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Abstract

Eye-typing performance results are reported from controlled studies
comparing an on-screen keyboard and EyeWrite, a new on-screen
gestural input alternative. Results from the first pilot study suggest
the presence of a learning curve that novice users must overcome in
order to gain proficiency in EyeWrite’s use (requiring practice with
its letter-like gestural alphabet). Results from the second longitudi-
nal study indicate that EyeWrite’s inherent multi-saccade handicap
(4.52 saccades per character, frequency-weighted average) is suf-
ficient for the on-screen keyboard to edge out EyeWrite in speed
performance. Eye-typing speeds with EyeWrite approach 5 wpm
on average (8 wpm attainable by proficient users), whereas key-
board users achieve about 7 wpm on average (in line with previ-
ous results). However, EyeWrite users leave significantly fewer
uncorrected errors in the final text, with no significant difference
in the number of errors corrected during entry, indicating a speed-
accuracy trade-off. Subjective results indicate that participants con-
sider EyeWrite significantly faster, easier to use, and prone to cause
less ocular fatigue than the on-screen keyboard. In addition, Eye-
Write consumes much less screen real-estate than an on-screen key-
board, giving it practical advantages for eye-based text entry.

CR Categories: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Input Devices and Strategies; I.3.6 [Computer
Graphics]: Methodology and Techniques—Ergonomics; K.4.2
[Computers and Society]: Social Issues—Assistive Technologies
for Persons with Disabilities.
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1 Introduction

Text entry with eye gaze is essential for people with severe mo-
tor disabilities who cannot use a conventional keyboard and mouse.
The predominant approach for doing so, often referred to as eye-
typing, is via direct pointing by looking at the desired letter [Ma-
jaranta and Räihä 2007]. To type by gaze, typical computational
requirements include an on-screen keyboard and an eye tracking
device (e.g., video-based eye trackers are common) [Istance et al.
1996]. Selection of a letter (e.g., via “eye press”) is accomplished
by fixating the letter for a slightly prolonged duration. Eye-typing
systems are usually triggered by this form of dwell time, ranging
anywhere from 450–1000 ms.

Besides the specification of the dwell time threshold, a key con-
cern is the size of fixation targets. Ashmore et al. [2005] noted four
limitations of eye pointing absent from manual mouse pointing:

• Accuracy: pointing accuracy achievable by contemporary eye
trackers is about 0.5◦–1◦ (about 16–33 pixels on a 1280×1024
or 96 dpi monitor viewed at 50 cm), which may practically
be the attainable limit due to physiological constraints of the
retina [Majaranta and Räihä 2007].

• Sensor lag: camera frame rate and subsequent image process-
ing delay associated with motion tracking limits the response
of the system to about 5–33 ms (200–30 Hz sampling rates).

• Fixation jitter: contrary to a physically stationary mouse, eye
gaze is never perfectly still, inducing perturbation in the real-
time (x,y) gaze coordinate.

• Midas Touch: the classic eye tracking problem referring to the
lack of an analogous mouse button click in eye gaze pointing
[Jacob 1990].

Sensor lag is not as critical as the other three, particularly with faster
cameras and digital signal processors quickly becoming ubiquitous.
Accuracy, jitter, and the Midas Touch, however, all contribute to
the necessity of providing large visual targets to accommodate the
noisy positional signal delivered by the eye tracker. This is particu-
larly true when long dwell times require the eye typist to hold gaze
in one location for extended durations. For eye-typing, dwell-time
activated on-screen keyboards may present additional drawbacks,
most notably the reduction of available screen real-estate and te-
dium [Wobbrock et al. 2007].

Alternatives to dwell time include eye-switches and gaze ges-
tures [Majaranta and Räihä 2007]. The former combines eye scan-
ning behavior with voluntary blinks, while the latter relies on direc-
tional eye movements between predefined “hot zones” to indicate
selection. For example, Isokoski [2000] proposed eye movement
gestures combined with off-screen targets to diminish the negative
effects of low eye tracker accuracy and the ambiguity of the Midas
Touch. Fixation jitter can be disregarded to a large extent if the
system measures transitions from successive regions or across zone
boundaries instead of dwell time.

Motivated in part by Isokoski’s work and by the desire to cir-
cumvent dwell time, we describe EyeWrite, a new system for eye-
typing that uses gestures similar to hand-printed letters. EyeWrite
is based on EdgeWrite’s unistroke alphabet previously developed
for enabling text entry on PDAs, joysticks, trackballs, and other
devices [Wobbrock et al. 2003; Wobbrock and Myers 2006c]. Eye-
Write reduces the need for eye-tracker accuracy, the need for a large
screen footprint, as well as user tedium. However, the best interac-
tion design for EyeWrite was non-obvious—EyeWrite required ex-
tensive iteration and usability testing. In this paper, we summarize
EyeWrite’s iterative development and report the results from two
usability studies, the first an exploratory pilot study, the second a
15-session longitudinal study pitting EyeWrite against an on-screen
keyboard.

2 Background

Dwell-time activated on-screen keyboards usually require layouts
with large keys [Majaranta and Räihä 2007], potentially requiring a
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Figure 1: Tobii’s MyTobii dedicated communication product.

large screen footprint if not the entire display (e.g., dedicated solu-
tions such Tobii Technology’s [2007] patent-pending MyTobii (see
Figure 1) or the ERICA system [Hutchinson et al. 1998]).

One of the goals of alternative eye-typing systems is to take up
less screen real-estate, or none at all, and still provide a means for
entering basic commands, if not the entirety of a given alphabet.
Isokoski’s [2000] exploration of gestural method placed targets off-
screen, freeing up screen real estate but creating the necessity for
large saccades. This approach also required the user to remember
the locations of the targets as well as the gaze gestures needed to
represent particular commands or letter characters. Isokoski and
Raisamo’s own MDITIM [2000] required the user to remember
strings of inputs that did not necessarily resemble roman letters
[Wobbrock and Myers 2006c].

Instead of discrete, consecutive gaze gestures, such as those re-
quired by MDITIM, continuous gaze direction can also be used to
drive a more fluid type of eye-typing display. The most prominent
of these is Dasher [Ward and MacKay 2002]. Dasher’s zooming
display is modeless, and does not require dwell time for activation.
Instead, the selection is made when the moving letter zooms past
a certain boundary point. However, the continuously moving al-
phabet tends to frustrate or overwhelm novice users. Still, Dasher
claims the fastest text entry rates, with experienced users writing
up to 25 words per minute (wpm) and experts achieving 34 wpm
(note that this takes into account Dasher’s word completion feature,
which can often increase the rate by 50% [Joos et al. 2007]). Hav-
ing been based on EdgeWrite, EyeWrite also has the potential to
incorporate integrated word prediction and completion [Wobbrock
and Myers 2006b], although our EyeWrite implementation does not
do so at this time. We leave this extension to future work.

Compared with manual typing speeds of about 40 wpm, most
eye-typing systems, with the exception of Dasher, afford only about
8-10 wpm. Majaranta and Räihä [2007] suggest the on-screen key-
board’s theoretical limit of 22 wpm assuming a 500 ms dwell time
and 40 ms average saccade duration. Recent dwell-time-free sys-
tems show potential, with advanced users reaching about 11 wpm
with certain variants [Urbina and Huckauf 2007], compared with a
slower wpm rate for Dasher at about 7 wpm with word completion
turned off. Of these variants, pEYEdit is the most similar to Eye-
Write since it operates by evaluating gaze direction into one of six
disc segments. Maximal typing speed with pEYEdit was reported
at 6 wpm for novices and in excess of 10 wpm for advanced users.

Figure 2: EyeWrite’s letter chart.

2.1 The Case for Gestures

Beyond the desire of dodging long-existing problems with dwell
time, the benefits (and complications) of traditional mouse gestures
have been well documented. Their chief advantage is that the pre-
cise target acquisition of conventional Fitts’ law tasks is circum-
vented [Dulberg et al. 1999]. Speed is greatly improved compared
to point-and-click selection because gestures can be started without
moving the cursor from its original position and because direction
is leveraged instead of distance. Gestures also take advantage of
muscle memory and consequently facilitate expert learning through
rehearsal [Moyle and Cockburn 2005].

There are some limitations to the universal use of gestures, how-
ever. One is that complicated non-linear gestures arise in a do-
main with many possible selections, such as eye typing. Moyle and
Cockburn [2005] identified web navigation as an area that was well
suited to mouse gesture input in terms of speed. They also noted
that mouse gestures are not entirely context insensitive; the user
has to make sure that the cursor is not over a link, image, button,
or other object. EyeWrite address these concerns by providing a
dedicated window where gestures are executed and interpreted.

A further area of concern lies in sufficient feedback. Even with
mouse gestures, many users have reported that they had acciden-
tally made a gesture and had not discovered this until later. Gaze
gestures present a greater challenge if there is no visual target or
pattern to follow. Isokoski’s off-screen targets provide explicit re-
gions to direct one’s gaze. EyeWrite essentially duplicates this but
on a much smaller scale: the targets are EyeWrite’s four corners.

Whether off- or on-screen, targets for gaze gestures present cer-
tain inherent disadvantages compared with targets for gaze dwell
time. Sequential typing, one character at a time, is slower than
the more parallel processing of manual typing [Fono and Vertegaal
2005]. Furthermore, EyeWrite’s multi-segment alphabet endows
EyeWrite with a built-in speed disadvantage versus the unistroke
nature of the on-screen keyboard. Counting saccades per each
of EyeWrite’s characters except the French ç and capitalization
but including space (Figure2), the weighted average per letter is
2.52, with weights based on letter frequency [Mayzner and Tres-
selt 1965]. This does not take into account the initial saccade to
the first corner and the final saccade to center. If these strokes are
included as half-strokes (since they are half the length of corner-to-
corner strokes), the average increases to 3.52. If they are counted as
whole strokes, the average becomes 4.52. This suggests an imme-
diate 4.52:1 speed hurdle that users must overcome in order to beat
their performance over the on-screen keyboard. Miniotas et al.’s
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[2003] Symbol Creator, handicapped similarly but at 3 saccades
per characters, afforded an eye-typing rate of 8.58 wpm suggesting
the potential for similar results. However, Symbol Creator relied on
button presses rather than on fluid gestures. For a review of other
gestural input strategies used for mouse/stylus inputs, see Belatar
[2005].

3 EyeWrite

We have called our approach to gaze-based text entry EyeWrite,
because it is EdgeWrite [Wobbrock et al. 2003] for the eyes. Using
EdgeWrite as the basis for our text entry technique allows for a very
natural and noise resistant system. Using EyeWrite eliminates the
need for selecting a letter using dwell time, thus eliminating the
Midas Touch problem. (However, slight dwell time is still needed
to signal character segmentation.)

To our knowledge, EyeWrite is the first letter-like gestural text
entry system for the eyes. The approach uses the natural language
of writing, but does so in a constrained manner. EdgeWrite was de-
veloped to resemble Roman characters, and to be very resistant to
noise in the input stream. EdgeWrite was originally developed to
help people with motor control problems enter information using a
stylus. One reason for EdgeWrite’s success is because its alphabet’s
resemblance to natural language enhances memorability. Another
is its use of crossing in lieu of pointing. Crossing refers to cross-
ing a cursor over a line like crossing a goal. According to Fitts’
law, crossing is easier than pointing for large, proximate targets
like those that appear in EdgeWrite [Wobbrock and Myers 2006c].
Selection of letters on the on-screen keyboard follows Fitts’ law for
pointing, meaning the larger the button, the easier it will be to se-
lect. But larger buttons also mean the on-screen keyboard must take
up more screen real estate.

3.1 Design Evolution

EyeWrite works by presenting users with a square with four cor-
ners. The user has to draw a letter using the four corners to map out
the letter. For instance, the letter t is written by moving the gaze
point from the top left corner to the top right corner to the bottom
right corner. An EyeWrite t resembles the way a capital t is written
by hand (see Figure 3).

Figure 3: EyeWrite used with Microsoft Notepad. Up to this point,
a t has been made, previewed in the bottom-right corner. Segmen-
tation is triggered by fixating the salmon-colored dot in the center.

EyeWrite underwent three major design iterations [Wobbrock
et al. 2007]. Its third revision returned to a tight coupling between

the user’s gaze and EyeWrite’s input, but instead of drawing a lit-
eral eye-movement trace as in the first design, stylized arcs were
drawn between corners as in its second design. Instead of vectors,
corners are simply hit-tested for the presence of gaze—when the
gaze point enters a new corner, an arc is drawn there. Thus, the
gaze point and stroke corner are never decoupled. Users are also
given direct control over the segmentation process by segmenting
only when the eyes return to the center of the input area. Users
can therefore prevent segmentation and “pause to think” by simply
leaving their gaze in the current corner. Return-to-center segmenta-
tion also means that every new letter is started from the center.

As in its first design, segmentation time is based on the average
inter-corner time, but now with a minimum threshold about twice
the time of a saccade. This prevents unwanted segmentations when
moving among corners. Users can also clear their current stroke
by simply glancing away from the EyeWrite square. Finally, to
reduce the need to look away between letters to verify the last entry,
an incremental recognition result is displayed in the current corner
of the EyeWrite square. It is also displayed in the center of the
square after segmentation, so users know exactly what character
has been produced. EyeWrite is implemented in Visual C# using
.NET 2.0. An example of eye-typing with a correction is shown in
Colorplate 1.

A short “self-study” was conducted by three of the four co-
authors to determine subjectively optimal program parameters, in-
cluding window size, length of smoothing filter, and segmentation
center-dwell time. A window size of 400×400 was chosen that
seemed to provide the largest visual targets with the smallest over-
all screen footprint. EyeWrite’s adaptive dwell time multiplier was
set to 1.5 with dwell time set to about 250 ms (see Figure 4).

Figure 4: EyeWrite’s user-adjustable parameters including seg-
mentation (dwell time) multiplier, minimum segmentation time al-
lowed, as well as the window dimensions and position.

4 Pilot Study

The purpose of the pilot study was to gauge whether EyeWrite had
potential for delivering a faster and less error-prone option for gaze-
based typing than the commonly available on-screen QWERTY
keyboard that uses dwell time to select characters. The pilot study
was also expected to drive the iterative design process transforming
EdgeWrite to EyeWrite, addressing the particular requirements of
a gaze-based interface.
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Hypotheses. The primary hypothesis assumed that participants
using EyeWrite would be faster at an eye-typing task than partici-
pants using the on-screen keyboard. The secondary hypothesis ex-
pressed the expectation of EyeWrite participants committing fewer
errors than the participants using the on-screen keyboard.

Apparatus. This study relied on a non-invasive Tobii ET-1750
eye tracker with a sampling rate of 50 Hz to collect eye tracking
data. The resolution was set to 1280 × 1024 pixels (17 inch LCD
screen).

Three applications were run during testing of EyeWrite and
the on-screen keyboard. In each case real-time eye movements
were obtained with a tailored version of the basic exemplar ap-
plication bundled with Tobii’s Software Development Kit (see be-
low). In each case the TextTest application was used as the stimu-
lus (sentence) presentation as well as statistics gathering software
[Wobbrock and Myers 2006a]. TextTest randomly presents a tar-
get phrase from a corpus of 500 to the user while simultaneously
recording various text entry metrics in an XML file for subsequent
analysis with StreamAnalyzer [Wobbrock and Myers 2006a]. Text
entry was facilitated by either EyeWrite or an on-screen keyboard.
The latter is provided by the freely available Click-N-Type virtual
keyboard from Lake Software [2007]. Both EyeWrite and Click-N-
Type keep track of their position and size and both were set to the
same window height, as shown in Figure 5. Click-N-Type’s dwell
time was set to 330 ms (with AutoClick Repeat Delay = 2 s and
AutoClick Repeat Rate = 1 s).

Figure 5: Experimental conditions: using EyeWrite and the on-
screen keyboard.

Real-time (x,y) eye movements were converted to cursor coor-
dinates by a C# program that simply masqueraded the gaze point
as the mouse position to other Windows applications. The pro-
gram was based on Tobii’s Eye Tracker Component API sam-
ple for Visual C# issuing the User32.SetCursorPos() and
User32.mouse event()Windows calls to set the mouse position.
The (x,y) coordinates used were averages of the valid left and right
eye coordinates returned by the Tobii server. To smooth raw eye
movement jitter, a 5-tap FIR filter with normalized (1/5) values was
used to convolve the five most recent gaze points. The resultant
(x,y) cursor position was used to type with both the on-screen key-
board and the EyeWrite program.

Dependent Measures. The dependent measures used in this ex-
periment were words per minute, uncorrected error rate, corrected
error rate, and the total error rate [Soukoreff and MacKenzie 2003;
Wobbrock 2007].

Participants. Ten participants (6 M, 4 F) were recruited, with
ages ranging from 19 to 29 (mean=23.4). All participants were
highly experienced in computer use, but none had previously used
an eye tracker. All participants possessed a college degree or were

currently enrolled in college. All subjects rated themselves as hav-
ing either good or expert typing skills. All participants cited QW-
ERTY keyboards as their typical text input device. Two partici-
pants reported some experience with Graffiti, a unistroke handwrit-
ing recognition software used by Palm PDAs.

Design. The experiment was a between-subjects design. Partic-
ipants were randomly assigned to either use EyeWrite or the on-
screen keyboard. Each condition consisted of typing a series of
sentences using the assigned method.

Procedure. Participants first signed an informed consent waiver
then completed a short demographic questionnaire. Next, the eye
tracker was calibrated to each participant using five calibration
points. Participants were then given 20 minutes of unguided prac-
tice time to become comfortable typing with the eye tracker using
their assigned condition. After a five minute break, participants
practiced typing sentences into the TextTest program for ten min-
utes. After another five minute break, participants recalibrated the
eye tracker and began the test. The test consisted of typing one
practice sentence followed by five randomly selected test sentences.
The participants were then debriefed, thanked for their time, and al-
lowed to leave.

Figure 6: Using EyeWrite. The user is currently entering the second
h in the phrase sad to hear that news.

Results. A one-way ANOVA revealed significant differences be-
tween the two conditions in words per minute. The on-screen key-
board allowed a significantly faster typing rate (6.14 wpm) than
EyeWrite (2.55 wpm; F(1,8)= 19.495, p < .01). None of the other
measure differences were significant.

Discussion. Results indicated that eye-typing with the on-screen
keyboard was significantly faster than with EyeWrite, but partici-
pants using EyeWrite appeared to be making fewer errors (though
not at a significantly different rate). The particularly low typing
speed with EyeWrite suggested that users needed to overcome Eye-
Write’s inherent learning curve to become familiar with its gestu-
ral character set. To explore this conjecture further, a longitudinal
study was conducted.
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5 Longitudinal Study

To compare EyeWrite’s gestural eye-typing scheme with conven-
tional eye-typing with the on-screen keyboard, Click-N-Type, we
conducted a controlled experiment spanning 15 sessions. Using
this many sessions allowed us to assess the performance of the
two methods over time, as we expected the learning rates of each
method to be different. Individuals performed no more than two
sessions per day. No more than 48 hours could elapse between ses-
sions, and no more than two sessions could occur on the same day.
If two sessions were performed on the same day, at least two hours
were required to elapse between sessions.

Hypotheses. We hypothesized that participants would take time
to learn the EyeWrite alphabet and as they did so, their performance
would improve. We expected performance to plateau, with Eye-
Write typing outperforming on-screen keyboard eye-typing.

Dependent Measures. As with the pilot study, the dependent
measures used in this experiment were words per minute, uncor-
rected error rate, corrected error rate, and the total error rate. Data
collected during the experiment by the TextTest program was ana-
lyzed with StreamAnalyzer [Wobbrock and Myers 2006a].

Participants. Eight participants (4 M, 4 F) were recruited, with
ages ranging from 20 to 25 (mean=21.8). All participants were
highly experienced in computer use; only three had previously used
an eye tracker. These had returned from the pilot study. All par-
ticipants possessed a college degree or were currently enrolled in
college. All participants rated themselves as having either good or
expert typing skills. All participants cited QWERTY keyboards as
their typical text input device. Two participants reported some ex-
perience with Graffiti, a unistroke handwriting recognition method
used by Palm PDAs.

Apparatus. The apparatus matches that of the pilot study.

Design. The design was within-subjects, meaning that users en-
tered text with EyeWrite and the on-screen keyboard. The study
was a two-factor within-subjects design, with factors for Technique
(EyeWrite, on-screen keyboard) and Session (2-15).

Procedure. The first session was a training session, where par-
ticipants were briefed about the nature of the experiment and the
payment schedule, signed an informed consent form, and com-
pleted a short demographic questionnaire. They were introduced
to the eye tracking hardware and the EyeWrite and on-screen key-
board software. To increase familiarity with EyeWrite’s alphabet,
participants first wrote the characters using pen and paper, writing
each letter four times (aaaa, bbbb, cccc, etc.) with the aid of the
character chart (Figure 2). The chart was then turned face-down
and participants wrote each letter once on paper (a, b, c, etc.). If a
participant failed to remember a letter, the chart was turned face-up
so they could see the needed letter. After writing the character, the
chart was again turned face-down. The total time needed for this
paper-based introduction was about 10 minutes.

After practicing on paper, still in the first session, participants
were given two practice phrases with EyeWrite. An EyeWrite char-
acter chart was not displayed during this practice to encourage par-
ticipants to recall the letters. When participants could not remember
a letter, they were told to guess the shape of the letter by thinking
how they would write it on paper. After each practice phrase, par-
ticipants were shown a character chart so that they could examine
any characters with which they had trouble. Additionally, partic-
ipants were also given two phrases to practice with the on-screen

keyboard. The first session lasted about an hour, and was not in-
tended to provide scientific data for analysis. That started in ses-
sion 2, when participants began the procedure they would use for
the following 14 sessions.

Sessions 2-15 were regular testing sessions. Participants came
in and entered two practice phrases to warm-up with EyeWrite or
the keyboard along with TextTest, the text entry analysis program.
They had the character chart available when working with EyeWrite
during practice, but not during testing, even if they had trouble re-
membering any particular characters. Again, the experimenter sug-
gested before the testing began that if participants had trouble re-
membering a character, they should guess the shape of the letter by
thinking about how they would write it on paper.

Participants were instructed to balance speed and accuracy by
trying each character once or twice before giving up on that letter
and moving on. Participants entered 8 test phrases without the aid
of the character chart, during which time their performance was
measured automatically by TextTest. The process was the same
with the on-screen keyboard.

The order of the two conditions, EyeWrite and on-screen key-
board, was balanced evenly among all participants by having the
order alternate between them, so that half of the subjects typed with
the keyboard first while the other half typed with EyeWrite first.

At the end of each session, participants completed a subjective
questionnaire and were paid $5. At the end of the final session,
they received a $50 bonus if they had completed all sessions. This
payment schedule was chosen to encourage continued participation
in the experiment.

Results. Data for each participant were averaged in each session
to form single measures per participant per session on a variety
of metrics, including entry rate in words per minute and various
error rates [Soukoreff and MacKenzie 2003]. The data were ana-
lyzed using a mixed-effects model analysis of variance for repeated
measures [Littel et al. 1996], with Technique and Session treated
as nominal fixed effects and Participant as a nominal random ef-
fect [Frederick 1999]. Participants completed a total of 8 trials × 2
methods × 14 sessions = 224 trials. With 8 participants, the entire
study comprised 1792 trials.
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Speed. Speed was measured as words per minute (Figure 7). Over
all 14 sessions, the average speed for EyeWrite was 4.87 wpm
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Figure 8: Uncorrected, corrected, and total error rates over time. Uncorrected errors are those left in the final text entry transcription; corrected
errors are made and then corrected during entry. Total error rate is defined as the sum of uncorrected and corrected errors [Soukoreff and
MacKenzie 2003]. Note the difference in the y-axis for the total error rate graph.

(SD=1.43). The average speed for the on-screen keyboard was 7.03
wpm (SD=2.65). This constituted a significant difference over mul-
tiple sessions (F(1,189) = 113.42, p < .0001). As expected, Session
also showed a significant difference on wpm, as participants sped
up with each method (F(13,189) = 7.52, p < .0001). However, each
method improved about equally, as there was no Technique × Ses-
sion interaction (F(13,189) = 0.74, n.s.).

Learning Curves. Learning curves are typically created for task
performance speed over time [Card et al. 1983]. Our wpm data can
be fit to learning curves according to the equation y = axb, where
y is wpm, x is Session, and a and b are empirically-determined re-
gression coefficients. The learning curves for our data are shown
in Figure 7. They indicate a strong improvement of EyeWrite over
sessions. Note the higher R2 value for EyeWrite, indicating that
participants exhibited a tighter fit to the learning curve. This is ex-
pected, because with an on-screen keyboard such as Click-N-Type,
there is relatively less to learn than with a gestural text entry method
like EyeWrite, where gestures are learned as the test proceeds.

Uncorrected Errors. Although a significant result was observed
for wpm in favor of the on-screen keyboard, the opposite outcome
occurred for uncorrected errors. Uncorrected errors (Figure 8)
are errors left in the final text entry transcription [Soukoreff and
MacKenzie 2003]. Thus, uncorrected errors are precisely at odds
with speed: the more errors one leaves, the faster one can go, and
vice-versa. Over all 14 sessions, the average uncorrected error rate
for EyeWrite was 2.21% (SD=4.40). For the on-screen keyboard it
was 4.62% (SD=14.01). This difference was significant (F(1,189)
= 3.83, p = .05).

Looking at the graph of uncorrected errors over all sessions (Fig-
ure 8 left), we see that both methods’ uncorrected error rates are
higher for the early sessions (2-6), after which they drop and seem
to stabilize. If we partition the data to consider sessions 2-6 sep-
arately, EyeWrite remains significantly more accurate (F(1,63) =
3.95, p = .05). If we also examine sessions 7-15 separately, Eye-
Write’s advantage is no longer significant, although a positive trend
remains in its favor (F(1,119) = 3.61, p = .06). Thus, the main effect
is mostly due to the early sessions, which indicates the challenge of
writing accurately early on with the keyboard.

Our data also showed a significant effect of Session on uncor-
rected errors (F(13,189) = 2.67, p < .01). However, this effect
was not significantly different for each method as judged by a non-
significant Technique × Session interaction (F(13,189) = 0.70, n.s.).

Corrected Errors. Corrected errors (Figure 8) are those that are
made and then corrected during entry [Soukoreff and MacKenzie
2003]. Thus, corrected errors reflect the extent to which a text entry

method is error prone, regardless of whether or not it may produce
accurate text in the end [Wobbrock 2007]. Over all 14 sessions, the
average corrected error rate for EyeWrite was 10.05% (SD=5.37).
For the on-screen keyboard, it was 9.54% (SD=8.21). This dif-
ference was not significant (F(1,189) = 0.42, n.s.). Thus, it seems
both methods exhibited approximately the same amount of error-
correction (i.e., backspaces) during entry.

Following a similar partitioning approach as for uncorrected er-
rors, if we examine only the early sessions (2-6) in Figure 8 (mid-
dle), we see a significant result in favor of the keyboard (F(1,63) =
5.70, p < .03). For the remaining sessions (7-15), the result is non-
significant (F(1,119) = 1.80, n.s.). However, for the latest sessions
(11-15), the result flips to EyeWrite’s favor (F(1,63) = 4.98, p <
.03). This crossover, then, accounts for the overall non-significant
effect of Technique on corrected errors.

There was again a significant effect of Session, as participants
entered fewer backspaces over time (F(13,189) = 2.07, p < .02).
Again, this was about equal for both methods, as indicated by a
non-significant Technique × Session interaction (F(13,189) = 1.45,
n.s.).

Total Errors. Soukoreff and MacKenzie [2003] define total error
rate to be the sum of uncorrected and corrected errors. Over 14 ses-
sions, the total error rate (Figure 8) was 12.26% (SD=8.00) for Eye-
Write and 14.16% (SD=15.36) for the on-screen keyboard. This
difference was not significant (F(1,189) = 2.24, n.s.). However,
total error rates dropped significantly over sessions (F(13,189) =
5.31, p < .0001). This was about even for both methods, however,
as indicated by a non-significant Session × Technique interaction
(F(13,189) = 0.47, n.s.).

Subjective Impressions. Participants completed a subjective ques-
tionnaire after each session (except the first). Figure 9 shows the
time course of responses over the last fourteen sessions. Partici-
pants were asked to rate EyeWrite and the on-screen keyboard in-
dependently in terms of ease of use, speed, and ocular fatigue.

Although numerous studies collect Likert-scale measurements,
ours is one of the few that did so over multiple sessions, allowing us
to chart the development of participants’ sentiments as they became
more proficient with the techniques. For each session, we averaged
participants’ subjective ratings within each technique and for each
Likert scale.

Likert-scale data do not often conform to the assumptions re-
quired for ANOVA procedures. Therefore, we analyzed our data
with non-parametric Wilcoxon [1945] signed-rank tests. (We re-
peated our analyses using t-test ANOVAs, and although they are
inappropriate for Likert data, the conclusions do not change from
what we report here.)

16



 1

 2

 3

 4

 5

 2  3  4  5  6  7  8  9  10  11  12  13  14  15

S
u

b
je

c
ti
v
e

 r
e

s
p

o
n

s
e

Session number

Perceived Speed

keyboard
EyeWrite

 1

 2

 3

 4

 5

 2  3  4  5  6  7  8  9  10  11  12  13  14  15

S
u

b
je

c
ti
v
e

 r
e

s
p

o
n

s
e

Session number

Perceived Ease of Use

keyboard
EyeWrite

 1

 2

 3

 4

 5

 2  3  4  5  6  7  8  9  10  11  12  13  14  15

S
u

b
je

c
ti
v
e

 r
e

s
p

o
n

s
e

Session number

Perceived Fatigue

keyboard
EyeWrite

Figure 9: Subjective impressions (average) as they changed over time, pertaining to perceived speed, ease of use, and ocular fatigue. Users’
responses were obtained after each session (except the first), and were made on a 5-point Likert scale corresponding to agreement with the
given statement (1:strongly disagree, . . ., 5:strongly agree). For perceived speed and perceived ease of use, higher is better. For perceived
fatigue, lower is better. EyeWrite wins for all three.

Participants exhibited significant preferences for EyeWrite over
the on-screen keyboard on all three subjective scales. Specifically,
they felt that EyeWrite was easier to use (z = 49.00, p < .001),
faster (z = 47.00, p < .01), and less fatiguing (z = -51.00, p < .001)
than the on-screen keyboard. These findings are evident from Fig-
ure 9. As we might expect, perceived ease of use and speed of entry
increased over sessions for both methods, while perceived (ocular)
fatigue went down.

For ease of use, EyeWrite was only thought to be more difficult
than the on-screen keyboard during the first testing session, ses-
sion 2. Although they had had some initial exposure to EyeWrite
in the introductory first session (session 1), their practice had not
amounted to more than a few minutes. It is therefore remarkable
that a gestural alphabet would be so quickly learnable and perceived
as easier to use than an on-screen keyboard so early in the testing
process. This may be owing to EyeWrite’s simple targeting scheme,
where only four corners must be hit.
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Figure 10: Subjective impression (average) of faster input style over
time. Users’ responses were obtained after each training session
(except the first) on a 5-point Likert scale directly comparing input
modalities (1:on-screen keyboard, . . ., 5:EyeWrite).

Perceived speed follows a similar trend, where EyeWrite is per-
ceived as faster after the second session (even though our perfor-
mance results show that it was not). In addition to their opinions of
speed, ease of use, and fatigue of each input modality procured in-
dependently after each but the first session, users were also asked to
directly compare EyeWrite to the on-screen keyboard (Figure 10)
by identifying the faster of the two (i.e., responding to the statement
“Typing with EyeWrite was faster than typing with the keyboard.”).
The reason for the mismatch between perception and performance
may be because individual movements among corners in EyeWrite
are faster than movements with an on-screen keyboard, even though
the overall text entry rate was lower.

One might imagine that perceived speed would also lead to
greater perceived fatigue, but, in fact, EyeWrite was regarded as
significantly less fatiguing than the on-screen keyboard. This is
supported by prior results for mouse-based systems in which on-
screen keyboards are regarded as fatiguing due to their hunt-and-
peck nature [Anson et al. 2005].

Discussion. It seems as though the keyboard may enter text
faster than EyeWrite, but at the expense of accuracy. Thus, we have
a speed-accuracy tradeoff. In light of the finding for uncorrected er-
rors, we can either assume that the on-screen keyboard made more
errors overall, resulting in more errors left in the final phrases, or
that, over the last few sessions, participants were more willing to
correct those errors with EyeWrite than with the on-screen key-
board. Because the total error rate did not differ significantly be-
tween EyeWrite and the on-screen keyboard, suggesting that par-
ticipants had become equally proficient in correcting errors with
both input techniques, it seems that they were less tolerant of errors
made with EyeWrite. In view of users’ subjective impressions, it
is plausible that they did so because they considered EyeWrite the
faster input modality even though it was not.

EyeWrite’s small screen footprint provides a small region
wherein to issue gaze gestures. This confined screenspace offers
an advantage over off-screen targets in limiting saccade distance to
the dimensions of EyeWrite’s window.

6 Conclusion

Although eye-typing is not necessarily the best application of
EdgeWrite’s gestural input, we believe that EyeWrite offers a con-
venient method for generalized gaze gestures, particularly if the
gesture alphabet is small. An example of such an application may
be web browsing where only a few gestures are needed: up and
down for page up and page down, and left and right for back and
forward. EyeWrite’s space and backspace can easily accommodate
the horizontal gestures while, the letter i can be used for page down.

For web browsing, Moyle and Cockburn [2005] showed 11%–
18% speed increases (depending on task) using mouse gestures over
the traditional web browser interface. We believe similar benefits
can be obtained with EyeWrite’s application to this paradigm.
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Colorplate 1: Example of eye-typing correction. Frames were obtained from the gaze plot AVI video clip captured during a demonstration
session and exported by Tobii ClearView. The first frame shows the user incorrectly typing an e in place of the third a in the phrase sad
to hear that news. The next frame shows the user looking up at the TextTest application to check current progress. Note that this action
clears out any character currently being typed in EyeWrite. The final frame shows the scanpath for the corrected entry of the a character.
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