
$N-Protractor: A Fast and Accurate Multistroke Recognizer

Lisa Anthony
†
 and Jacob O. Wobbrock

‡

†
University of Maryland Baltimore County,

 ‡
The Information School, DUB Group, University of Washington

ABSTRACT

Prior work introduced $N, a simple multistroke gesture recognizer
based on template matching, intended to be easy to port to new
platforms for rapid prototyping, and derived from the unistroke $1
recognizer. $N uses an iterative search method to find the optimal
angular alignment between two gesture templates, like $1 before
it. Since then, Protractor has been introduced, a unistroke pen and
finger gesture recognition algorithm also based on template-
matching and $1, but using a closed-form template-matching
method instead of an iterative search method, considerably
improving recognition speed over $1. This paper presents work to
streamline $N with Protractor by using Protractor’s closed-form
matching approach, and demonstrates that similar speed benefits
occur for multistroke gestures from datasets from multiple
domains. We find that the Protractor enhancements are over 91%
faster than the original $N, and negligibly less accurate (<0.2%).
We also discuss the impact that the number of templates, the input
speed, and input method (e.g., pen vs. finger) have on recognition
accuracy, and examine the most confusable gestures.

KEYWORDS: Multistroke gesture recognition, stroke recognition,
template matching, $N, Protractor, evaluation.

INDEX TERMS: H.5.2. [Information interfaces and presentation]:
User interfaces—input devices and strategies; I.5.5. [Pattern
recognition]: Implementation—interactive systems.

1 INTRODUCTION

Pen and finger gestures are becoming ever more important to user
interfaces. Integrating application-specific gestures, such as
special commands or sketch or handwriting input, requires user
interface prototypers to know much about gesture recognition in
order to choose the right recognizer. In addition to performance,
considerations such as ease of integration and simplicity of
training are important in deciding which approach to take.
Although gesture recognition is becoming more common, sketch-
based input still does not enjoy mainstream support on new
platforms, requiring UI prototypers to “grow their own” or port
tools to their new device.

$N is a multistroke pen and finger gesture recognition
algorithm [1], a simple, easy-to-train geometric template matcher
based on the $1 unistroke recognizer [5]. Targeted to be easy to
port to new platforms by virtue of its straightforward, geometry-
based algorithm, $N has experienced swift uptake in rapid
prototyping for interactive systems. Implementations in
JavaScript, C# and Objective-C already exist, and an iPhone app
has been released that uses $N to accept touch gesture input. The
clarity of $N enables such swift uptake; for example, the C#
version consists of just 240 lines of code and uses only basic

geometry computations. See the $N webpage1 for further details,
including pseudo-code and open-source implementations in
JavaScript and C#.

A major limitation of $N (and $1 before it) is the computational
demand of the method used to find the optimal angular alignment
between two gestures. $N iteratively rotates a candidate gesture
by some number of degrees using the Golden Section Search
algorithm (GSS) [4] (pp. 397-402), to determine the best angular
alignment with any given template. Then the Euclidean distance
between points in the rotated candidate gesture and the template
gesture defines the quality of the match. An extension of $1 called
Protractor [3] has been introduced which eliminates this iterative
search for the best angular alignment by using a closed-form
approach based on inverse cosine distances. Protractor has been
shown to significantly improve speed of recognition over $1 [3].

Therefore, we have incorporated the matching method used in
unistroke Protractor into $N to determine whether the same speed
improvements materialize in the multistroke formulation of this
approach. We find that performance results comparing the
original $N ($N-GSS) to the Protractor-enhanced $N ($N-
Protractor) on the same datasets show speed benefits of over 91%
without penalizing complexity or accuracy significantly.

2 PRIOR WORK

A brief discussion of how both $N and Protractor work is
provided here, but see their original papers for full details of
implementation and previous evaluations.

2.1 $N Multistroke Recognizer

Details of the $N recognizer, including a complete pseudocode
listing, can be found in the original paper [1]. The multistroke $N
recognizer is based on the $1 unistroke recognizer [5]. Both
recognizers use a geometric template matching approach,
comparing new candidate gestures to loaded templates by
iteratively searching for the optimal angular alignment between
two gestures and comparing distances between corresponding
points. Both candidates and templates are pre-processed using the
same steps to standardize the gestures before alignment is
performed. $N goes beyond the original $1 recognizer by
supporting multistroke gestures by sampling gestures “through the
air”, i.e., during the pen-up part of the multistroke gesture. To
remain robust to stroke orders and stroke directions, $N
automatically computes all possible permutations of a multistroke,
enabling it to recognize a gesture made with a different stroke
order or stroke direction than the loaded templates [1].

2.2 Protractor

Li has published Protractor [3], an extension to the original $1
recognizer that uses a closed-form solution to find the optimal
angular alignment between a template and a candidate gesture.
Protractor’s approach significantly reduces the computation
needed during the matching process by removing the iterative
search over angles. Like $1, Protractor computes the similarity
between a candidate and template using a distance metric.

1 http://depts.washington.edu/aimgroup/proj/dollar/ndollar.html

†
Baltimore, MD, USA,

‡
Seattle, WA, USA

†
lanthony@umbc.edu,

‡
wobbrock@uw.edu

1172012

Graphics Interface Conference 2012
28-30 May, Toronto, Ontario, Canada
Copyright held by authors. Permission granted to
CHCCS/SCDHM to publish in print form, and
ACM to publish electronically.

Protractor’s distance metric finds the angle between two vector-
based representations of unistroke gestures in an n-dimensional
space (Protractor uses 16 dimensions by resampling gestures to 16
points). Before computing this distance, however, it is important
to ensure the two gestures are optimally aligned so that the
minimum possible distance can be found. To do so, Protractor
calculates the inverse minimum cosine distance between two
gestures, a closed-form operation rather than the iterative one used
by $1 and $N. Pseudo-code is provided on the Protractor website2.
Li [3] reported significant speed improvements over $1.

3 DATASETS

We evaluated the Protractor-enhanced version of $N on three
datasets. The Mixed Multistroke Gesture (MMG) dataset is a new
dataset collected for this paper. The $1 unistroke dataset was
previously collected and used to evaluate the original versions of
$1 and of Protractor, and the algebra dataset was previously
collected and used to evaluate the original version of $N.

3.1 Mixed Multistroke Gesture Dataset

For this paper, we have collected a new multistroke pen gesture
dataset called “Mixed Multistroke Gestures” (MMG) that contains
a set of symbols representative of those used in multistroke
gesture input applications. The dataset is a mixed multistroke and
unistroke dataset consisting of 3200 samples drawn by 20
different users on a Windows-based Tablet PC, including 7
females and 13 males, ranging in age from 18 to 33 years. Due to
the rise in popularity of touch-based gesture interfaces on
smartphones like the iPhone and Android platform, more than half
of the users were familiar with touch and finger input on digital
devices; few were as familiar with pen or stylus input but most
had used pens or styli before providing samples for us.

Each user wrote 10 samples per symbol; half of the users
entered data via their index finger and half of the users entered
data via the digital stylus. The symbol set, originally defined in
[1], includes the following 16 symbols: {arrowhead, asterisk, D,
exclamation point, five-pointed star, H, half-note, I, line, N, null
symbol, P, pitchfork, six-pointed star, T, X}. See Figure 1 for the

2 http://yangl.org/protractor/protractor.pdf

symbol set used in this dataset; the number in parentheses next to
each symbol name is the target number of strokes we asked users
to enter. The dataset consists of 87% multistroke and 13%
unistroke samples. The maximum number of strokes across all
samples is 5. Note that the symbols were shown to the user with
the number of strokes indicated in Figure 1, and the maximum
number of strokes is 3. Therefore, samples with strokes numbers
higher than 3 are technically mis-entered data, but this occurred in
fewer than 0.6% of the samples.

3.2 $1 Unistroke Dataset

$1 was originally evaluated on a dataset similar to MMG that only
included unistroke symbols, and was drawn by adults [5].
Protractor was also evaluated on this dataset [3]. In addition to the
new MMG dataset, we were able to evaluate our new $N-
Protractor on this benchmark dataset (“Unistrokes”).

3.3 Algebra Dataset

$N was originally evaluated on a challenging dataset of
unconstrained algebra symbols drawn by middle and high school
students to test its limits [1]. In addition to the other two datasets
mentioned, we were able to evaluate $N-Protractor on this real-
world dataset (“Algebra”).

4 BENCHMARK TESTS

A separate writer-dependent benchmark test was run for each
recognition approach and dataset in this paper. The procedure
used for evaluation, which we call “random-100,” mirrored that
described in previous work [1,5]. The $N recognizer was
configured with the parameters that yielded the highest
performance in the original evaluation reported on the algebra
corpus [1]. Future evaluations might vary the parameters used to
determine to what extent they are domain-dependent, if at all.
Two versions of $N were tested on each dataset, one using the
closed-form Protractor method ($N-Protractor) and one using the
original iterative method ($N-GSS).

5 ANALYSIS AND RESULTS

We present results of the evaluation in terms of recognition
accuracy and recognition speed for all three datasets. We also
report findings on the impact of input method (e.g., using one’s
finger vs. a digital stylus) and the impact of gesture articulation
speed (e.g., being more or less careful when entering gestures) on
$N-Protractor’s performance for the MMG dataset. We also report
the most highly confusable symbols in the MMG dataset.

5.1 Recognition Accuracy

In the original evaluation of $N-GSS [1], accuracy levels of
96.6% were achieved with 15 templates per symbol on the
Algebra dataset, and 96.7% with 9 templates per symbol on the
Unistrokes dataset. We replicated the $N-GSS tests, and achieved
about the same or better results: 95.4% accuracy with 15
templates per symbol on the Algebra dataset, and 97.7% accuracy
with 2 templates per symbol on the Unistrokes dataset (accuracy
was higher on Unistrokes even when treating unistrokes as
multistrokes and storing both directional permutations). On the
new MMG dataset, accuracy was approximately 97% for both
versions of $N with just 4 templates per symbol loaded. Although
the difference is extremely small, the $N-Protractor is consistently
and statistically significantly less accurate on the MMG dataset as
the number of training examples per symbol increases (t(8)=5.17,
p<0.05). In practice, this difference is so small that it likely does
not impact real-world use. The tiny performance hit experienced
with the Protractor matching method is far outweighed by the
speed benefits. When using the Protractor matching method

Figure 1: Mixed Multistroke Gesture (MMG) symbol set,

using symbols defined in [1].

118 2012

instead of GSS, accuracy stayed about the same, but as discussed
in the next section, recognition speed increased more than
fivefold. Figure 2 shows the recognition accuracy performance of
$N-GSS and $N-Protractor on each dataset for each level of
templates per symbol.

5.2 Recognition Speed

The time taken for our evaluation was far less with $N-Protractor
than with $N-GSS. For the MMG dataset, $N-Protractor took
18.70 minutes to complete on a Dell Studio 1558 laptop running
64-bit Windows 7 with a 2.27 GHz Intel Core i5 CPU and 4.00Gb
RAM. $N-GSS took 208.95 minutes to complete the same
evaluation on the same data on the same computer. This result
represents a more than 91% time savings, and is the result of the
closed form matching method used in Protractor. On the Algebra
dataset, $N-Protractor took 10.62 minutes to complete on the
same machine as the earlier tests were run, whereas $N-GSS took
59.29 minutes to complete the same evaluation on the same data
on the same computer, an 82% savings. On the Unistrokes dataset,
$N-Protractor took 1.16 minutes to complete, whereas $N-GSS
took 5.83 minutes, an 80% savings. Thus, the time savings overall
varied per dataset, but was dramatic in all cases.

Not only did the overall time decrease considerably with
Protractor, but the time per recognition increased less steeply per
additional template with the Protractor enhancement than it did
with the GSS matching method. In both cases, time to recognize a
gesture increases as the number of training examples per gesture
type increases, because the recognizer is comparing new
candidates to iteratively more possible templates. However, with
Protractor, this added cost is much less than with GSS. Figure 3
shows the increase in time in milliseconds to recognize a gesture
with $N-GSS and $N-Protractor on each dataset as the number of
training examples per gesture type increases. With 9 training
examples per gesture type, GSS took 25.8 ms to recognize a
gesture in the MMG dataset, whereas Protractor took only 1.9 ms
to do so. On the Algebra dataset with the same number of
templates loaded, it took only 6.4 ms to recognize a gesture with
GSS, and only 0.67 ms with Protractor. On the Unistrokes dataset,
it took 3.89 ms to recognize a gesture with GSS and only 0.42 ms
with Protractor. For all datasets, this difference in time taken per
recognition as the number of training examples increases was
statistically significant in favor of Protractor (MMG: (t(8)=5.48,
p<0.05); Algebra: t(16)=7.97, p<0.05; Unistrokes: t(8)=5.49,
p<0.05). The degree of time savings per recognition varied per

dataset, but remained a dramatic and significant improvement
when using Protractor.

The original Protractor paper [3] described a similar speed gain,
taking less than 0.5 ms per gesture while $1 (using GSS) took
over 3 ms on the Unistrokes dataset. The time per gesture was less
in that evaluation than in this one because only unistroke gestures
were tested, and $N-Protractor (as well as $N-GSS) represents
each multistroke gesture evaluated here as multiple unistrokes,
increasing the number of comparisons that are done.

5.3 Impact of Input Method

We also investigated whether the use of one’s finger or a digital
stylus yields better recognition accuracy with $N. We analyzed
the performance of $N-Protractor in relation to input method (e.g.,
finger or stylus) for the MMG dataset. We found that $N-
Protractor was significantly more accurate with one’s finger than
with the stylus (t(8)=6.38, p<0.05), shown in Figure 4. This effect
could be due to users’ higher comfort with finger gestures vs.
stylus gestures, or due to increased jitter while holding the stylus.

5.4 Impact of Input Speed

During data collection for MMG, users were asked to enter
gesture samples at three different speeds: slow, medium, and fast.
We used the same definitions of the speeds as in the original $1

Figure 2: $N recognition accuracy per dataset when using the

Protractor matching method vs. the GSS matching method as the

number of training examples increases.

Figure 3: $N recognition speed per dataset when using the

Protractor matching method vs. the GSS matching method as the

number of training examples increases.

Figure 4: $N-Protractor recognition accuracy on the MMG dataset

on gestures entered via a finger vs. a digital stylus.

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

R
e

c
o

g
n

it
io

n
 A

c
cu

ra
c
y

Number of Training Examples per Gesture Type

MMG-GSS

MMG-Prot

Algebra-GSS

Algebra-Prot

Unistrokes-GSS

Unistrokes-Prot

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T
im

e
 p

e
r

R
e

c
o

g
n

it
io

n
 (

m
s)

Number of Training Examples per Gesture Type

MMG-GSS

MMG-Prot

Algebra-GSS

Algebra-Prot

Unistrokes-GSS

Unistrokes-Prot

0.85

0.875

0.9

0.925

0.95

0.975

1

1 2 3 4 5 6 7 8 9

R
e

c
o

g
n

it
io

n
 A

cc
u

ra
cy

Number of Training Examples per Gesture Type

Finger

Stylus

1192012

paper [5]: for slow gestures, users were asked to “be as accurate
as possible;” for medium gestures, users were asked to “balance
speed and accuracy;” for fast gestures, users were asked to “go as
fast as you can.” These messages appeared before each set of
gestures at the new speed. In a repeated measures ANOVA on
input speed controlling for user, $N-Protractor showed no
significant difference in recognition accuracy at the three different
speeds (F(2,38)=1.72, n.s.) for the MMG dataset, indicating that it
is suitable for a wide variety of contexts in which users may be
more careful or less careful when entering gesture input.

5.5 Most Confusable Gestures

For the MMG dataset, there was a significant difference in how
well specific symbols were recognized by $N-Protractor
(F(1,15)=3054.9, p<0.05). The least well-recognized symbol was
the exclamation point, with much lower accuracy (87% correct)
than the next highest symbol (six-point star, 93% correct), likely
due to inconsistencies in how users made the gesture. The most
well-recognized symbols, in decreasing order, were the pitchfork,
asterisk, and “I” at roughly 98% correct each. Predictably, which
gestures were harder to recognize did not change depending on
which matching method, GSS or Protractor, was used.

The most highly confused pairs (cases in which the mis-
recognition count was over 538, or 1% of tests per character) are
given in Table 1. Although never more than 5% of tests per
symbol were incorrect, from these results, we can conclude that
$N-Protractor has difficulty recognizing gestures with very small
or short component strokes (e.g., often confusing exclamation
points for half notes). This difficulty occurs despite the scaling
done during pre-processing, which may exaggerate small jitters or
abnormalities in the short strokes. $N-Protractor also tends to
have difficulty with 1-D gestures such as lines and exclamation
points. Because no pair of gestures tended to be confused for each
other (e.g., exclamation points were confused for half notes, but
half notes were not confused for exclamation points), there does
not seem to be a specific conclusion we can draw about the types
of symbols $N-Protractor has trouble discerning between.

Table 1: Gestures in the MMG dataset most highly confused by $N-

Protractor. Total number of each confusion type is given, as well as

the percentage of tests (out of 53800 per tested gesture) that were

confused in the given way.

Tested gesture
Confused

gesture

No. of

confusions

% tests

confused

Exclamation point Half note 2488 4.6%

Line [no result] 1466 2.7%

Exclamation point N 1162 2.2%

H N 822 1.5%

Six point star Null 777 1.4%

Five point star [no result] 749 1.4%

Exclamation point Arrow 737 1.4%

Exclamation point T 703 1.3%

P D 608 1.1%

Half note [no result] 561 1.0%

N P 553 1.0%

6 CONCLUSION

We have presented an extension of the popular $N multistroke
pen and finger gesture recognizer to use the newer Protractor
matching method previously applied to speed up $1 for unistroke
gestures. We have shown that, both on a newly collected mixed
multistroke gestures (MMG) dataset and on previously
benchmarked datasets in different domains (multistroke Algebra
and Unistrokes), Protractor yields the same speed benefits for $N

as it did for $1, with negligible accuracy cost. Furthermore, we
have explored impact of input method and speed on $N-
Protractor’s recognition accuracy for the MMG dataset, and found
that, while haste / carefulness had no effect, using one’s finger
rather than a stylus tended to be more accurate with $N-
Protractor. Finally, we presented confusion results for $N-
Protractor’s performance on the MMG dataset and some
preliminary conclusions about the suitability of $N-Protractor for
symbols of different types.

7 FUTURE WORK

While this paper has presented an optimization for $N called $N-
Protractor to alleviate the time cost of representing multistrokes as
unistroke permutations, an important limitation still exists for $N
in terms of the space cost. A gesture such as a cube may be drawn
with up to 9 strokes, which would involve 185 million
permutations and is infeasible to store on modern desktops, let
alone mobile devices. Future work will involve adapting $N-
Protractor for use with symbols of many component strokes. We
intend to explore alternative data structures, representations or
storage strategies (e.g., generating the permutations on the fly
rather than storing them) for $N-Protractor that can retain its
stroke-order and stroke-direction independence without
representing all possible permutations explicitly. Alternatively,
another extension to $1 to handle multistrokes besides $N has
been proposed [2] in which multistroke permutations are not
generated. In order to retain robustness to stroke order and
direction, a complex simulated annealing method is used to
iteratively find the minimum sum of the distances between all
pairs of points to find the best possible match, which determines
the score for that template. We do not believe this matching
method is appropriate for the intended rapid prototyping use cases
of $N, but perhaps a combination of this approach and $N-
Protractor can yield better results while retaining simplicity and
ease of use. In addition, we continue to study $N’s suitability for
non-pattern matching and sketch and gesture algorithm experts by
exploring adoption, ease of use, and simplicity to port $N to new
platforms.

ACKNOWLEDGMENTS

The authors thank Peng Chu for assistance with collecting the
MMG dataset, and the users who provided the MMG samples.

REFERENCES

[1] L. Anthony and J.O. Wobbrock. A lightweight multistroke

recognizer for user interface prototypes. Proceedings of Graphics

Interface ’10 (Ottawa, Canada, May 31-June 2, 2010), 245-252.

Canadian Information Processing Society, 2010.

[2] M. Field, S. Gordon, E. Peterson, R. Robinson, T. Stahovich, and C.

Alvarado. The effect of task on classification accuracy: Using

gesture recognition techniques in free-sketch recognition.

Proceedings of Sketch-Based Interfaces and Modeling ’09 (New

Orleans, Louisiana, August 1-2, 2009), 499-512. ACM Press, 2009.

[3] Y. Li. Protractor: a fast and accurate gesture recognizer. Proceedings

of ACM SIGCHI Conference on Human Factors in Computing

Systems ’10 (Atlanta, Georgia, April 10-15, 2010), 2169-2172. ACM

Press, 2010.

[4] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery.

Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.

Cambridge University Press, 1992.

[5] J.O. Wobbrock, A.D. Wilson, and Y. Li. Gestures without libraries,

toolkits or training: A $1 recognizer for user interface prototypes.

Proceedings of ACM Symposium on User Interface Software and

Technology ’07 (Newport, Rhode Island, October 7-10, 2007), 159-

168. ACM Press, 2007.

120 2012

