
 1

Writing with a Joystick:

A Comparison of Date Stamp, Selection Keyboard, and EdgeWrite
Jacob O. Wobbrock, Brad A. Myers and Htet Htet Aung

Human-Computer Interaction Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
{jrock, bam, hha}@cs.cmu.edu

http://www.cs.cmu.edu/~edgewrite/

Abstract

A joystick text entry method for game controllers and
mobile phones would be valuable, since these devices often
have joysticks but no conventional keyboards. But
prevalent joystick text entry methods are slow because they
are selection-based. EdgeWrite, a new joystick text entry
method, is not based on selection but on gestures from a
unistroke alphabet. Our experiment shows that this new
method is faster, leaves fewer errors, and is more satisfying
than date stamp and selection keyboard (two prevalent
selection-based methods) for novices after minimal
practice. For more practiced users, our results show that
EdgeWrite is at least 1.5 times faster than selection
keyboard, and 2.4 times faster than date stamp.

Keywords: Text entry, text input, joystick, game controller,

game console, physical edges, corners, gestures, unistrokes.

1 Introduction – Why Joystick Text Entry?

Joysticks have served as input devices since the earliest
computers [7]. The two-player version of Computer Space,
the first coin-operated arcade game, used two mounted
joysticks in 1972. In 1978, Atari released its first game
console, the Atari 2600, which had no keyboard, just a
joystick. Joysticks have been studied in human-computer
interaction since at least the seminal study by Card et al. in
1978 [1]. Yet despite joysticks’ considerable tenure, no
satisfying text entry techniques have been developed for
them. The methods that do exist are mostly selection-based;
they require screen real-estate to display options, are
difficult to use without looking, are hard to customize, and
are slow, requiring many movements per character.
 Today’s computer game industry would benefit from
better text entry for game consoles, which often have only
game controllers as input devices; if they have keyboards at
all, they are sold separately at extra cost. Many game
consoles are now networked, and require extensive text
entry during configuration before they allow game play. For
example, registration for the Xbox Live! service requires
entering personal and billing information and can take more
than 30 minutes using a joystick and an on-screen selection
keyboard. Furthermore, many networked games allow for
communication among players using short bursts of instant

Figure 1. The Saitek P2500 Rumble Force Pad. Our experiment

used the two thumbsticks and one of the silver buttons.

messenger-style text. With only selection-based text entry
methods for game controllers, this can be awkward.
 Mobile devices have also placed high demands on text
entry development. Numerous text entry methods have been
investigated, including those driven by buttons, character
recognition, virtual keyboards, thumbwheels, and voice.
Many new handheld devices, such as the Ericsson T68i
mobile phone, are equipped with miniature joysticks for
navigation and selection purposes, yet have no capability
for joystick text entry. Joystick text entry on mobile devices
reduces the need for screen areas devoted to stylus entry,
for virtual keyboards that take up precious screen real-
estate, and for multiple button-taps to select desired
characters. They also can be used without looking, which
may have positive implications for blind use.
 Another potential use of joystick text entry is for users
of power wheelchairs. Technology is already commercially
available [22] to enable a person to control a computer’s
mouse from a power wheelchair joystick, but options for
text entry are limited to mouse-based selection techniques,
like the WiVik on-screen keyboard [19].
 In this paper, we present a new joystick text entry
method that is not based on selection, but on gestures. We
use the EdgeWrite alphabet [27], originally a stylus-based
text entry method for users with motor impairments. The
properties of this alphabet make it well-suited for text entry
with joysticks. Our experiment shows that joystick
EdgeWrite is faster, produces more accurate phrases, and is
more satisfying to users than date stamp or selection
keyboard, two prevalent selection-based methods.

 2

2 Challenges for Writing with a Joystick

Joysticks, like those found on game controllers (Figure 1),
commonly operate in one of two ways: position-controlled
or rate-controlled. With position-control, the physical range
of the joystick is mapped to a plane (e.g., the screen), and
the position of the stick corresponds to a position in the
plane. Joystick-driven screen magnifiers have been
designed using position-control [11]. With rate-control, on
the other hand, the further the stick is moved from its
center, the faster the position changes. Rate-control is
common in first-person games and for joystick-controlled
mouse cursors [13].
 It would seem that position-control might be the ideal
candidate for “writing” with a joystick, as a user could trace
an (x, y) path like she does with a stylus on a PDA. Many
studies, however, confirm that joysticks are not as accurate
for positioning as mice, trackballs, touchpads, and tablets
(e.g., [1, 5, 15, 18]). Indeed, our design explorations
confirm the difficulty of making smooth letter-forms using
a joystick. The prospect of writing in an alphabet like
Graffiti is therefore dubious. If gestures are to be used, they
will have to be designed to overcome this difficulty.
 Human physiology also complicates joystick text entry.
For example, the dexterity of the thumb changes with its
position relative to the hand, causing changes in range of
motion [8]. The index finger has the highest Fitts’ index of
performance [12], making it better suited than the thumb for
control tasks [4]. The velocity of a writer depends on
whether she moves her arm or only her wrist, and upward
strokes are generally faster than downward ones [9]. Some
results show that humans have a difficult time returning a
joystick to the same position it was before [11]. Other
results show humans often under- or overshoot their targets
while using joysticks, and that joystick movement can be
tremulous, comprised of sub-movements and repeated in-
path corrections [17]. Such variables may subvert any
attempts at “writing” with joysticks.
 While not a panacea, EdgeWrite is well-suited to
overcoming many of these challenges. The next section
explains why.

3 A New Method Based on EdgeWrite

The EdgeWrite text entry method was invented to help
people with motor impairments enter text with a stylus on a
PDA. Many people with motor impairments have difficulty
writing Graffiti because of their inability to make smooth
curves and straight lines due to tremor or rapid fatigue [25].
The stylus version of EdgeWrite addressed these problems
by offering a more accurate and physically stable means of
text entry through the use of physical edges [26]. In fact, all
stylus entry in EdgeWrite is performed within the confines
of a small plastic square, and all strokes are along the edges
or diagonals and into the corners of this square. Recognition
works not by analyzing the path of movement, but by
examining the order in which the corners of the square are
hit. When compared to Graffiti, EdgeWrite was hugely
more accurate for some people with motor impairments,

and at least 18% more accurate for able-bodied users
(p<.02). It was also found to be just as learnable as Graffiti
and about as fast. A detailed discussion of stylus EdgeWrite
is available elsewhere [27].

Figure 2. The EdgeWrite alphabet. Alternate forms exist for most

characters (not shown). The bowing of line segments is only

illustrative and does not depict actual movement, which is in

straight lines. For more detail, see [27].

3.1 The EdgeWrite Alphabet

The EdgeWrite alphabet has properties that make it well-
suited to meeting the challenges of joystick text entry. The
alphabet is unique among unistroke methods in that every
character is comprised of up to six well-defined segments
between the vertices of a square (i.e., the four sides and the
two diagonals). Thus, all motion in EdgeWrite is ideally in
straight lines between corners. But straight lines are not
required for gesture recognition, since recognition depends
not on the path of movement but instead on the sequence of
corners that are hit.
 EdgeWrite can be easily implemented on any surface
that has a square area bounded by physical edges. Physical
edges provide a Fitts’ Law benefit, as they allow for “target
overshoot” without sacrificing accuracy [26]. Physical
edges also provide tangible feedback during movement and
result in greater speed and stability of motion [25].
 Joysticks are usually best used for control, not
positioning. But EdgeWrite’s use of stabilizing physical
edges allows joysticks bounded by square areas to be used
in position-control mode for writing EdgeWrite characters.
The areas bounding the thumbsticks on the Saitek P2500
(Figure 1) are squares with slightly rounded corners. In our
study, we used this joystick without modification.
 With a joystick it is difficult to make smooth characters,
such as those required by Graffiti, but EdgeWrite characters
are easy to make by pushing the stick from corner to corner
within the plastic bounding area. Edges naturally guide the
stick, and corners naturally pocket it, making accurate
motions easy. As shown in Figure 2, EdgeWrite characters
begin in one of four corners, easily accessed from the center
of a square with a self-centering joystick.
 Isokoski [9] offers a complexity measure designed to
compare unistroke alphabets by abstracting their characters
into composites of straight lines. EdgeWrite requires no
such abstraction, as its characters are already comprised of

 3

straight lines. The complexity of the EdgeWrite letters in
Figure 2 is 2.30, lower, and thus “faster,” than Roman
letters (2.76), Graffiti (2.54), and MDITIM (3.06), but
higher than Unistrokes (1.40). EdgeWrite was shown to be
as learnable as Graffiti, and is likely to be more learnable
than Unistrokes [6] or MDITIM [10], since their letters do
not generally resemble Roman letters, as EdgeWrite’s do.
 A final strength of EdgeWrite is that it is easy to
customize. Only one “training example” is required from an
end-user to teach EdgeWrite a new character since a
sequence of corners is unambiguous. EdgeWrite is not a
pattern matcher, so it does not need multiple prototypes for
a training set. Selection-based methods, by contrast, are
harder to customize since they require graphical options.

3.2 Design and Implementation

To understand how EdgeWrite works with a joystick, we
must understand how EdgeWrite partitions the joystick’s
coordinate plane. Using C# and DirectInput, the joystick is
to be polled for its position every 55 ms, which proved
sufficiently often. The (x, y) position falls within the range
of the x, y axes (-100, +100). In practice, none of the
joysticks we used centered perfectly at (0, 0); some were
off by as much as ±20.
 EdgeWrite corners are triangular so that diagonal
strokes do not accidentally hit them [27]. In pilot tests,
using static corners as shown in Figure 3a proved to be
inadequate because some subjects still accidentally hit
unwanted corners when trying to make diagonals. For right-
handed users, the problematic diagonal is from upper-left to
lower-right (Figure 4). The other diagonal is not a problem.
Left-handed users experience the opposite problem.

Figure 3a. Inflated

dimensions of the joystick

coordinate plane for a

right-handed user. Corner

areas are triangular so

that accidental corner-

hits when moving along a

diagonal are rarer than

they would be if the

corners were rectangular.

Figure 3b. Deflated

dimensions of the joystick

coordinate plane. The dot

in the upper-left indicates

the joystick position.

Deflation gives more

room for error on the

hard diagonal stroke from

upper-left to lower-right

(for a right-handed user).

See also Figure 4.

 This difficulty arises because the thumb’s dexterity and
range of motion along one diagonal is much better than
along the other diagonal. Figure 4 shows the thumb position
of a right-handed user and the underlying joystick. The easy
diagonal is along the natural arc of the thumb, while the
difficult diagonal is along the length of the thumb itself.

Figure 4. When on the

joystick, a right-hand thumb

is set so that one diagonal is

easy while the other is more

difficult. This is why we

deflate two corners when

the joystick is in danger of

accidentally hitting them, as

shown in Figure 3b.

 We accommodate this difficulty by deflating the
accidentally-hit corners when the joystick is in a corner
subject to the problematic diagonal (Figure 3b). This allows
users to be much sloppier without hitting an unwanted
corner. If a user actually wants to hit a deflated corner, no
harm is done, because sliding the joystick along the plastic
edge of the bounding square is easy and accurate [25].
Deflated corners re-inflate once they are hit.
 A design challenge is how to segment between letters.
In unistroke text entry with a stylus, a pen-down event
starts a character and a pen-up event ends it. There is no
analog to this for a joystick. We built versions that used
button presses and center dwell-time for segmentation, but
both proved awkward. Instead, we segment characters by
starting a character when a corner is entered, and ending it
when the polling of the joystick yields two successive
points in the center (Figure 5a). From a user’s perspective,
this means relaxing on the joystick so that it naturally
snaps-to-center. With this scheme, annoying pauses are not
necessary between characters, as they are with center dwell-
time segmentation. In our testing, users did not notice any
delays, and there were no observed segmentation errors.

Figures 5a, 5b. A clean trace of “a” (left) and a sloppy but

recognized trace of “w” (right). The “w” is sloppy because it fails

to snugly impact the bottom-right corner.

4 Prevalent Joystick Text Entry Methods

Here we describe the date stamp and selection keyboard
methods of joystick text entry. We compare EdgeWrite to
these two methods in our experiment in Section 6.

 4

4.1 Date Stamp

The date stamp method is familiar to people who have
entered their initials on the high-score screen of an arcade
game. This method gets its name from a post office stamp
that has rotating dials for each character.
 While there are many variations on this method [14],
ours uses the sequence (minus punctuation) from [23]. The
sequence is [space][a..z][0..9](repeat). Moving the joystick
down cycles the current character forward through the
sequence (a→z). Moving the joystick up cycles the current
character backward through the sequence (z→a). Moving
the joystick right commits the current character and
initializes a new stamp with “a.” Moving the joystick left
deletes the most recently committed character and
initializes the stamp with that character. Thus, after
deleting a letter, a user is not forced to start from “a” again.
This makes under- and overshoots easy to correct.
 If users hold the stick up or down, the date stamp cycles
after an initial pause of 390.6 ms with a repeat delay of 62.5
ms. We took these values from keyboard key-repeat times.

4.2 Selection Keyboard

The selection keyboard method uses an on-screen keyboard
over which a user moves a selection halo up, down, left, or
right (Figure 6). When the user presses a joystick button,
the currently-highlighted key is “pressed.” When a key is
pressed, the halo remains where it is and does not jump to a
home position. The halo can wrap around the keyboard
horizontally or vertically, staying in the same row or
column. Key-repeat behavior, identical in timing to the date
stamp method, governs rapid movement of the halo. Our
layout is copied from selection keyboards from the Xbox

Live! registration sequence and two popular Xbox games:
Halo and Brute Force.

Figure 6. The selection keyboard used in our experiment. This

keyboard was based on 3 selection keyboards from Microsoft’s

Xbox. Here the selector is positioned over the letter “a.” The dark

buttons are Xbox-specific and were not used in the study.

5 Related Work

The EdgeWrite technique is similar to other unistroke
methods. These include the original Unistrokes [6], Graffiti,
and MDITIM [10]. Like Graffiti, EdgeWrite has characters
that are similar to Roman letters. EdgeWrite was made to

avoid some problematic aspects of Graffiti; for example, by
tolerating the presence or absence of initial down strokes on
b, d, m, n, p, and r, or a final down stroke on u. EdgeWrite
includes different forms of k to avoid the k-x confusion
familiar to Graffiti users. It also avoids the necessity for
two input regions, as all input occurs within a single square.
 MDITIM [10] is “device independent” and designed to
work on multiple platforms, including joysticks. EdgeWrite
differs from MDITIM in that EdgeWrite characters may
contain diagonals, but MDITIM characters use only north,
east, west, and south primitives; EdgeWrite characters feel
like Roman characters, but MDITIM’s generally do not;
and physical edges are integral to EdgeWrite, both in
performance and recognition, but not to MDITIM.
 Weegie [2] is a prototype joystick text entry method for
use on X11. With Weegie, a user moves a joystick to
various positions (e.g., 12 o’clock) to access different
characters. EdgeWrite differs from Weegie in that
EdgeWrite’s strokes are similar to Roman characters,
whereas Weegie’s arrangement of letters has no mnemonic
advantage, and EdgeWrite uses only one joystick, whereas
Weegie uses two.
 KeyStick [24] is a joystick text entry method for use on
some mobile phones. With KeyStick, a user moves the
joystick left, right, up, or down to access menus of
characters. Like Weegie, the placement of KeyStick’s
characters is not reminiscent of Roman forms.
 myText [3] is another method for joystick text entry on
mobile phones. Unlike Weegie and KeyStick, myText is not
position- or menu-based, but gesture-based like EdgeWrite.
myText does not recognize characters by corner hit-testing
like EdgeWrite, but by “unit vectors” of motion. No test
results for unconstrained text entry are currently available.
 Only recently have the algorithmic tools necessary for
the analysis of unconstrained text entry experiments
become available [21]. These tools allow us to compare text
entry methods with different keystrokes per character [14].
The interested reader is directed to [21] for details.

6 Experimental Validation

6.1 Subjects

We recruited 18 subjects from the nearby university
communities. The median age was 21.5. Four were female
and 1 was left-handed. Thirteen indicated they had
technical majors or occupations. Six had never used
joysticks to play videogames and only 2 used joysticks
daily. Only 1 was a daily PDA user. Ten had never tried
Graffiti. Subjects were paid $20 US for a 90-minute test in
which they entered text using 3 entry methods. No subjects
had any prior experience with EdgeWrite.

6.2 Apparatus

We conducted tests in a laboratory using an 866MHz
Pentium 3 machine running Windows XP with 256MB
RAM. We used a 16"×12.4" Hitachi monitor set to
1280×1024 resolution and 32-bit color. We implemented

 5

the test software (Figure 7) in C# using DirectInput 9.0b.
Our font was Microsoft Sans Serif 24-point, and our
joystick was a Saitek P2500 Rumble Force Pad (Figure 1).

Figure 7. The text entry suite. The target phrase is shown at the

top and the user’s input is shown below it, here using date stamp.

6.3 Procedure

Subjects used EdgeWrite, date stamp, and selection
keyboard in a single-factor within-subjects design. The
entry methods were assigned to subjects in a fully
counterbalanced order to neutralize learning effects and
fatigue. Analyses of variance for test order show no
significant differences.
 Subjects practiced each method immediately before
testing with it. Practice was designed to provide the
minimum amount of proficiency needed to perform the
technique. For date stamp and selection keyboard, this was
just a single phrase (about 30 letters), as subjects found
these methods trivial to learn. For EdgeWrite, this was 10
phrases, then each letter 3 times, then 2 more phrases,
which took about 15 minutes.
 Admittedly, practice for EdgeWrite was more extensive
than for the selection-based methods. We acknowledge that
the selection-based methods were easier to learn than
EdgeWrite. Our goal in EdgeWrite was not to create a more
learnable method, but to create a method that offered higher
speeds with minimal amounts of practice. Furthermore,
subjects quickly became bored with the selection-based
methods; requiring equal practice among the techniques
would have caused undue fatigue. We include results for
users highly practiced in all 3 techniques (Table 3), which
show that more practice with the selection-based methods
does not result in noticeably improved performance. We
also include a graph of speed over tasks (Figure 8), which
shows no concerning speedup.
 Testing consisted of a fixed set of 10 phrases with each
method. Phrase set assignment was even across entry
methods to prevent bias. Subjects were instructed to
proceed “quickly and accurately” while testing [21].

6.4 Task Phrases

A “task” consisted of entering a single phrase. Our phrases
came from [16]. While the practice phrases were chosen at

random from a set of 500, test phrases were fixed in sets of
10 and assigned evenly to each entry method. Table 1
shows phrase set characteristics.
 Consistent with the reasoning in [16], we did not test
numbers, although we did implement them for each
method. We believe numbers are common in real-world
text entry and should be present even if untested.

Set Phrases Words Chars Correlation
with English

1 10 61 297 89.9%

2 10 52 298 92.7%

3 10 55 298 86.8%

Table 1. Characteristics of test phrases used in the experiment,

computed with tools from [16].

6.5 Measures

Quantitative data was logged by the test software and then
analyzed according to the measures in [21]. These measures
included speed in words per minute (WPM) and accuracy
as corrected, uncorrected, and total error rates. In addition,
we measured raw data rates in bytes per second (BPS) and
logged joystick movements. We obtained subjective data
through the use of a post-test questionnaire.

Figure 8. Average words per minute for each method across tasks.

Note that only tasks 2-10 are analyzed due to learning in task 1.

7 Results

The data were analyzed using a single-factor within-
subjects mixed model ANOVA with a fixed factor for entry

method and a random factor for subject. Contrast tests
between tasks 1-5 and tasks 6-10 for each method’s speed
showed no significant differences for EdgeWrite and date
stamp, suggesting that subjects had somewhat stabilized
prior to testing. But this contrast test did show a difference
for selection keyboard (F1,493=8.51, p<.01), suggesting that
subjects were still speeding up during testing. Most of this
speed-up was on the first task. When we removed task 1
from the analyses, contrast tests no longer showed

 6

significant speed-up for any method. Thus, all reported
analyses are for tasks 2-10.

7.1 Speed

Speed is calculated as words per minute (WPM). Means
and standard deviations for our data are: EdgeWrite 6.40
(1.60), date stamp 4.43 (0.62), and selection keyboard 6.17
(1.18).
 A main effects test for WPM is significant
(F2,466=217.20, p<.01). Contrast tests show EdgeWrite is
faster than date stamp (F1,466=363.80, p<.01) and selection
keyboard (F1,466=5.11, p<.025). Selection keyboard is also
faster than date stamp (F1,466=282.69, p<.01).
 Speed is affected by accuracy during entry, because it
takes time to correct mistakes. But speed does not subsume
errors remaining in the transcribed string. For this, we use
adjusted WPM, defined as WPM × (1 – uncorrected error
rate). Results for adjusted WPM are nearly identical to
those for WPM, with EdgeWrite’s advantage over the other
methods being slightly bigger, since subjects had fewer
uncorrected errors with EdgeWrite.

7.2 Error Rates

There are three accuracy measures for unconstrained text
entry: error rate during entry (corrected errors), error rate of
the transcribed phrase (uncorrected errors), and a combined
measure. These results are shown in Figure 9.
 Main effects are significant for all three error rates
(p<.01). Contrast tests show that EdgeWrite has a higher
error rate during entry than date stamp (F1,466=73.61, p<.01)
and selection keyboard (F1,466=132.16, p<.01). Subjects’
transcribed phrases, however, are more accurate with
EdgeWrite than with selection keyboard (F1,466=6.24,
p<.02), and nearly so than with date stamp (F1,466=3.68,
p=.055). This discrepancy is discussed below.
 Participant conscientiousness (PC) is a ratio of fixed
errors to all errors [21]. A score of 1.0 indicates a subject
fixed all errors; a score of 0.0 indicates all errors were left
in the transcribed string. Means and standard deviations for
PC are: EdgeWrite 0.98 (0.09), date stamp 0.89 (0.28), and
selection keyboard 0.92 (0.26). A main effects test for PC is
significant (F2,466=7.39, p<.01). Contrast tests show
EdgeWrite PC is higher than date stamp (F1,466=13.91,
p<.01) and selection keyboard (F1,466=7.15, p<.01). Date
stamp is not detectably different from selection keyboard.
 Thus, despite making more errors during entry,
subjects’ transcriptions had fewer errors with EdgeWrite,
because subjects were more conscientious in correcting
mistakes as they went.

7.3 Data and Recognition Rates

Speed only considers the amount of text in the transcribed
string. It is also interesting to consider the amount of data
transmitted from the text entry device to the computer, the
length of the input stream. The input stream includes all
entered characters, even those later erased, but not non-
recognitions. Since a character is one byte, we can describe

“data rate” in bytes per second (BPS). This gives us an idea
of how fast users produce characters, regardless of how
correct those characters are. Note that BPS differs from
characters per second (CPS), which is equivalent to WPM,
because all transmitted bytes are counted, not just those
remaining in the transcribed string.
 Means and standard deviations for BPS are: EdgeWrite
0.66 (0.14), date stamp 0.41 (0.08), and selection keyboard
0.54 (0.10). A main effects test for BPS is significant
(F2,466=361.03, p<.01). Contrast tests show that EdgeWrite
is faster than date stamp (F1,466=720.72, p<.01) and
selection keyboard (F1,466=154.34, p<.01). The selection
keyboard data rate is also faster than that of date stamp
(F1,466=208.02, p<.01).
 We can use BPS to compute an upper bound for WPM
by assuming all bytes are correct. In this case, EdgeWrite
speed increases 23.0% from 6.40 to 7.87, date stamp 10.8%
from 4.43 to 4.91, and selection keyboard 5.3% from 6.17
to 6.50. Thus, EdgeWrite seems to have more potential than
the selection-based methods for faster input when accuracy
is improved, as would be the case with more practice.
 Non-recognitions sometimes occur with gestural
interaction techniques. We can compare the number of
EdgeWrite gestures made to the number recognized. The
average number of gestures made per task was 42.15 (9.73).
The average number of gestures recognized per task was
38.07 (7.92). Thus, about 10.6% of EdgeWrite gestures
went unrecognized. If all gestures had been recognized and
were correct, EdgeWrite’s WPM would be 8.65 (1.75). This
rate represents perfect performance given novice speeds.

Figure 9. Error rates for unconstrained text entry. Corrected

errors are fixed during entry. Uncorrected errors remain in the

transcribed string. Total errors is the sum of these.

7.4 Selector Movement

For the selection-based methods, it is interesting to compare
the path of selector movement to the minimal selector path.
This minimal path is trivial to compute for date stamp: for
each letter, spin whichever direction (up or down) reaches
the target letter first. For selection keyboard, the minimal

 7

path for a phrase can be found using any optimal path-
finding algorithm, such as A*.
 On average, subjects rotated through 329.81 (64.94)
characters per task in date stamp. The minimal path
required, on average, 271.77 (46.25) rotations per task.
Thus, subjects rotated about 21% more than necessary.
 On average, subjects moved the selection keyboard halo
137.51 (25.27) times per task. The minimal path required,
on average, 93.19 (13.45) movements per task. Thus,
subjects moved the halo about 48% more than necessary.

7.5 Questionnaire Results

We gave subjects four Likert scales (1-5) on which to rate
the three entry methods. It is clear from Table 2 that
subjects preferred EdgeWrite to the other methods. They
felt it was easier, more enjoyable, and faster. Subjects were
also less divided in their opinions of EdgeWrite than the
other methods, judging by smaller standard deviations.

Likert Scales

(1-5)

EdgeWrite date stamp selection

keyboard

Frustrating-Easy 3.8 (0.6) 3.5 (1.3) 3.2 (1.2)

Painful-Enjoyable 3.9 (0.7) 2.7 (1.0) 2.8 (0.8)

Slow-Fast 3.8 (0.8) 2.7 (1.2) 2.4 (0.9)

Dislike-Like 3.8 (0.9) 2.6 (1.1) 2.6 (1.1)

Average 3.83 (0.75) 2.88 (1.15) 2.75 (1.0)

Table 2. Means (and standard deviations) of post-test Likert scales

(ranges 1-5). Labels for scale endpoints are in the left column.

Higher values are better.

7.6 Practiced Performance

To see how practiced users fare with EdgeWrite, we tested
3 more subjects, one of whom was an author on this paper.
These subjects had prior experience with stylus EdgeWrite
and practiced with the joystick text entry methods for 30+
minutes, targeting difficult letters and entering many
phrases in each method. The performance of these 3 users
with date stamp and selection keyboard was near to that of
the subjects in the main study. But with EdgeWrite, these
users were clearly faster and less prone to errors (Table 3).

8 Discussion

We should expect a recognition-based method to be less
accurate during entry than a selection-based method
because of misrecognitions. But it is interesting that, despite
these errors, novice subjects produced more accurate
phrases with EdgeWrite than the other methods, and did so
in less time. The selection keyboard requires a second point
of visual focus besides the transcribed text, so it is
reasonable that subjects may leave errors because they are
attending to the keyboard. But on average, EdgeWrite
produced more accurate phrases even than date stamp,
which requires no secondary focus of attention. Perhaps
with EdgeWrite, subjects feel more able to quickly remedy

errors, or feel more engaged with their input than with the
fairly monotonous selection-based methods. Or, perhaps
because of the high error rate during entry, subjects are
more vigilant in correcting errors.
 Surprisingly, subjects felt that selection keyboard was
the slowest of the three methods, even though date stamp
was far slower. Subjects also felt selection keyboard was
the most frustrating of the methods. Their feedback said this
was due to the visual attention required.
 In this study, EdgeWrite was faster than selection
keyboard by a small margin with many novices over
multiple trials. This result should be regarded as the
minimum amount of practice required by a beginner to
become reliably better with EdgeWrite than with selection
keyboard. Any further practice, as our results for more
practiced users show, only increases EdgeWrite’s
advantage over the selection-based methods. With even
more practice, we expect EdgeWrite’s advantage to grow.
 Interestingly, the perfect-entry upper bound WPM for
our novice subjects (8.65) is still less than the average
WPM achieved by our 3 practiced users (10.43). Practiced
users made about 36.60 gestures per task compared to 42.15
for novices, a 15% difference.

Practiced Users 1 2 3 mean novices

wpm 8.57 12.61 10.12 10.43 6.40
EdgeWrite

err % 8.11 6.42 4.38 6.30 10.85

wpm 4.46 3.69 5.02 4.39 4.43
date stamp

err % 3.94 5.59 2.90 4.14 5.24

wpm 7.12 6.39 6.73 6.75 6.17 selection

keyboard err % 2.38 4.49 2.33 3.07 3.32

Table 3. Speeds and total error rates for 3 practiced users. For

comparison, the averages for novices from the main study are

shown in the far right column.

9 Future Work

Input methods rely heavily on small details that make big
differences [4]. These details must be identified and
optimized. For this study, EdgeWrite was not optimized for
any physical parameters, as it employed an unmodified off-
the-shelf joystick. Over the course of this study, we
identified many parameters that could be optimized for
better performance in the future.
 Some users thought the joystick spring strength was too
strong. The height of the joystick should probably be
reduced to put the user closer to the underlying control
mechanism. The corners of the square bounding area were
somewhat rounded, and the joystick sometimes slipped out
of them; the corners should be made more abrupt. Subjects
felt the size of the plastic square bounding the joystick was
too large. This was a particular problem for females, who
probably had smaller hands and were, on average, slower
and less accurate than males (5.12 vs. 6.77 WPM, 12.5% vs.
10.4% errors). Many subjects said the joystick’s abrasive
rubber top made their thumbs sore. Lessons from other
input technique development [4] show that large gains are

 8

possible with improvements to subtle factors such as these.
In fact, after the study was over, we discovered the
Logitech Dual Action Gamepad, which has smaller and
sharper square bounding areas than the Saitek P2500,
resulting in a gain of 1/2 WPM for practiced user #2.

10 Conclusion

The EdgeWrite input technique is well-suited to meet the
challenges of joystick text entry because of its Fitts’ Law
benefits, physical stability, mnemonic characters, and
tolerance to wiggle. New users were able to learn
EdgeWrite within 15 minutes, after which they could enter
text faster and with more accurate results than with date
stamp or selection keyboard.
 Practiced speeds point to EdgeWrite’s potential.
Practiced users were 1.5 times faster with EdgeWrite than
with selection keyboard, and 2.4 times faster with
EdgeWrite than with date stamp. The fastest practiced user
wrote at 12.61 WPM, comparable to some stylus Graffiti
speeds [20, 27].
 Text entry with joysticks does not have to be selection-
based. We have shown it is possible and even preferable in
some cases to “write” with a joystick.

Acknowledgements

The authors thank D. Gergle, T. Lorusso, H. Seltman, M.
Sinclair, and R. W. Soukoreff. This work was funded in
part by the NEC Foundation of America, Microsoft
Corporation, General Motors, and by the National Science
Foundation under Grant No. UA-0308065. Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect those of the National Science Foundation.

References

[1] Card, S.K., English, W.K. and Burr, B.J. Evaluation of
mouse, rate-controlled isometric joystick, step keys, and
text keys for text selection on a CRT. Ergonomics 21 (1),
1978, pages 601-613.

[2] Coleman, M. Weegie. 2001. http://weegie.sourceforge.net/
[3] Co-operwrite, Ltd. myText. 1997.

http://www.my-text.com/
[4] Ehrlich, K. A conversation with Ted Selker. interactions 4

(5), 1997, pages 34-47.
[5] Epps, B.W. A comparison of cursor control devices on a

graphics editing task. Proceedings Human Factors Society

31st Annual Meeting, 1987, pages 442-446.
[6] Goldberg, D. and Richardson, C. Touch-typing with a

stylus. Proceedings INTERCHI 1993, pages 80-87.
[7] Herz, J.C. Joystick Nation: How Videogames Ate Our

Quarters, Won Our Hearts, and Rewired Our Minds.
Boston: Little, Brown and Co., 1997.

[8] Hirotaka, N. Reassessing current cell phone designs:
Using thumb input effectively. Extended Abstracts CHI

2003, pages 938-939.
[9] Isokoski, P. Model for unistroke writing time.

Proceedings CHI 2001, pages 357-364.

[10] Isokoski, P. and Raisamo, R. Device independent text
input: A rationale and an example. Proceedings AVI 2000,
pages 76-83.

[11] Kurniawan, S., King, A., Evans, D.G. and Blenkhorn, P.
Design and user evaluation of a joystick-operated full-
screen magnifier. Proceedings CHI 2003, pages 25-32.

[12] Langolf, G.D., Chaffin, D.B. and Foulke, J.A. An
investigation of Fitts’ Law using a wide range of
movement amplitudes. Journal of Motor Behavior 8 (2),
1976, pages 113-128.

[13] LoPresti, E.F., Romich, B.A., Hill, K.J. and Spaeth D.M.
Evaluation of mouse emulation using the wheelchair
joystick. Proceedings RESNA 2004, in press.

[14] MacKenzie, I.S. KSPC (keystrokes per character) as a
characteristic of text entry techniques. Mobile HCI 2002.
Berlin: Springer-Verlag, 2002, pages 195-210.

[15] MacKenzie, I.S., Kauppinen, T. and Silfverberg, M.
Accuracy measures for evaluating computer pointing
devices. Proceedings CHI 2001, pages 9-16.

[16] MacKenzie, I.S. and Soukoreff, R.W. Phrase sets for
evaluating text entry techniques. Extended Abstracts CHI

2003, pages 754-755.
[17] Mithal, A.K. and Douglas, S.A. Differences in movement

microstructure of the mouse and the finger-controlled
isometric joystick. Proceedings CHI 1996, pages 300-307.

[18] Murata, A. An experimental evaluation of a mouse,
joystick, joycard, lightpen, trackball, and touchscreen for
pointing: Basic study on human interface design.
Proceedings 4th Int’l Conference on Human-Computer

Interaction. Elsevier, 1991, pages 123-127.
[19] Prentke Romich Company. WiVik On-Screen Keyboard,

version 3. http://www.wivik.com/
[20] Sears, A. and Arora, R. Data entry for mobile devices: an

empirical comparison of novice performance with Jot and
Graffiti. Interacting with Computers 14 (5). Elsevier,
2002, pages 412-433.

[21] Soukoreff, R.W. and MacKenzie, I.S. Metrics for text
entry research: An evaluation of MSD and KSPC, and a
new unified error metric. Proceedings CHI 2003, pages
113-120.

[22] Switch-It, Inc. Mouse Driver.
http://www.switchit-inc.com/pages/Mouse Controls.html

[23] Tarasewich, P. Evaluation of thumbwheel text entry
methods. Extended Abstracts CHI 2003, pages 756-757.

[24] What Next Research. KeyStick, version 2.8.0.
http://users.zipworld.com.au/~kevin/KeyStick.htm

[25] Wobbrock, J.O. The benefits of physical edges in gesture-
making: Empirical support for an edge-based unistroke
alphabet. Extended Abstracts CHI 2003, pages 942-943.

[26] Wobbrock, J.O., Myers, B.A. and Hudson, S.E. Exploring
edge-based input techniques for handheld text entry.
Proceedings 3rd Int’l Workshop on Smart Appliances and

Wearable Computing (IWSAWC 2003). In Proceedings of

the 23rd IEEE Conference on Distributed Computing

Systems Workshops (ICDCS 2003), pages 280-282.
[27] Wobbrock, J.O., Myers, B.A. and Kembel, J.A.

EdgeWrite: A stylus-based text entry method designed for
high accuracy and stability of motion. Proceedings UIST

2003, pages 61-70.

