6, 25], we provide GECKo as a free tool,
available for public download (see above).

6 CONCLUSION

We report in this paper a methodology to analyze user consistency
in touch and surface gesture execution, focusing on (a) gesture ar-
ticulation described in terms of stroke number, ordering, and di-
rection, and (b) execution variation measured by geometric and
kinematic gesture features. We report the results of applying this
methodology to four previously published datasets from different
domains (40,305 samples of 63 gesture types by 113 users). We
found a high degree of consistency within users (.91), lower con-
sistency rates between users (.55), higher rates of consistency for
certain gesture types, and a loglinear relationship between number
of strokes and consistency. We use our findings to propose a set
of guidelines for helping designers of gesture interfaces to improve
their gesture sets and recognizers.

We note that 40,305 gestures is the largest experiment on ges-
ture input behavior ever conducted. We generated a large quantity
of data and observations which are easily replicable (by virtue of us-
ing public data sets), together with delivering the actual techniques
and tools to obtain them (i.e., agreement rate analysis of gesture
clusters obtainable via the GECKo toolkit). By doing so, we not
only confirm, formally and for the first time, expected user behav-
ior in producing gesture shapes (e.g., positive correlation between
user consistency and gesture complexity, or users being highly indi-
vidual and internally consistent), but we also highlight new findings
(e.g., a loglinear relationship between user consistency and number
of gesture strokes). We have also developed a method to visualize
gestures and gesture clusters in the GECKo toolkit, which will be
useful for gesture designers to explore variability in their gesture
sets, given some initial gesture data. We plan to add new features
to GECKo to assist in designing gesture sets through prediction of
gesture articulation patterns informed by this work. In the end, we
believe that this work lays the foundation for further investigation
into how users articulate gestures and how these findings can be
exploited in the design of future surface gesture interfaces. Contri-
butions of this work will lead to advanced gesture recognizers and
adaptable gesture set designs that capitalize upon observed user be-
havior and preferred gesture articulation patterns.

http://depts.washington.edu/aimgroup/proj/dollar/gecko.html
http://depts.washington.edu/aimgroup/proj/dollar/gecko.html
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