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ABSTRACT 

Prior work introduced $N, a simple multistroke gesture recognizer 
based on template matching, intended to be easy to port to new 
platforms for rapid prototyping, and derived from the unistroke $1 
recognizer. $N uses an iterative search method to find the optimal 
angular alignment between two gesture templates, like $1 before 
it. Since then, Protractor has been introduced, a unistroke pen and 
finger gesture recognition algorithm also based on template-
matching and $1, but using a closed-form template-matching 
method instead of an iterative search method, considerably 
improving recognition speed over $1. This paper presents work to 
streamline $N with Protractor by using Protractor’s closed-form 
matching approach, and demonstrates that similar speed benefits 
occur for multistroke gestures from datasets from multiple 
domains. We find that the Protractor enhancements are over 91% 
faster than the original $N, and negligibly less accurate (<0.2%). 
We also discuss the impact that the number of templates, the input 
speed, and input method (e.g., pen vs. finger) have on recognition 
accuracy, and examine the most confusable gestures.  
 
KEYWORDS: Multistroke gesture recognition, stroke recognition, 
template matching, $N, Protractor, evaluation. 
 
INDEX TERMS: H.5.2. [Information interfaces and presentation]: 
User interfaces—input devices and strategies; I.5.5. [Pattern 
recognition]: Implementation—interactive systems. 

1 INTRODUCTION 

Pen and finger gestures are becoming ever more important to user 
interfaces. Integrating application-specific gestures, such as 
special commands or sketch or handwriting input, requires user 
interface prototypers to know much about gesture recognition in 
order to choose the right recognizer. In addition to performance, 
considerations such as ease of integration and simplicity of 
training are important in deciding which approach to take. 
Although gesture recognition is becoming more common, sketch-
based input still does not enjoy mainstream support on new 
platforms, requiring UI prototypers to “grow their own” or port 
tools to their new device. 

$N is a multistroke pen and finger gesture recognition 
algorithm [1], a simple, easy-to-train geometric template matcher 
based on the $1 unistroke recognizer [5]. Targeted to be easy to 
port to new platforms by virtue of its straightforward, geometry-
based algorithm, $N has experienced swift uptake in rapid 
prototyping for interactive systems. Implementations in 
JavaScript, C# and Objective-C already exist, and an iPhone app 
has been released that uses $N to accept touch gesture input. The 
clarity of $N enables such swift uptake; for example, the C# 
version consists of just 240 lines of code and uses only basic 

geometry computations. See the $N webpage1 for further details, 
including pseudo-code and open-source implementations in 
JavaScript and C#. 

A major limitation of $N (and $1 before it) is the computational 
demand of the method used to find the optimal angular alignment 
between two gestures. $N iteratively rotates a candidate gesture 
by some number of degrees using the Golden Section Search 
algorithm (GSS) [4] (pp. 397-402), to determine the best angular 
alignment with any given template. Then the Euclidean distance 
between points in the rotated candidate gesture and the template 
gesture defines the quality of the match. An extension of $1 called 
Protractor [3] has been introduced which eliminates this iterative 
search for the best angular alignment by using a closed-form 
approach based on inverse cosine distances. Protractor has been 
shown to significantly improve speed of recognition over $1 [3]. 

Therefore, we have incorporated the matching method used in 
unistroke Protractor into $N to determine whether the same speed 
improvements materialize in the multistroke formulation of this 
approach. We find that performance results comparing the 
original $N ($N-GSS) to the Protractor-enhanced $N ($N-
Protractor) on the same datasets show speed benefits of over 91% 
without penalizing complexity or accuracy significantly. 

2 PRIOR WORK 

A brief discussion of how both $N and Protractor work is 
provided here, but see their original papers for full details of 
implementation and previous evaluations. 

2.1 $N Multistroke Recognizer 

Details of the $N recognizer, including a complete pseudocode 
listing, can be found in the original paper [1]. The multistroke $N 
recognizer is based on the $1 unistroke recognizer [5]. Both 
recognizers use a geometric template matching approach, 
comparing new candidate gestures to loaded templates by 
iteratively searching for the optimal angular alignment between 
two gestures and comparing distances between corresponding 
points. Both candidates and templates are pre-processed using the 
same steps to standardize the gestures before alignment is 
performed. $N goes beyond the original $1 recognizer by 
supporting multistroke gestures by sampling gestures “through the 
air”, i.e., during the pen-up part of the multistroke gesture. To 
remain robust to stroke orders and stroke directions, $N 
automatically computes all possible permutations of a multistroke, 
enabling it to recognize a gesture made with a different stroke 
order or stroke direction than the loaded templates [1]. 

2.2 Protractor 

Li has published Protractor [3], an extension to the original $1 
recognizer that uses a closed-form solution to find the optimal 
angular alignment between a template and a candidate gesture. 
Protractor’s approach significantly reduces the computation 
needed during the matching process by removing the iterative 
search over angles. Like $1, Protractor computes the similarity 
between a candidate and template using a distance metric. 

                                                             
1 http://depts.washington.edu/aimgroup/proj/dollar/ndollar.html 

 

†
Baltimore, MD, USA, 

‡
Seattle, WA, USA 

†
lanthony@umbc.edu, 

‡
wobbrock@uw.edu 

 

1172012

Graphics Interface Conference 2012
28-30 May, Toronto, Ontario, Canada
Copyright held by authors. Permission granted to 
CHCCS/SCDHM to publish in print form, and 
ACM to publish electronically.



Protractor’s distance metric finds the angle between two vector-
based representations of unistroke gestures in an n-dimensional 
space (Protractor uses 16 dimensions by resampling gestures to 16 
points). Before computing this distance, however, it is important 
to ensure the two gestures are optimally aligned so that the 
minimum possible distance can be found. To do so, Protractor 
calculates the inverse minimum cosine distance between two 
gestures, a closed-form operation rather than the iterative one used 
by $1 and $N. Pseudo-code is provided on the Protractor website2. 
Li [3] reported significant speed improvements over $1.  

3 DATASETS 

We evaluated the Protractor-enhanced version of $N on three 
datasets. The Mixed Multistroke Gesture (MMG) dataset is a new 
dataset collected for this paper. The $1 unistroke dataset was 
previously collected and used to evaluate the original versions of 
$1 and of Protractor, and the algebra dataset was previously 
collected and used to evaluate the original version of $N. 

3.1 Mixed Multistroke Gesture Dataset 

For this paper, we have collected a new multistroke pen gesture 
dataset called “Mixed Multistroke Gestures” (MMG) that contains 
a set of symbols representative of those used in multistroke 
gesture input applications. The dataset is a mixed multistroke and 
unistroke dataset consisting of 3200 samples drawn by 20 
different users on a Windows-based Tablet PC, including 7 
females and 13 males, ranging in age from 18 to 33 years. Due to 
the rise in popularity of touch-based gesture interfaces on 
smartphones like the iPhone and Android platform, more than half 
of the users were familiar with touch and finger input on digital 
devices; few were as familiar with pen or stylus input but most 
had used pens or styli before providing samples for us. 

Each user wrote 10 samples per symbol; half of the users 
entered data via their index finger and half of the users entered 
data via the digital stylus. The symbol set, originally defined in 
[1], includes the following 16 symbols: {arrowhead, asterisk, D, 
exclamation point, five-pointed star, H, half-note, I, line, N, null 
symbol, P, pitchfork, six-pointed star, T, X}. See Figure 1 for the 

                                                             
2 http://yangl.org/protractor/protractor.pdf 

symbol set used in this dataset; the number in parentheses next to 
each symbol name is the target number of strokes we asked users 
to enter. The dataset consists of 87% multistroke and 13% 
unistroke samples. The maximum number of strokes across all 
samples is 5. Note that the symbols were shown to the user with 
the number of strokes indicated in Figure 1, and the maximum 
number of strokes is 3. Therefore, samples with strokes numbers 
higher than 3 are technically mis-entered data, but this occurred in 
fewer than 0.6% of the samples. 

3.2 $1 Unistroke Dataset 

$1 was originally evaluated on a dataset similar to MMG that only 
included unistroke symbols, and was drawn by adults [5]. 
Protractor was also evaluated on this dataset [3]. In addition to the 
new MMG dataset, we were able to evaluate our new $N-
Protractor on this benchmark dataset (“Unistrokes”). 

3.3 Algebra Dataset 

$N was originally evaluated on a challenging dataset of 
unconstrained algebra symbols drawn by middle and high school 
students to test its limits [1]. In addition to the other two datasets 
mentioned, we were able to evaluate $N-Protractor on this real-
world dataset (“Algebra”).  

4 BENCHMARK TESTS 

A separate writer-dependent benchmark test was run for each 
recognition approach and dataset in this paper. The procedure 
used for evaluation, which we call “random-100,” mirrored that 
described in previous work [1,5]. The $N recognizer was 
configured with the parameters that yielded the highest 
performance in the original evaluation reported on the algebra 
corpus [1]. Future evaluations might vary the parameters used to 
determine to what extent they are domain-dependent, if at all. 
Two versions of $N were tested on each dataset, one using the 
closed-form Protractor method ($N-Protractor) and one using the 
original iterative method ($N-GSS). 

5 ANALYSIS AND RESULTS 

We present results of the evaluation in terms of recognition 
accuracy and recognition speed for all three datasets. We also 
report findings on the impact of input method (e.g., using one’s 
finger vs. a digital stylus) and the impact of gesture articulation 
speed (e.g., being more or less careful when entering gestures) on 
$N-Protractor’s performance for the MMG dataset. We also report 
the most highly confusable symbols in the MMG dataset.  

5.1 Recognition Accuracy 

In the original evaluation of $N-GSS [1], accuracy levels of 
96.6% were achieved with 15 templates per symbol on the 
Algebra dataset, and 96.7% with 9 templates per symbol on the 
Unistrokes dataset. We replicated the $N-GSS tests, and achieved 
about the same or better results: 95.4% accuracy with 15 
templates per symbol on the Algebra dataset, and 97.7% accuracy 
with 2 templates per symbol on the Unistrokes dataset (accuracy 
was higher on Unistrokes even when treating unistrokes as 
multistrokes and storing both directional permutations). On the 
new MMG dataset, accuracy was approximately 97% for both 
versions of $N with just 4 templates per symbol loaded. Although 
the difference is extremely small, the $N-Protractor is consistently 
and statistically significantly less accurate on the MMG dataset as 
the number of training examples per symbol increases (t(8)=5.17, 
p<0.05). In practice, this difference is so small that it likely does 
not impact real-world use. The tiny performance hit experienced 
with the Protractor matching method is far outweighed by the 
speed benefits. When using the Protractor matching method 

Figure 1: Mixed Multistroke Gesture (MMG) symbol set, 

using symbols defined in [1]. 
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instead of GSS, accuracy stayed about the same, but as discussed 
in the next section, recognition speed increased more than 
fivefold. Figure 2 shows the recognition accuracy performance of 
$N-GSS and $N-Protractor on each dataset for each level of 
templates per symbol. 

5.2 Recognition Speed 

The time taken for our evaluation was far less with $N-Protractor 
than with $N-GSS. For the MMG dataset, $N-Protractor took 
18.70 minutes to complete on a Dell Studio 1558 laptop running 
64-bit Windows 7 with a 2.27 GHz Intel Core i5 CPU and 4.00Gb 
RAM. $N-GSS took 208.95 minutes to complete the same 
evaluation on the same data on the same computer. This result 
represents a more than 91% time savings, and is the result of the 
closed form matching method used in Protractor. On the Algebra 
dataset, $N-Protractor took 10.62 minutes to complete on the 
same machine as the earlier tests were run, whereas $N-GSS took 
59.29 minutes to complete the same evaluation on the same data 
on the same computer, an 82% savings. On the Unistrokes dataset, 
$N-Protractor took 1.16 minutes to complete, whereas $N-GSS 
took 5.83 minutes, an 80% savings. Thus, the time savings overall 
varied per dataset, but was dramatic in all cases. 

Not only did the overall time decrease considerably with 
Protractor, but the time per recognition increased less steeply per 
additional template with the Protractor enhancement than it did 
with the GSS matching method. In both cases, time to recognize a 
gesture increases as the number of training examples per gesture 
type increases, because the recognizer is comparing new 
candidates to iteratively more possible templates. However, with 
Protractor, this added cost is much less than with GSS. Figure 3 
shows the increase in time in milliseconds to recognize a gesture 
with $N-GSS and $N-Protractor on each dataset as the number of 
training examples per gesture type increases. With 9 training 
examples per gesture type, GSS took 25.8 ms to recognize a 
gesture in the MMG dataset, whereas Protractor took only 1.9 ms 
to do so. On the Algebra dataset with the same number of 
templates loaded, it took only 6.4 ms to recognize a gesture with 
GSS, and only 0.67 ms with Protractor. On the Unistrokes dataset, 
it took 3.89 ms to recognize a gesture with GSS and only 0.42 ms 
with Protractor. For all datasets, this difference in time taken per 
recognition as the number of training examples increases was 
statistically significant in favor of Protractor (MMG: (t(8)=5.48, 
p<0.05); Algebra: t(16)=7.97, p<0.05; Unistrokes: t(8)=5.49, 
p<0.05). The degree of time savings per recognition varied per 

dataset, but remained a dramatic and significant improvement 
when using Protractor. 

The original Protractor paper [3] described a similar speed gain, 
taking less than 0.5 ms per gesture while $1 (using GSS) took 
over 3 ms on the Unistrokes dataset. The time per gesture was less 
in that evaluation than in this one because only unistroke gestures 
were tested, and $N-Protractor (as well as $N-GSS) represents 
each multistroke gesture evaluated here as multiple unistrokes, 
increasing the number of comparisons that are done. 

5.3 Impact of Input Method 

We also investigated whether the use of one’s finger or a digital 
stylus yields better recognition accuracy with $N. We analyzed 
the performance of $N-Protractor in relation to input method (e.g., 
finger or stylus) for the MMG dataset. We found that $N-
Protractor was significantly more accurate with one’s finger than 
with the stylus (t(8)=6.38, p<0.05), shown in Figure 4. This effect 
could be due to users’ higher comfort with finger gestures vs. 
stylus gestures, or due to increased jitter while holding the stylus. 

5.4 Impact of Input Speed 

During data collection for MMG, users were asked to enter 
gesture samples at three different speeds: slow, medium, and fast. 
We used the same definitions of the speeds as in the original $1 

Figure 2: $N recognition accuracy per dataset when using the 

Protractor matching method vs. the GSS matching method as the 

number of training examples increases. 

Figure 3: $N recognition speed per dataset when using the 

Protractor matching method vs. the GSS matching method as the 

number of training examples increases. 

Figure 4: $N-Protractor recognition accuracy on the MMG dataset 

on gestures entered via a finger vs. a digital stylus. 
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paper [5]: for slow gestures, users were asked to “be as accurate 
as possible;” for medium gestures, users were asked to “balance 
speed and accuracy;” for fast gestures, users were asked to “go as 
fast as you can.” These messages appeared before each set of 
gestures at the new speed. In a repeated measures ANOVA on 
input speed controlling for user, $N-Protractor showed no 
significant difference in recognition accuracy at the three different 
speeds (F(2,38)=1.72, n.s.) for the MMG dataset, indicating that it 
is suitable for a wide variety of contexts in which users may be 
more careful or less careful when entering gesture input. 

5.5 Most Confusable Gestures 

For the MMG dataset, there was a significant difference in how 
well specific symbols were recognized by $N-Protractor 
(F(1,15)=3054.9, p<0.05). The least well-recognized symbol was 
the exclamation point, with much lower accuracy (87% correct) 
than the next highest symbol (six-point star, 93% correct), likely 
due to inconsistencies in how users made the gesture. The most 
well-recognized symbols, in decreasing order, were the pitchfork, 
asterisk, and “I” at roughly 98% correct each. Predictably, which 
gestures were harder to recognize did not change depending on 
which matching method, GSS or Protractor, was used. 

The most highly confused pairs (cases in which the mis-
recognition count was over 538, or 1% of tests per character) are 
given in Table 1. Although never more than 5% of tests per 
symbol were incorrect, from these results, we can conclude that 
$N-Protractor has difficulty recognizing gestures with very small 
or short component strokes (e.g., often confusing exclamation 
points for half notes). This difficulty occurs despite the scaling 
done during pre-processing, which may exaggerate small jitters or 
abnormalities in the short strokes. $N-Protractor also tends to 
have difficulty with 1-D gestures such as lines and exclamation 
points. Because no pair of gestures tended to be confused for each 
other (e.g., exclamation points were confused for half notes, but 
half notes were not confused for exclamation points), there does 
not seem to be a specific conclusion we can draw about the types 
of symbols $N-Protractor has trouble discerning between. 

Table 1: Gestures in the MMG dataset most highly confused by $N-

Protractor. Total number of each confusion type is given, as well as 

the percentage of tests (out of 53800 per tested gesture) that were 

confused in the given way. 

Tested gesture 
Confused 

gesture 

No. of 

confusions 

% tests 

confused 

Exclamation point Half note 2488 4.6% 

Line [no result] 1466 2.7% 

Exclamation point N 1162 2.2% 

H N 822 1.5% 

Six point star Null 777 1.4% 

Five point star [no result] 749 1.4% 

Exclamation point Arrow 737 1.4% 

Exclamation point T 703 1.3% 

P D 608 1.1% 

Half note [no result] 561 1.0% 

N P 553 1.0% 
 

6 CONCLUSION 

We have presented an extension of the popular $N multistroke 
pen and finger gesture recognizer to use the newer Protractor 
matching method previously applied to speed up $1 for unistroke 
gestures. We have shown that, both on a newly collected mixed 
multistroke gestures (MMG) dataset and on previously 
benchmarked datasets in different domains (multistroke Algebra 
and Unistrokes), Protractor yields the same speed benefits for $N 

as it did for $1, with negligible accuracy cost. Furthermore, we 
have explored impact of input method and speed on $N-
Protractor’s recognition accuracy for the MMG dataset, and found 
that, while haste / carefulness had no effect, using one’s finger 
rather than a stylus tended to be more accurate with $N-
Protractor. Finally, we presented confusion results for $N-
Protractor’s performance on the MMG dataset and some 
preliminary conclusions about the suitability of $N-Protractor for 
symbols of different types. 

7 FUTURE WORK 

While this paper has presented an optimization for $N called $N-
Protractor to alleviate the time cost of representing multistrokes as 
unistroke permutations, an important limitation still exists for $N 
in terms of the space cost. A gesture such as a cube may be drawn 
with up to 9 strokes, which would involve 185 million 
permutations and is infeasible to store on modern desktops, let 
alone mobile devices. Future work will involve adapting $N-
Protractor for use with symbols of many component strokes. We 
intend to explore alternative data structures, representations or 
storage strategies (e.g., generating the permutations on the fly 
rather than storing them) for $N-Protractor that can retain its 
stroke-order and stroke-direction independence without 
representing all possible permutations explicitly. Alternatively, 
another extension to $1 to handle multistrokes besides $N has 
been proposed [2] in which multistroke permutations are not 
generated. In order to retain robustness to stroke order and 
direction, a complex simulated annealing method is used to 
iteratively find the minimum sum of the distances between all 
pairs of points to find the best possible match, which determines 
the score for that template. We do not believe this matching 
method is appropriate for the intended rapid prototyping use cases 
of $N, but perhaps a combination of this approach and $N-
Protractor can yield better results while retaining simplicity and 
ease of use. In addition, we continue to study $N’s suitability for 
non-pattern matching and sketch and gesture algorithm experts by 
exploring adoption, ease of use, and simplicity to port $N to new 
platforms.  
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