
This article was downloaded by:[Wobbrock, Jacob O.]
On: 2 February 2008
Access Details: [subscription number 790329531]
Publisher: Informa Healthcare
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Disability and Rehabilitation:
Assistive Technology
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t741771157

Enabling devices, empowering people: The design and
evaluation of Trackball EdgeWrite
Jacob O. Wobbrock a; Brad A. Myers b
a University of Washington, Washington, USA
b Carnegie Mellon University, Pennsylvania, USA

First Published on: 13 June 2007
To cite this Article: Wobbrock, Jacob O. and Myers, Brad A. (2007) 'Enabling
devices, empowering people: The design and evaluation of Trackball EdgeWrite',
Disability and Rehabilitation: Assistive Technology, 3:1, 35 - 56
To link to this article: DOI: 10.1080/17483100701409227

URL: http://dx.doi.org/10.1080/17483100701409227

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t741771157
http://dx.doi.org/10.1080/17483100701409227
http://www.informaworld.com/terms-and-conditions-of-access.pdf

D
ow

nl
oa

de
d

B
y:

 [W
ob

br
oc

k,
 J

ac
ob

 O
.]

A
t:

23
:3

5
2

Fe
br

ua
ry

 2
00

8

Enabling devices, empowering people: The design and evaluation
of Trackball EdgeWrite

JACOB O. WOBBROCK1 & BRAD A. MYERS2

1University of Washington, Washington, USA, and 2Carnegie Mellon University, Pennsylvania, USA

Abstract
Purpose. To describe the research and development that led to Trackball EdgeWrite, a gestural text entry method that
improves desktop input for some people with motor impairments. To compare the character-level version of this technique
with a new word-level version. Further, to compare the technique with competitor techniques that use on-screen keyboards.
Method. A rapid and iterative design-and-test approach was used to generate working prototypes and elicit quantitative and
qualitative feedback from a veteran trackball user. In addition, theoretical modelling based on the Steering law was used to
compare competing designs.
Results. One result is a refined software artifact, Trackball EdgeWrite, which represents the outcome of this investigation. A
theoretical result shows the speed benefit of word-level stroking compared to character-level stroking, which resulted in a
45.0% improvement. Empirical results of a trackball user with a spinal cord injury indicate a peak performance of 8.25 wpm
with the character-level version of Trackball EdgeWrite and 12.09 wpm with the word-level version, a 46.5% improvement.
Log file analysis of extended real-world text entry shows stroke savings of 43.9% with the word-level version. Both versions of
Trackball EdgeWrite were better than on-screen keyboards, particularly regarding user preferences. Follow-up
correspondence shows that the veteran trackball user with a spinal cord injury still uses Trackball EdgeWrite on a daily
basis 2 years after his initial exposure to the software.
Conclusions. Trackball EdgeWrite is a successful new method for desktop text entry and may have further implications for able-
bodied users of mobile technologies. Theoretical modelling is useful in combination with empirical testing to explore design
alternatives. Single-user lab and field studies can be useful for driving a rapid iterative cycle of innovation and development.

Keywords: Text entry, text input, gestures, unistrokes, area pointing, goal crossing, word prediction, word completion,
word-level stroking

Introduction

Trackballs are the preferred pointing device for

numerous computer users, particularly for many

people with some form of motor impairment [1,2].

For people with low strength, poor coordination,

wrist pain or limited ranges of motion, rolling a

trackball is often easier than shuttling a mouse across

the surface of a desk. Trackballs’ accessible proper-

ties include that they do not require the wrist or

forearm to be elevated; they do not occupy much

physical space, making them suitable for placement

in a person’s lap or on a wheelchair tray; they are easy

to manipulate, as rolling a trackball requires rela-

tively little strength; if clutching1 is necessary, one

must only lift one’s finger or hand, not the device

itself (as with a mouse); and trackballs are simple,

cheap, robust and readily available, factors that when

absent are known to be barriers to adoption [3 – 5].

Not surprisingly, many people who prefer track-

balls due to motor impairments also cannot type on a

conventional physical keyboard. For these people, a

text entry solution besides typing is required. Using

a trackball for text entry may reduce physical move-

ment among devices and the need for multiple

devices to be within reach [6,7]. Thus, a common

solution for these people is to use a trackball with an

on-screen keyboard and to click or hover/dwell on

the virtual keys.

Although on-screen keyboards are easy to learn,

using on-screen keyboards for trackball text entry has

many problems. For starters, on-screen keyboards

Correspondence: Jacob O. Wobbrock, The Information School, University of Washington, Seattle, WA 98195-2840, USA.

Disability and Rehabilitation: Assistive Technology, January/March 2008; 3(1 – 2): 35 – 56

ISSN 1748-3107 print/ISSN 1748-3115 online ª 2008 Informa UK Ltd.

DOI: 10.1080/17483100701409227

D
ow

nl
oa

de
d

B
y:

 [W
ob

br
oc

k,
 J

ac
ob

 O
.]

A
t:

23
:3

5
2

Fe
br

ua
ry

 2
00

8

exacerbate mouse travel to and from a document,

particularly for document editing. On-screen key-

boards also introduce a second focus-of-attention,

preventing a user’s eyes from remaining wholly on

his or her document [8,9]. Furthermore, on-screen

keyboards require repeated target acquisitions for

which trackballs are not well suited [10,11]. They are

also visually fatiguing, equivalent to typing in a ‘hunt-

and-peck’ fashion. Finally, on-screen keyboards

consume precious screen real estate, reducing one’s

visual workspace and increasing the need for window

management. Note that although word prediction

and completion may increase the speed of on-screen

keyboards, word prediction does not solve the above

problems [8]. What is needed is a trackball text entry

method that does not rely on on-screen keyboards

and therefore avoids these drawbacks.

Trackballs are also relevant beyond the domain of

assistive technologies. Trackballs come in many

shapes and sizes (Figure 1) and may be preferred

to conventional mice for reasons other than physical

impairment. For instance, trackballs need little space

in which to operate, unlike mice, which have large

‘desktop footprints’ [12]. Trackballs can be em-

bedded in consoles or keyboards, making them

suitable for public terminals (e.g. in libraries) since

they cannot be easily lost or stolen. Trackballs also

offer rapid, fluid control and have been used in

arcade games like Centipede. Finally, trackballs can be

made fairly small, making them suitable as thumb-

controlled devices for mobile computers. Thus, the

work presented in this article, although targeted at

trackball users with motor impairments, has implica-

tions beyond the domain of assistive technology due

to the various domains in which trackballs are used.

This article describes a new technology developed

by the authors which provides a gestural means of

writing with a trackball. This technology, called

Trackball EdgeWrite (Figure 2), allows users to write

‘by feel’ using gestures rather than ‘by sight’ using

on-screen keyboards. The result is a faster, less

tedious method of trackball text entry for people who

may already use trackballs but cannot touch-type on

a physical keyboard. This includes people with

repetitive stress injuries, spinal cord injuries, arthritis

and some neuromuscular disorders.

After a brief treatment of related work, the iterative

design of Trackball EdgeWrite is presented. This is

followed by a theoretical model of expert writing

speed. Next, results are presented from an extended

field study with a veteran trackball user with a spinal

cord injury. Results are shown for both the character-

level and word-level versions of Trackball EdgeWrite.

After 15 years of using a trackball with an on-screen

keyboard, the veteran trackball user has switched to

Trackball EdgeWrite for his everyday text entry needs.

Follow-up correspondence shows that he still uses

Trackball EdgeWrite on a daily basis 2 years after his

initial exposure.

Related work

Trackballs as pointing devices

Previous work with trackballs has almost exclusively

regarded them as pointing devices. An early study by

Epps et al. [13] compared six pointing devices,

including a 4 cm trackball, in target acquisition tasks.

They found that the mouse and trackball were

significantly faster than the other devices, but were

not significantly different from each other. A follow-

up study by Sperling and Tullis [14] found that the

mouse was faster for selection, dragging and tracing,

even among trackball users. Accuracy differences

were not significant for selection and dragging, but

were significant for tracing, showing the trackball to

Figure 1. Trackballs come in many different sizes, making them appropriate as computer access and mobile technologies. From left to right:

the Infogrip BIGTrack (http://www.infogrip.com), Kensington Expert Mouse (http://www.kensington.com), Appoint Thumbelina and Infogrip

Mini Trackball. Relative image sizes are approximately maintained.

36 J. O. Wobbrock & B. A. Myers

D
ow

nl
oa

de
d

B
y:

 [W
ob

br
oc

k,
 J

ac
ob

 O
.]

A
t:

23
:3

5
2

Fe
br

ua
ry

 2
00

8

be less accurate than the mouse. Because of these

findings, it was made sure that Trackball EdgeWrite

does not require precise pointing or smooth freeform

gestures like those in natural handwriting or most

unistroke text entry methods (e.g. Graffiti, Jot).

An exercise similar to ‘tracing’ is ‘steering’.

Steering is the act of moving a mouse cursor or

other pointing instrument along a path of a given

width, like driving a car down a road. Accot and Zhai

[15] studied five input devices, including trackballs,

in various steering tasks. They found that trackballs

are comparable to touchpads – but both are worse

than mice – and that trackballs perform best relative

to other devices for short straight-line trajectories less

than 250 pixels. They noted that the performance of

trackballs suffers when the device must be ‘clutched’

for travel over long distances. Accordingly, Trackball

EdgeWrite avoids the need for clutching. That is, a

user does not have to rotate the trackball farther

then they are able without lifting their thumb from

the ball.

Further comparisons of pointing devices by

MacKenzie et al. [10] show that trackballs are slower

than mice and styli in pointing and dragging and less

accurate for dragging. Dragging is particularly

difficult with a trackball because of the confluence

of the thumb and finger muscles. In a later study,

MacKenzie et al. [11] added that trackballs often

move accidentally when clicking inside targets. Such

slips can be particularly troubling for users with

motor impairments [16,17]. Accordingly, Trackball

EdgeWrite does not rely on buttons or require

dragging or clicking. It can, in fact, be used

button-free.

Hinckley and Sinclair [18] developed a touch-

sensitive trackball called the TouchTrackball. When

the TouchTrackball was touched, a ToolGlass win-

dow appeared in what the authors called an ‘on-

demand interface’. When the trackball was released,

the ToolGlass faded away. Although adding touch-

sensitivity to the design for Trackball EdgeWrite may

have made certain features easier (e.g. knowing when

to segment between letters), one wanted Trackball

EdgeWrite to be usable with off-the-shelf trackballs

that required no augmentation, thereby lowering

barriers to access.

Trackball text entry

With the exception of Trackball EdgeWrite, there have

been no text entry methods developed explicitly for

trackballs. As noted above, most trackball text entry

has been with on-screen keyboards. Example on-

screen keyboards include WiViK [19] and the Visual

Keyboard [20]. In Figure 3, WiViK is shown along

with Microsoft Notepad.

While not explicitly designed for trackballs, two

gestural text entry methods besides EdgeWrite can

be used with them. The first of these is Dasher, a

method that can be used with any cursor control

device [21]. With Dasher (Figure 4), one moves

Figure 2. Trackball EdgeWrite with Microsoft Notepad. The

Notepad window retains the input focus even while mouse

movements are interpreted by Trackball EdgeWrite. Word

completions beginning with ’t’ are offered at the corners of the

EdgeWrite square.

Figure 3. The WiViK on-screen keyboard with word prediction and completion activated. Preferences allow letters and words to be triggered

by either clicking or dwelling.

Enabling devices, empowering people 37

D
ow

nl
oa

de
d

B
y:

 [W
ob

br
oc

k,
 J

ac
ob

 O
.]

A
t:

23
:3

5
2

Fe
br

ua
ry

 2
00

8

through dynamically expanding letter regions, the

sizes of which correspond to a letter’s likelihood of

entry. Although Dasher can achieve rapid entry rates

(*30 wpm), a common sentiment, particularly

among novices, is that it can be overwhelming

because it is in constant visual flux. This also makes

it difficult to use Dasher purely by feel, since one

must constantly attend to its ever-changing display.

Besides trackballs, Dasher can be used on a PDA

with a stylus or with an eye-tracker for hands-free

input [22].

A second trackball-specific text entry method is

the Minimal Device Independent Text Input Meth-

od, or MDITIM [23]. MDITIM defines all letters in

terms of north, east, south and west primitives

(Figure 5). Like EdgeWrite, MDITIM can be used

with trackballs and numerous other devices, includ-

ing touchpads, mice, joysticks and keyboards. A

potential downside of MDITIM is that letter shapes

generally do not mimic their Roman counterparts in

either look or feel. In contrast, the EdgeWrite

alphabet (see Figure 7) was designed to maintain

mnemonic correspondence with Roman letters to

improve learnability.

In a study of MDITIM on different devices [23],

subjects entered text with a touchpad for nine

30-minute sessions followed by a single session in

which they used a touchpad, trackball, mouse,

joystick and keyboard. Mean speeds (wpm) and

error rates were *7.5 (6.2%), 6.5 (7.3%), 6.3

(4.8%), 5.6 (3.0%) and 4.9 (3.2%), respectively.

These speeds are quite a bit slower than EdgeWrite

on the same devices [24]. Like Dasher, MDITIM

has also been adapted for use with an eye-tracker,

although no performance results were reported [25].

Word-level text entry

Researchers have noted that character-by-character

text entry is inherently slow [26]. As a result, recent

attention has shifted to word-level techniques. In

word-level text entry, single gestures (or other

operations) produce entire words at once. Cirrin

[27] and Quikwriting [28] are two such techniques.

In both designs, a person moves a stylus through

fixed letter regions arranged around the periphery of

a circle or square. These techniques are word-level in

the sense that whole words are made in single (rather

long) strokes. However, each character within the

word must still be acquired by the stylus.

An innovative approach to word-level stroking is

SHARK [26], which presents a stylus keyboard over

which strokes can be made. The shapes of these

strokes are determined by the arrangement of letters

on the keyboard. Users can gradually ‘ramp up’ from

tapping words to stroking them, enabling higher

speeds. This emphasis on gradual transition from

character-level to word-level entry has been pre-

served in Trackball EdgeWrite’s design for stroke-

based word completion, since users can still stroke

individual characters as they always have.

Word prediction and completion

A common approach to enhancing text input rates is

to use word prediction and completion to populate a

list with candidate words. Users select from the list to

enter entire words or suffixes. Although the number

of user actions is reduced, numerous studies show

that additional perceptual and cognitive processes

often make such systems slower instead of faster

[29 – 31]. These findings highlight the challenge of

Figure 4. In Dasher, probabilistic letter regions expand rapidly

from right-to-left toward the mouse cursor. Here the user is

writing ‘Hello’. Used with permission.

Figure 5. The MDITIM alphabet. Image adapted from MacKenzie and Soukoreff [9]. Used with permission.

38 J. O. Wobbrock & B. A. Myers

D
ow

nl
oa

de
d

B
y:

 [W
ob

br
oc

k,
 J

ac
ob

 O
.]

A
t:

23
:3

5
2

Fe
br

ua
ry

 2
00

8

designing effective word prediction and completions

systems.

In the case of trackball text entry with on-screen

keyboards, candidate words appear as additional

mouse targets, which further exacerbate mouse travel

and the need for accurate target pointing. Although

Anson et al. [8] reported that word prediction and

completion improved entry rates with on-screen

keyboards, subjects reported high frustration because

they disliked looking from their document to the

word list and ‘felt that searching through the word

list was tedious and distracting’. As will be shown,

stroke-based word completion in Trackball EdgeWrite

overcomes the drawbacks of visually-intensive word

selection by providing a ‘feel-based’ gestural alter-

native that performs just as well or better.

Now one turns to the design of Trackball Edge-

Write, including a detailed description of how the

writing process works. This discussion is followed

with a theoretical model of writing speed, after which

empirical results are given.

The design of Trackball EdgeWrite

Background

EdgeWrite was originally designed to improve the

accessibility of text entry on handheld devices like

Palm PDAs [32]. Using on a Palm PDA, a user

could move his or her stylus in Roman letter-like

patterns along the edges and into the corners of a

square bound by plastic edges (Figure 6). Stroke

recognition was accomplished by simply looking at

the order in which the corners of the EdgeWrite

square were hit, which provided tolerance to wiggle

since vagaries in the stroke path were not detri-

mental. The physical edges and corners provided

tremulous users with additional physical stability,

resulting in dramatic accuracy improvements over

leading commercial products like Palm OS Graffiti,

which is the built-in writing system for Palm PDAs.

For example, one very tremulous subject with

Parkinson’s disease could enter text with only

30.6% accuracy in Graffiti, but with 94.4% accuracy

in Stylus EdgeWrite. Similarly, the subject with a

spinal cord injury described later in this article was

54.8% accurate with Graffiti 2 but 99.0% accurate

with Stylus EdgeWrite.

It was clear that Stylus EdgeWrite was useful on

PDAs, but a trackball is certainly very different from

a stylus. The challenge was to take the alphabet used

for Stylus EdgeWrite (Figure 7) and tailor it for

writing with a trackball. An obvious hurdle, among

others, was that the stylus version used ‘lift’ to

segment between letters, but a trackball cannot be

lifted in the same way. Thus, a different solution

was required to solve the so-called ‘segmentation

problem’ for determining where one letter-stroke

ends and the next begins.

Initial design: Using impenetrable virtual edges

The first design for Trackball EdgeWrite essentially

replicated the physical design for Stylus EdgeWrite in

a virtual space.2 A window with impenetrable virtual

edges was used to constrain the movement of the

mouse cursor during writing. The cursor could

then be moved from corner to corner within this

bounded virtual square (Figure 8(a)), much like the

stylus itself moved inside a plastic square for Stylus

EdgeWrite.

In an effort to make the cursor’s movement more

accurate, a movement correction scheme was used to

move the cursor directly toward the user’s current

‘intended’ corner. Figure 8(b) and equation (1) show

how this correction was applied. A visible virtual

Figure 7. A chart showing the EdgeWrite letter strokes. Each letter

is a single ‘unistroke’ from start to finish. Strokes begin at the

heavy dot. The bowing of line segments is for illustrative purposes

only; all actual motion is ideally in straight lines along edges and

into corners.

Figure 6. Stylus EdgeWrite on a Palm PDA device. The stylus

moves along the edges and into the corners of the square hole,

which provides stability for tremulous users.

Enabling devices, empowering people 39

D
ow

nl
oa

de
d

B
y:

 [W
ob

br
oc

k,
 J

ac
ob

 O
.]

A
t:

23
:3

5
2

Fe
br

ua
ry

 2
00

8

cursor, the one the user sees, and the underlying

hidden system cursor are both positioned at point A.

As the user moves the trackball, the invisible system

cursor is moved a distance d to point A0. A projection

along the path from A to A0 intersects the square’s

edge at point E, to which the nearest corner is point

C. The distance d is then applied to the visible virtual

cursor at A to move it to point A00, which is on a

straight-line to C. Point A00 is computed using

equation (1), in which capital letters are points with

(x,y) components and d and d 0 are distance scalars

(d 0 is the distance from A to C). Lastly, the

underlying system cursor at A0 is realigned with the

virtual cursor now at A00. This is done continuously

for all movements within the virtual square, allowing

the user to change directions instantly but always be

on a straight line to their ‘intended’ corner.

A00 ¼ Ax þ
d

d0
ðCx � AxÞ; Ay þ

d

d0
ðCy � AyÞ

� �
ð1Þ

Admittedly, the use of impenetrable virtual edges

was an obvious starting point for the design of

Trackball EdgeWrite, since Stylus EdgeWrite had used

impenetrable physical edges. However, although the

straight-line movement scheme helped, in the end

this design for Trackball EdgeWrite did not ‘feel

right’. This was because there was only a loose

correspondence between a user’s motion on the

physical trackball device and the location of the

mouse cursor within the virtual EdgeWrite square. In

other words, these did not always tightly correspond.

For example, if the user rotated the physical trackball

towards the top-left, there was no guarantee that the

mouse cursor would actually be in the top-left

corner – it would depend on where the mouse

cursor started. Thus, another approach was neces-

sary, one that more tightly coupled users’ movements

on the physical trackball with their mouse cursor’s

location in the EdgeWrite square. The solution that

worked was goal crossing, described in the next

section.

Making characters with goal crossing

Target pointing, or just ‘pointing’ for short, has been

a fundamental aspect of graphical user interfaces for

over 25 years. Pointing has been well-studied, in

large part because it can be rigorously modelled by

Fitts’ law, at least for able-bodied individuals [33].

Fitts’ law quantifies the time required to access a

target as a function of the target size W and its

distance away A [33]. Not surprisingly, it takes

longer to successfully click on small and/or distant

targets. Figure 9 illustrates the Fitts’ law parameters.

Equation (2) is a commonly used formulation of

Fitts’ law [34].

T ¼ aþ b � log2

A

W
þ 1

� �
ð2Þ

In equation (2), a and b are empirical coefficients

determined by linear regression. A powerful aspect of

Fitts’ law is that the units (e.g. pixels, mm, etc.) of A

and W cancel, allowing researchers to compare

results from different experiments that used different

values for A and W. The log term is often called the

index of difficulty (ID).

One drawback of the initial design of Trackball

EdgeWrite described in the previous section was that

it felt too much like pointing. Although pointing is a

successful interaction technique for numerous

computer-based operations, it does not lend itself

to fluid gesture-based writing. In fact, on-screen

keyboards are tedious to use in large part because

they are too dependant upon pointing.

Figure 8. (a) The initial design for Trackball EdgeWrite used impenetrable virtual edges, a visible virtual cursor and a hidden underlying

system cursor. (b) The attempt to make cursor movement more accurate by inferring the user’s ‘intended corner’ and always moving directly

toward it.

40 J. O. Wobbrock & B. A. Myers

D
ow

nl
oa

de
d

B
y:

 [W
ob

br
oc

k,
 J

ac
ob

 O
.]

A
t:

23
:3

5
2

Fe
br

ua
ry

 2
00

8

An alternative to target pointing is goal crossing

[35]. Unlike pointing, which requires a cursor to

enter an area target and remain inside it long enough

to select it, goal crossing requires only that a goal line

be crossed, much like an American football player

scoring a touchdown (Figure 10). One can think of

the goal line as providing a similar benefit as an

impenetrable edge. In both cases, the cursor is

allowed to overshoot the target by an arbitrary

amount and still successfully acquire the target.

Accot and Zhai [35] have shown that crossing

follows the Fitts’ law formulation shown in equation

(2), but that the regression coefficients a and b differ

than for the traditional Fitts’ reciprocal pointing task

[36]. In particular, for IDs less than 4-bits, contin-

uous orthogonal goal crossing is faster than pointing.

Currently, motion in Trackball EdgeWrite uses IDs

ranging from 0.7 – 0.9 bits, where crossing performs

very well.

Accot and Zhai [36] compared different types of

pointing and crossing using a stylus. They found that

the fastest arrangement for short-range reciprocal

trials was ‘continuous orthogonal goal crossing’,

where the pointing device, in their case a stylus,

was continually held on the surface and the goals

were perpendicular to the movement trajectory.

They speculated that goals could rotate to always

remain orthogonal to the cursor and thus offer the

maximum target width (Figure 11(a)). An extreme

form of this idea is a cursor placed inside a circle,

where the circumference is the goal (Figure 11(b)).

This insight is one inspiration for the design of

Trackball EdgeWrite.

Using Trackball EdgeWrite, one writes by making

short ‘pulses’ on the trackball towards intended

corners. When these pulses cause the mouse cursor

to cross the circumference of a circle, the resultant

angle indicates the next corner. Thus, the cursor

does not actually travel among corners to acquire

them as targets as in the original scheme, but crosses

a radius and ‘snaps’ to the next corner instantly. In

essence, it is the vector along which the cursor moves

that determines the next corner. Figure 12 depicts

this process for writing the letter ‘z’.

In Figure 12(a), the trackball cursor moves a

distance r at an angle y from the top-left corner of

the EdgeWrite square. The angle determines that the

next corner is the top-right and the first stroke of the

letter ‘z’ is drawn (Figure 12(b)). Having snapped to

the top-right corner, the cursor now moves diag-

onally at an angle that indicates the bottom-left

corner and the second stroke is drawn (Figure 12(c)).

Note that for the third stroke, the cursor moves

towards the outside of the virtual EdgeWrite square,

but at an angle that still indicates the bottom-

right corner. The completed ‘z’ is thus drawn

(Figure 12(d)).

Thus, a series of short crossing tasks forms a letter.

However, clearly, much depends on how the circle’s

angular space is partitioned and how y is interpreted.

For instance, consider the move across the bottom of

the ‘z’ in Figure 12(c). At what angle y should the

cursor instead move diagonally up to the top-right?

Figure 13 shows the next-corner outcomes for

different departure angles from the bottom-left

corner of the EdgeWrite square. The same scheme

can be extrapolated to the other three corners of the

virtual EdgeWrite square.

Three features of the design in Figure 13 are

important. First, any movement left, diagonal down-

and-left or down from the centre of the circle keeps

the cursor fixed in-place (i.e. in the extreme bottom-

left corner). More generally, if the cursor moves at an

angle that, were it to cross the circumference it

would remain in the same corner, it is held fixed at

that corner to begin with. This will always hold true

for (1807yd)8 of the circle, where yd is the angular

amount allotted to each diagonal. This ‘pinning’ of

the cursor to the circle’s centre ensures that one

always starts from a corner’s centre when moving to a

different corner.

Secondly, the value in having big cardinal angles

(yc) is that users do not always move perfectly to the

Figure 11. Accot and Zhai speculated that crossing goals could

rotate to always remain orthogonal to the cursor, thereby offering

maximum target width. An extreme form of this idea is a cursor in

the centre of a circle, where the circumference itself is the goal.

Figure 9. Fitts’ law models the time required to access a target of

size W at a distance A units away.
Figure 10. Crossing follows Fitts’ law but with the W constraint

orthogonal to the movement trajectory, rather than collinear.

Enabling devices, empowering people 41

D
ow

nl
oa

de
d

B
y:

 [W
ob

br
oc

k,
 J

ac
ob

 O
.]

A
t:

23
:3

5
2

Fe
br

ua
ry

 2
00

8

left, right, up or down. Larger values of yc create more

room inside the EdgeWrite square to move in the

cardinal directions. However, adding to yc detracts

from the diagonals yd because ycþ yd¼ 908.
Thirdly, although increasing yc gives more room

inside the square to move in the cardinal directions,

one always has 908 with which to move along an

edge, regardless of yc. This is because one always has

the angles to the outside of the EdgeWrite square, as

in Figure 12(c). So, although yd and yc are tradeoffs,

a total of 908 remains for moving along an edge. In

practice, however, having a larger yc provides a

‘cardinal error band’, giving more room to move

inside the EdgeWrite square.

It is important to emphasize that, despite these

underlying mechanics, users neither see a mouse

cursor nor ‘aim’ for particular angles when writing

with Trackball EdgeWrite. Instead, users simply

‘pulse’ the ball towards intended corners with small

movements of the trackball, creating the feeling of

fluid gestural writing.

Determining the first corner

The example in Figure 12 assumes that one starts in

the top-left corner. However, of course, not all

EdgeWrite letters start there. This begs the question

of how one begins a letter, since, unlike a stylus

landing on a PDA, the underlying mouse cursor is

persistent and cannot simply ‘appear’ in the starting

corner.

Two different schemes were designed and im-

plemented for determining the first corner in Track-

ball EdgeWrite. The first scheme is to have users enter

the initial corner as if they were starting from the

centre of the EdgeWrite square (Figure 14(a)).

Although this scheme adds an extra movement to

the start of every letter, the accuracy demands are

low because the user has a full 908 with which to

indicate the starting corner.

In the second scheme, users assume they start in

the appropriate corner and the software disambigu-

ates that corner as the gesture unfolds (Figure 14(b)).

For example, in making a ‘z’, one would first move to

the right. At this point, one may have intended to

move along either the top or bottom edge, so both

possibilities are entertained. The next move is

diagonally down-and-left, at which point the ambi-

guity is resolved. Although gestures that occur along

a single edge (e.g. ‘i’, space, backspace) never resolve

into unambiguous strokes, such gestures can be

defined identically for both sides of the square,

rendering the ambiguity irrelevant.

Although the second scheme requires one less

pulse per letter than the first scheme, it proves slower

and more difficult in practice because the initial

stroke has eight possible outcomes (Figure 15), not

just four as in the first scheme. Even when the

angular regions of the circle are adjusted to be

proportional to the probability of beginning a letter

in that region, the second scheme proves too difficult

to perform reliably.

Figure 12. The repeated goal crossings involved in writing the letter ‘z’. Each successive corner is determined by the current corner and the

angle at which the crossing occurs.

Figure 13. Next-corner outcomes for different angles of departure

from the bottom-left corner of the EdgeWrite square. yd is the

diagonal angle and yc is the cardinal angle.

42 J. O. Wobbrock & B. A. Myers

D
ow

nl
oa

de
d

B
y:

 [W
ob

br
oc

k,
 J

ac
ob

 O
.]

A
t:

23
:3

5
2

Fe
br

ua
ry

 2
00

8

An interesting result is that a theoretical analysis of

each scheme actually shows the first to be about

3 wpm faster than the second despite the additional

stroke required for each letter. This is because of the

high accuracy required for the second scheme’s

initial stroke. Thus, the first scheme was preferred.

This was an unexpected theoretical finding, as it had

initially been assumed the second scheme would be

*30% faster based on the reduced number of

trackball movements required per letter. That

both empirical and theoretical results proved other-

wise shows the importance of basing designs on

quantitative and theoretical measures instead of

mere intuition.

Word-level stroking

Even the most efficient character-level unistroke

systems are slow because they enter only one

character at a time [37]. Unlike touch-typing with

multiple fingers, unistroke methods do not support

parallellism in the input task. This inherently limits

the entry rate. One way to increase the input rate is to

increase the efficiency of actions. For example,

instead of one stroke producing one letter, one

stroke can produce one word. A problem with

defining a host of word-level strokes, however, is

the myriad of strokes required and the challenge of

learning them. Unlike letters, words are not easily

represented by ‘mnemonic’ Roman letter-like stokes.

Along with Stylus EdgeWrite [38], Trackball Edge-

Write provides both character-level and word-level

entry at the same time and in the same space. Entire

words can be entered in a very few strokes by extending

character-level strokes in minimal ways, but character-

level strokes themselves remain unchanged. This

enables users to gradually ‘ramp up’ from the more

familiar character-level strokes to using word-level

strokes. Importantly, the same stroke always produces

the same word, enabling users to memorize the strokes

at the motor level. Since natural language follows

Zipf’s law [39], it is conceivable that learning a small

number of common words will increase users’ overall

text entry rates. For example, the word ‘the’ represents

over 6% of the British National Corpus and the most

common 100 words account for over 46% [26].

When a user strokes, candidate words are shown

at the four corners of the EdgeWrite square

(Figure 16). In order to provide word completions,

Figure 14. Two different schemes for determining the first corner.

Figure 15. With the second first-corner scheme, users have eight

angular regions from which to choose on the first pulse of the

trackball. Region sizes are weighted by letter probabilities for

letters that begin in them.

Enabling devices, empowering people 43

D
ow

nl
oa

de
d

B
y:

 [W
ob

br
oc

k,
 J

ac
ob

 O
.]

A
t:

23
:3

5
2

Fe
br

ua
ry

 2
00

8

the current stroke is recognized after each corner is

entered. This is called continuous recognition feedback,

since this technique also displays the current stroke

result in the centre of the EdgeWrite square. Thus,

the user knows what his or her stroke will produce

before the stroke is segmented. If the user slips, he or

she can simply restart the stroke before segmenting

using a feature called non-recognition retry [40].

After each letter is finished and a letter is

produced, the user can continue stroking letters or,

alternatively, make a short gesture to select a word.

This gesture used to select word completions is a

short motion from the centre of the EdgeWrite

square to the corner containing the desired word.

After the completion of this gesture, the word at that

corner is entered.

When the text cursor is positioned after a word

that has not been completed, a word-level backspace

from right-to-left across the bottom of the EdgeWrite

square erases the entire previous word. However, if

the previous word was composed using word

completion, then a word-level backspace along the

bottom of the EdgeWrite square will erase only the

completed suffix, restoring the word completions as

they appeared before selection. Importantly, the

restored completions appear in the same corners as

before, allowing the user to quickly select a different

completion if desired. Completed words always

remember the character position at which they were

completed (if any), allowing future word-level back-

space strokes to remove completed suffixes. Thus,

completions are quickly undoable and re-doable.

An important aspect of this design is that the same

completion is always shown in the same corner for

the same prefix. This is because completions are

based only on English word frequencies, not on

context. This consistency is important for enabling

users to rely on the positions of words. For example,

after stroking a ‘t’, the word ‘the’ is always shown in

the lower-right corner. Thus, users can come to rely

on the position of ‘the’ and stroke it ‘by feel’ rather

than ‘by sight’. The consistency of word positions

also reduces cognitive load as motor performance

comes to dominate.

In addition to showing frequency-based word com-

pletions, Trackball EdgeWrite also shows context-

dependent word predictions after a word ends. Word

predictions are, by definition, based on surrounding

context and thus cannot be stroked by feel.

Trackball EdgeWrite’s design for word-level strok-

ing avoids high perceptual search times by showing

only four words at a time, generally less than most

word completion systems [30]. However, how useful

are only four words? To answer this question, a

computer program was written to calculate the

amount of ‘language coverage’ obtained for 1 – 5

letter prefixes showing only four frequency-based

word completions per letter (Figure 17). Kucera-

Francis frequencies were used for the 17 805 most

common English words [41]. According to the

graph, users have a 49.0% chance of seeing their

intended word after just one letter. After two letters,

this climbs to 70.8%. After three, it’s 89.3%. This is

the Zipf’s law effect at work [39].

As explained elsewhere [38], one can achieve a

slightly higher language coverage by not re-showing

the same word completions once they have been

shown for a given word being entered. For example,

when ‘t’ is written, ‘the’ is one possible completion.

If ‘the’ is not selected and an ‘h’ is written next,

should ‘the’ be re-shown? Or, since the user did not

select ‘the’, should a different word be shown in its

place, gaining more coverage? In Trackball Edge-

Write, previously shown words are reshown because

users sometimes miss the initial appearance of the

word they want, especially when first learning to use

the system.

Application design

Thus far, much attention has been given to the

underlying writing mechanics in Trackball EdgeWrite.

However, Trackball EdgeWrite is a full-fledged desk-

top application and, as such, has other important

aspects of its design.

One important part of Trackball EdgeWrite is how

users segment between letters. As noted above,

segmenting between letters in Stylus EdgeWrite was

Figure 16. Candidate words shown while stroking a ‘w’ include words that begin with an ‘i’, ‘v’ and ‘h’ along the way, since these letters are

all sub-sets of ‘w’.

44 J. O. Wobbrock & B. A. Myers

D
ow

nl
oa

de
d

B
y:

 [W
ob

br
oc

k,
 J

ac
ob

 O
.]

A
t:

23
:3

5
2

Fe
br

ua
ry

 2
00

8

accomplished by simply lifting the stylus. This is not

possible in Trackball EdgeWrite. Instead, users seg-

ment when the underlying mouse cursor stops

moving for a very short period of time. Timeout

values can be set in the preferences dialogue

(Figure 18) and range from 100 ms for experts to

750 ms for novices. This simple scheme works

reliably since the timer is restarted after every mouse

movement. A beginner can still ‘stop and think’

while making a gesture by slowly rolling the trackball

toward the corner they are already in. (Recall that

this will not move the cursor to a new corner, but it

will prevent the stroke from segmenting.) Subjec-

tively for the user, segmentation involves a slight

pause between letters. In pilot studies, users had no

trouble segmenting letters.

Another important aspect of Trackball EdgeWrite is

how users switch between mousing and entering text,

since both are accomplished using the trackball.

Trackball EdgeWrite is designed to run invisibly in the

background until it is needed for text entry. When

the trackball is being used for mousing, the mouse

cursor is said to be ‘released’. When the trackball is

being used for writing, the cursor is said to be

‘captured’. The mouse can be captured by clicking a

dedicated trackball button (a ‘hot button’), pressing

a dedicated keyboard key (a ‘hot key’) or by dwelling

in a designated corner of the desktop (a ‘hot corner’).

Hot buttons, hot keys and hot corners are all

configurable in the application’s preferences dialogue

(Figure 18).

When captured, the mouse cursor vanishes and

the Trackball EdgeWrite window appears (Figure 19).

To release the cursor, the user can click any trackball

button or perform a dedicated release gesture. Then

the EdgeWrite window disappears and the mouse

cursor is restored to its position before being

captured. Thus, Trackball EdgeWrite never requires

that it be navigated to; instead, it comes to the user

when summoned and departs quickly when dis-

missed.

Other preferences exist for setting performance

parameters like the radius of the crossing circle, the

amount of diagonal degrees, the segmentation time-

out and the underlying mouse sensitivity. Additional

options exist for controlling window transparency,

playing sounds and determining where the Edge-

Write window appears.

Implementation

Trackball EdgeWrite is implemented in Visual C#

using DirectInput 9.0c to receive mouse events in the

background, which is necessary so that focus can

remain on a target application (e.g. Microsoft

Notepad) even while Trackball EdgeWrite receives

mouse input. A fair amount of code in Trackball

EdgeWrite is devoted to keeping the input focus on

the target window and off Trackball EdgeWrite itself.

Cases that must be handled include when the user

left-clicks while captured or left-drags to reposition

the Trackball EdgeWrite window. After these actions,

focus is returned to the target window.

Recognized characters and words are sent through

the low-level input stream as if they were typed on

the computer’s physical keyboard. Trackball Edge-

Write works with any pointing device, but is best

suited for devices without absolute position (e.g.

trackballs and isometric joysticks). With a miniature

trackball or an isometric joystick, EdgeWrite pro-

vides full text entry in very little physical space.

Trackball EdgeWrite’s word-level entry system has

four components: (1) a vocabulary list of words and

frequencies, (2) an optional user-defined vocabulary

list, (3) a trigram list with trigram frequencies and

(4) an adaptive bigram cache that stores users’ words

at runtime. The first and second items provide ‘fixed’

English frequency-based word completions as words

are being made. The third and fourth items provide

context-dependent word predictions after a word has

been completed (i.e. after a space has been entered).

The vocabulary list is stored in an alphabetically

sorted array enabling binary search for fast lookups.

Each array slot contains a word string and the word’s

frequency count. This is all the data necessary for the

fixed English frequency-based word completions

shown while users stroke letters (see Figure 16).

Also in each slot of the vocabulary array is a hash

table whose keys are word indices and whose values

are a list of word indices. These indices correspond

to slots in the vocabulary array. A slot’s word string

represents the first word of a trigram, its hash table

keys represent second words and its hash table list

values represent third words. These data structures

Figure 17. Coverage of the 17 805 most common English words

[41] based on 1 – 5 letter prefixes and four frequency-based

completions shown per entered letter.

Enabling devices, empowering people 45

D
ow

nl
oa

de
d

B
y:

 [W
ob

br
oc

k,
 J

ac
ob

 O
.]

A
t:

23
:3

5
2

Fe
br

ua
ry

 2
00

8

allow fast lookups for both fixed completions and

context-dependent word predictions.

When a letter is entered, words that begin with the

current prefix are gathered from the vocabulary list.

If a user-defined vocabulary list is loaded, its words

with matching prefixes are also gathered. These

words are then sorted in a separate list according to

their frequencies. The top four words are then

offered as completions (Figure 16). Since frequen-

cies are pre-computed based on a large corpus of

English words, these four completions will always be

the same for a given prefix, allowing word positions

to become familiar to users.

When four English frequency-based words are

retrieved from the language model, they are assigned

to corners such that the highest priority word is given

the corner in which the current stroke resides. The

two adjacent corners receive the next two words and

the lowest priority word is placed at the diagonal

away from the stroke’s current corner. Once a word

has been shown, it is stored in a hash table along with

its corner and a ‘half-life’. If a word is shown again, it

will be shown in the same corner as it was before.

If the word goes unused for some time, it will ‘decay’

and be eligible for reassignment. If a collision occurs

with two words vying for the same corner, the highest

priority word wins.

After a space is entered (i.e. between words),

context-dependent predictions are offered. The most

Figure 18. Trackball EdgeWrite supports multiple options for capturing the trackball with hot buttons, hot keys and hot corners (top left).

Other options are also available for controlling the parameters of the writing task (e.g. the segmentation timeout).

Figure 19. A semi-transparent Trackball EdgeWrite is being used

with Microsoft Notepad. Notepad retains the input focus even

though EdgeWrite receives mouse events.

46 J. O. Wobbrock & B. A. Myers

D
ow

nl
oa

de
d

B
y:

 [W
ob

br
oc

k,
 J

ac
ob

 O
.]

A
t:

23
:3

5
2

Fe
br

ua
ry

 2
00

8

recent two words are used to look up possible third-

word predictions. The first word is found in the

vocabulary array using binary search. The second

word’s index, which was found when the word was

entered, is used as a hash key in first word’s hash

table for fast lookups. The value returned, if any, is a

linked list of possible third words. The top four from

this list are shown as predictions.

Predictions may also come from an adaptive

bigram cache holding users’ recently entered

words. This cache holds word-pairs so that when

a user enters a previously used word, words that

followed it can be offered as predictions. The

cache is a list maintained in priority order such

that when a new bigram is entered or an old

bigram is reused, it is placed at the top. Unlike the

trigrams, the adaptive bigram cache accommodates

out-of-vocabulary words, enabling the prediction

of last names from first names, common phrases

and so on.

The English vocabulary list and trigrams were

built by parsing 850 MB of news articles from the

Wall Street Journal, Ziff Davis, Los Angeles Times and

Associated Press. This parsing was carried out with

the CMU-Cambridge Statistical Language Model-

ling toolkit [42]. Custom parsers then pared down

the toolkit’s results, keeping 20 000 of the most

common words and only trigrams that occurred at

least 20 times. After certain abbreviations were

removed, the result was a 258 KB vocabulary list of

19 122 words with frequency counts totalling 132

701 943. The maximum frequency count was for

the word ‘the’ at 7 686 122, or 5.79%. The trigram

list is 10.6 MB and contains 517 988 trigrams with

frequency counts totalling 40 230 622. The max-

imum frequency count is for the trigram ‘the

United States’, at 46 947 or 0.12%. Although

news articles were parsed, this procedure could

easily be run over other corpora (e.g. email, instant

messaging, academic prose, other Western

languages, etc.).

Evaluation

This section presents two separate evaluations of

Trackball EdgeWrite. The first evaluation quantifies

the theoretical speed of the method based on an

underlying model of goal crossing. The second

evaluation is empirical and involves an extended

field study of a user with a spinal cord injury. This

user has used a trackball for 15 years and has, until

now, relied on on-screen keyboards as a key part of

his text entry solution. Now he uses Trackball

EdgeWrite instead, preferring it to any of the on-

screen keyboards he has used. Results for his

performance are presented for both character-level

and word-level Trackball EdgeWrite.

Theoretical model

The time it takes to make a single letter can be

predicted using Accot and Zhai’s [35] discovery

that crossing follows the Fitts’ formulation in

equation (2).

For diagonal movement, the size Wd of the

crossing goal is:

Wd ¼
yd

360
� 2pr ð3Þ

The index of difficulty for diagonal movement IDd is

therefore:

IDd ¼ log2

r
yd

360
� 2pr

þ 1

 !
ð4Þ

Thus, the time for diagonal movement Td is given by:

Td ¼ aþ b � log2

180

yd � p
þ 1

� �
ð5Þ

Recall that a and b are coefficients determined by

linear regression according to Fitts’ law (equation 2).

For movement in the cardinal directions, recall

that there is a constant target size of 908. The target

width Wc is therefore:

Wc ¼
90

360
� 2pr ð6Þ

So, the index of difficulty for cardinal movement

IDc is:

IDc ¼ log2

r

0:5pr
þ 1

� �
ð7Þ

The movement time along cardinal edges Tc is thus

given by:

Tc ¼ aþ b � 0:710719 ð8Þ

For the pulse from the centre to the first corner,

there are four target angles each of 908. Thus, the

movement time Tf for the pulse to the first corner is

the same as Tc:

Tf ¼ aþ b � 0:710719 ð9Þ

Using equations (5), (8) and (9), the theoretical

movement time for each EdgeWrite letter and the

space character can be computed. For example,

using a typical 658 for diagonal angles yd and 150 ms

for segmentation timeout t, the time (in ms) to enter

the letter ‘z’ is given by:

T‘z’ ¼ Tf þ Tc þ Td þ Tc þ t

¼ 3 � Tc þ Td þ t

¼ 4aþ 3:04402bþ 150 ð10Þ

Enabling devices, empowering people 47

D
ow

nl
oa

de
d

B
y:

 [W
ob

br
oc

k,
 J

ac
ob

 O
.]

A
t:

23
:3

5
2

Fe
br

ua
ry

 2
00

8

Obviously, the result for T‘z’ (or any other letter) is

dependent upon the choice of a and b – the Fitts’

regression coefficients. To the authors’ knowledge,

no studies have elicited these coefficients for

continuous reciprocal goal crossing with a trackball.

However, Accot and Zhai [36] have done so for a

stylus One can use these studies to estimate a and b

for continuous reciprocal goal crossing with a track-

ball. This study uses a¼7363.0 and b¼ 642.1.

To compute the time (in ms) of the ‘average

character’ Tavg, each character’s time Ti is weighted

by its linguistic frequency Fi.

Tavg ¼
X
i2C

Ti � Fi ð11Þ

In equation (11), i is a character in character set C.

For simplicity, the primary letters shown in Figure 7

are used for C, omitting ‘ç’ and backspace but

including space. Next, equation (12) is used to

calculate the theoretical speed (wpm) for the

character-level method (the numerator is ms min71):

wpm ¼ 60; 000

5 � Tavg

ð12Þ

Using a typical yd¼ 658 and t¼ 150 ms, equation

(12) yields 23.1 wpm as the theoretical character-

level speed for Trackball EdgeWrite. Note that this

rate represents ‘perfect’ entry – no errors, no error

correction and no hesitation between letters other

than the time t required for segmentation. Also,

trackballs differ significantly in their sizes, friction,

gain settings, etc. Thus, this estimate can only be

considered a ballpark measure. However, it is useful

for comparing different stroking schemes, such as the

two first-corner schemes discussed earlier.

This theoretical model can be extended to

incorporate Trackball EdgeWrite’s frequency-based

word completions. To do this, a computer program

was needed to calculate the speed of each word in

Trackball EdgeWrite’s list of 19 122 words, assum-

ing that each completion is selected by the user

when it first appears. This word list is large enough

to accommodate most words used in everyday

English.

The speed Scps for this corpus can be calculated

using equation (13):

Scps ¼
X
w2K

jwj þ 1

Tw

� Fw

� �
� 1000 ð13Þ

Here, Scps is the weighted speed of text entry in

characters per second (cps), w is a word in corpus K

with length jwj, Tw is the time to write word w (in

ms) and Fw is the frequency of word w such that

SFw¼ 1.00. The ‘þ1’ in the numerator is for the

space that is added after a completion is selected, and

the ‘61000’ converts from characters per ms to cps.

To calculate Tw (in ms) for each word in the

corpus, the time T‘ to perform each letter was

calculated ‘2wp, where wp is the minimum prefix that

will show w as a completion (1� jwpj � jwj). To this

one adds Tselect, the time to select the completion

itself, which is equivalent to Tf (equation 9). As in

equation (10), t¼ 150 ms must be included in the

sums for T‘ and Tselect to account for the segmenta-

tion time after a letter or word selection is made.

Note that the computation of T‘ is akin to equation

(10) for each letter (a – z) and space. Thus, the time

Tw to write word w is:

Tw ¼
X
‘2wp

T‘

0
@

1
Aþ Tselect ð14Þ

For words which themselves are prefixes of at least

four other more common words,3 there is no wp that

will show w as a completion. For such words, w must

be entered character-by-character along with a

trailing space:

Tw ¼
X
‘2w

T‘

 !
þ Tspace ð15Þ

To convert Scps in equation (13) from cps to wpm,

one uses the standard definition of five characters

per word:

Swpm ¼ Scps �
60 sec

1min
� 1 word

5 chars
ð16Þ

Using equations (13 – 16), this word-level model

yields an upper-bound entry rate of 52.5 wpm. This

is 227% faster than the 23.1 wpm obtainable with

only character-level strokes. Like before, this result is

unachievable by a real human user. It represents

‘perfect entry’, lacking considerations for hesitation,

cognitive processes, visual search time, slips or

mistakes. Still, it is useful as an upper-bound for

theoretical comparisons with prior models and

alternative designs.

For a more realistic estimate, the model can be

enriched with a term for visual search time based on

the Hick-Hyman law [43,44]. Although this law is

not specific to word-reading, for these purposes it

will provide a sufficient estimate. A term for visual

search time Tn is added after the entry of every letter

‘ and represents the time it takes for a user to spot

their word amidst n choices, where n is the number

of completions offered for the current prefix

(0� n� 4). Drawing on prior rationale [45], the

formula for Tn (in ms) is:

Tn ¼ 0:2� log2ðnÞ � 1000 ð17Þ

48 J. O. Wobbrock & B. A. Myers

D
ow

nl
oa

de
d

B
y:

 [W
ob

br
oc

k,
 J

ac
ob

 O
.]

A
t:

23
:3

5
2

Fe
br

ua
ry

 2
00

8

Incorporating the Hick-Hyman law, equations (14)

and (15) become:

Tw ¼
X
‘2wp

ðT‘ þ TnÞ

0
@

1
Aþ Tselect ð18Þ

Tw ¼
X
‘2w

ðT‘ þ TnÞ
 !

þ Tspace ð19Þ

Using equations (17 – 19), the result drops 36.2%

from 52.5 wpm to 33.5 wpm – 45.0% faster than the

character-level result of 23.1 wpm. As it will be seen,

this is similar to the empirical performance gain of

the trackball user. Note that even with the addition of

visual search time Tn, this result still represents

‘perfect entry’.

A limitation of this model is that it only accounts

for word completion, not word prediction. However,

modelling word prediction is more difficult because

it depends on context, including the user’s adaptive

cache of recent words. Such a model is beyond the

current scope of this theoretical analysis.

Field study

To evaluate Trackball EdgeWrite’s effectiveness over a

period of time and to obtain feedback from a real

user which could be used to improve the software, a

multi-session study was run with one trackball user

whom will be called ‘Jim’. Although using multiple

subjects in a single session has certain benefits, it was

decided instead to ‘go deep’ with one user over

multiple sessions to progressively inform the iterative

design process.

Jim has a spinal cord injury that reduces the

dexterity in his arms, hands and fingers such that he

cannot satisfyingly use a conventional keyboard or

mouse. For 15 years he has relied upon trackballs

and on-screen keyboards for computer access. His

favourite trackball is the Stingray from CoStar

Corporation (Figure 20).

Jim is 46 years old and is still an avid trackball user.

However, he is a reluctant on-screen keyboard user.

For extended periods of text entry, Jim uses Dragon

Naturally Speaking, but he nonetheless frequently

relies on an on-screen keyboard. He complains that

his speech recognition often ‘acts up’ and ceases to

work well. Sometimes his voice is altered from

medications or fatigue and his recognition rates

suffer. For short replies to emails, putting on a

headset and microphone is an arduous task, so Jim

uses an on-screen keyboard when he needs to enter

just a few words. Also, certain tasks don’t work well

for him with speech recognition, like naming files,

entering email addresses, editing proper names,

entering spreadsheet data and filling out web forms.

Thus, Jim’s text entry solution has been a mixture of

speech recognition and an on-screen keyboard using

a trackball to dwell over letters. His current on-screen

keyboard is the Microsoft Accessibility Keyboard.

Jim has three complaints about using an on-screen

keyboard. First, he feels that the visual attention req-

uired is enormous, as he constantly must look from

the keyboard to his document and back. Secondly,

moving over keys to dwell requires that the dwell time

be long enough to avoid unwanted keys but short

enough to produce text quickly, a difficult balance to

strike. He currently uses 500 ms as the dwell time.

Thirdly, the tedium of making repeated keyboard

selections is, according to Jim, ‘mind numbing’.

Although word prediction can help, Jim feels that

word prediction slows him down as often as it speeds

him up, a sentiment consistent with other findings

[29,31,46]. Plus, word prediction adds more items

for Jim to visually scan, adding to the tedium [8].

Character-level study. To ensure that the design

iterations were beneficial, short ‘checkpoint studies’

were conducted when meeting with Jim. During

these studies, Jim would enter 5 – 7 test phrases with

Trackball EdgeWrite and with his preferred on-screen

keyboard, the Microsoft Accessibility Keyboard

(MAK). Thus, the studies were a single-subject 1-

factor design, with a factor for Method (MAK,

EdgeWrite). Word prediction was not available in

either method at this stage. Both methods were

controlled by Jim’s personal trackball (Figure 20)

and neither method required any button presses.

Jim’s speed and accuracy results are shown over

numerous weeks in Figure 21.

Note that the checkpoint studies were not evenly

spaced in time, particularly in the jump from week 4

to week 10 and week 22 to week 32. During the first

gap, Jim did not use his computer. Thus, the data for

week 10 can be viewed as retention results. Week 10

was the only week after week 1 in which the two

Figure 20. Jim’s favourite trackball is the CoStar Stingray because

he can press its wide left button with the palm of his left hand while

his left thumb rolls the ball to perform dragging operations, which

are traditionally difficult with trackballs.

Enabling devices, empowering people 49

D
ow

nl
oa

de
d

B
y:

 [W
ob

br
oc

k,
 J

ac
ob

 O
.]

A
t:

23
:3

5
2

Fe
br

ua
ry

 2
00

8

methods were nearly equal in speed (Figure 21(a)).

The second gap was simply a break in testing.

After week 1, Jim’s speeds were consistently higher

with EdgeWrite than with the MAK (Figure 21(a)).

His average speed across all weeks with EdgeWrite

was 5.61 wpm (s¼ 1.40, max¼ 8.25). With the

MAK it was 4.86 wpm (s¼ 1.17, max¼ 6.90). A

Wilcoxon sign test for matched pairs along weeks

shows that his EdgeWrite speeds were significantly

faster than the MAK’s speeds (z¼719.5, p5 0.02).

The drop in performance during week 15 was

due to a nagging tremor in Jim’s hand. Interestingly,

the drop in speed occurred about evenly for both

methods. Accuracy results, conversely, show that

both uncorrected and corrected errors4 were

worse for the MAK than for Trackball EdgeWrite

(Figures 21(c) and (d)), suggesting that EdgeWrite

accuracy may be less affected by such tremors.

Jim’s speeds are modelled as learning curves and

extended to week 50 in Figure 21(b). Although such

an extension is speculative, it gives an idea of the

possible trends for Jim’s data. The power law

equations and R2 values for Jim’s curves are:

y ¼ 3:713x0:1850 R2 ¼ 0:53 Trackball EdgeWrite

y ¼ 3:796x0:1127 R2 ¼ 0:21 The MAK

Jim’s average uncorrected error rate was 1.12%

(s¼ 1.39) with EdgeWrite and 2.03% (s¼ 2.45)

Figure 21. Jim’s performance with his preferred on-screen keyboard and with Trackball EdgeWrite. The horizontal axis in each graph is the

week number on which testing occurred.

50 J. O. Wobbrock & B. A. Myers

D
ow

nl
oa

de
d

B
y:

 [W
ob

br
oc

k,
 J

ac
ob

 O
.]

A
t:

23
:3

5
2

Fe
br

ua
ry

 2
00

8

with the MAK (Figure 21(c)). Although the trend

was in EdgeWrite’s favour, a Wilcoxon sign test for

matched pairs along weeks for uncorrected errors is

not quite significant (z¼ 8.0, p¼ 0.22).

Jim’s average corrected error rate was 10.06%

(s¼ 2.37) with EdgeWrite and 4.52% (s¼ 3.68)

with the MAK (Figure 21(d)). A Wilcoxon sign

test for matched pairs along weeks for corrected

errors yields a significant result in favour of the

MAK (z¼720.5, p5 0.02). However, an analysis

of the effect of Session on corrected errors indicates

that it had a larger effect on decreasing corrected

errors for EdgeWrite (F1,7¼ 5.21, p¼ 0.05) than

for the MAK (F1,7¼ 2.92, p¼ 0.13). This indicates

that corrected errors decreased significantly over

time for EdgeWrite and presumably would con-

tinue to do so.

Although corrected errors – which are any letters

backspaced during entry – are higher with Trackball

EdgeWrite, they are not necessarily damaging if the

correction operation is efficient [47]. Of course

corrected errors should be reduced, but the main

tradeoff is between speed and uncorrected errors,

which are errors left in the transcribed string. A

method can be successful even if it quickly produces

and repairs errors during entry if, in the end, it yields

more accurate text in less time, which is the case here.

Jim no longer uses an on-screen keyboard, but

keeps Trackball EdgeWrite running at all times, able

to be called up at a moment’s notice. To begin

writing, Jim simply places the mouse cursor in the

top-right corner of his screen, waits a moment and

then watches as the cursor is ‘captured’ automatically

within the EdgeWrite square (Figure 19). This

notion of using the ‘hot corners’ of the desktop area

to capture the mouse was Jim’s idea. When Jim is

done writing, he makes a dedicated stroke to ‘release’

his mouse cursor and dismiss the EdgeWrite

window. The release stroke was also Jim’s idea.

Thus, Jim can operate Trackball EdgeWrite without

ever clicking a mouse button (except to set prefer-

ences). Jim also helped to improve the feel of the

software with suggestions for altering the on-screen

visualization and stroke feedback.

Jim’s reasons for preferring Trackball EdgeWrite

over the MAK are, in his words:

. ‘The on-screen keyboard is so terribly boring.

EdgeWrite is fun, like a video game. The on-

screen keyboard is not fun. I don’t care which

is faster’.

. ‘With EdgeWrite, you can keep your eyes on

your document and just write as you would

holding a pencil. I don’t feel disabled when I’m

using EdgeWrite’.

. ‘The on-screen keyboard requires too

much visual scanning and concentration.

In EdgeWrite, if you know the letter, you can

just bang it out by feel’.

. ‘I feel like I can write again’.

These results show that Trackball EdgeWrite is

faster and produces just as accurate, if not more

accurate, text than an on-screen keyboard for Jim.

Having reached a maximum speed of 8.25 wpm in

week 32, it seemed unlikely that Jim could go

much faster with the character-level version of

Trackball EdgeWrite. After further innovation, word-

level stroking was incorporated into the application

(see Figure 16). What follows is a second-stage

evaluation with Jim using word prediction and

completion.

Word-level study. In order to empirically test word-

level stroking in Trackball EdgeWrite, another

evaluation was conducted with Jim. This evaluation

compared word-level Trackball EdgeWrite to the on-

screen keyboard WiViK (see Figure 3), which was

configured with the prior settings from the MAK.

WiViK was used instead of the MAK because of

WiViK’s powerful word prediction technology

WordQ, which was loaded with the ‘US Advanced’

dictionary of 15 000 words. (The MAK, in contrast,

lacks any word prediction feature.) This evaluation

began *3 months after the end of the character-

level study and *2 weeks after Jim had

been introduced to word-level stroking in Trackball

EdgeWrite.

The study was a single-subject 2-factor design,

with factors for Method (WiViK, EdgeWrite) and

Word Prediction (WP) (on, off). Jim did the word

prediction versions second within both methods. A

coin toss determined that he would use WiViK

first. Thus, the technique order was: WiViK,

EdgeWrite, WiViKþWP, EdgeWriteþWP. Jim

entered three practice phrases and eight test

phrases in each condition. Each phrase was *30

characters long.

Figure 22(a) shows Jim’s speeds for the four

conditions in the current study. It also shows Jim’s

peak speeds from the prior study (Figure 21(a)).

Note the substantial speedups of both methods due

to word prediction and completion. This indicates

that the design for word-level stroking in Trackball

EdgeWrite is beneficial to entry rates.

Figure 22(b) shows corresponding total error

rates.5 However, because Jim fixed almost all errors

during entry, these total error rates are really just

corrected error rates. Thus, Trackball EdgeWrite is

producing similarly accurate text in a bit less time,

albeit with more errors made (and fixed) along

the way.

A Wilcoxon sign test for matched pairs for speed

is not significant (z¼ 3.0, p¼ 0.25). However, the

Enabling devices, empowering people 51

D
ow

nl
oa

de
d

B
y:

 [W
ob

br
oc

k,
 J

ac
ob

 O
.]

A
t:

23
:3

5
2

Fe
br

ua
ry

 2
00

8

trend is in favour of Trackball EdgeWrite. This

advantage is only slight for the current study,

however, probably because WiViK is a superior

product to Jim’s preferred keyboard (MAK), even if

WiViK was configured with Jim’s settings.

A Wilcoxon sign test for matched pairs for total

errors is also not significant (z¼ 2.0, p¼ 0.50).

However, both methods were producing error-free

text in the end, since uncorrected errors for both

methods were *0%.

It is interesting that character-level Trackball

EdgeWrite’s errors were low in the current study

even without word completion. This is probably

because at the time of this second study, Jim had had

more practice since his prior peak performance at the

end of the first study.

It is worth noting that the speed of WiViK

improved 32.0% with word prediction compared to

without. This highlights the strength of WiViK’s

commercial word prediction and completion tech-

nology, WordQ.

Taken together, the results for word-level Track-

ball EdgeWrite show a 46.5% increase in speed and

a 36.7% decrease in errors compared to Jim’s prior

peak performance with character-level Trackball

EdgeWrite. The results also show that word-level

Trackball EdgeWrite is 75.2% faster and 40.2%

more accurate than Jim’s prior peak performance

with his own on-screen keyboard. Finally, the

results show that word-level Trackball EdgeWrite is

competitive with a major commercial product, the

WiViK on-screen keyboard with WordQ word

prediction.

Jim was asked to describe his experience with each

of the four conditions in his own words. This is what

he wrote:

. WiViK: ‘[Y]ou are constantly either scribbling

around so you don’t accidentally trigger the

wrong letter, checking to see if you typed the

right thing or looking for the next key to hover

over. Too much work both mentally and

visually’.

. WiViKþWP: ‘Somewhat of a relief to hover

over large words but it just increased the

amount of mental and visual work required.

[It’s] one more section of the screen you need

to scan constantly. Only thing is, I wish

EdgeWrite had its vocabulary’.

. EdgeWrite: ‘EdgeWrite without word predic-

tion is like using a 286 or something. It’s much

better than a keyboard or an on-screen key-

board, but the ultimate is when you can flick

the cursor into a corner and just pop the rest of

the word in’.

. EdgeWriteþWP: ‘The best thing about Edge-

Write is there is no eye strain or constant

scanning between programs, letters, words,

etc. The word choices are right there where

your eyes already are. It actually helps you stay

focused on what you’re writing’.

Jim’s sentiments confirm what prior studies of on-

screen keyboards have found: that they are exceed-

ingly tedious and visually intense [8]. Although word

prediction improved WiViK’s speed by 32.0%, it did

Figure 22. Jim’s speeds and corresponding total error rates with an on-screen keyboard (WiViK) and word-level Trackball EdgeWrite.

52 J. O. Wobbrock & B. A. Myers

D
ow

nl
oa

de
d

B
y:

 [W
ob

br
oc

k,
 J

ac
ob

 O
.]

A
t:

23
:3

5
2

Fe
br

ua
ry

 2
00

8

not resolve these drawbacks. Trackball EdgeWrite, on

the other hand, proved to be just as fast but without

the same visual tedium because it is gesture-based

instead of selection-based, supporting writing ‘by

feel’ rather than ‘by sight’.

Log file analysis. As a third examination of Jim’s

performance, his text entry log files over 11 weeks of

intermittent Trackball EdgeWrite use were analysed.

With Jim’s permission, all Trackball EdgeWrite text

entry was recorded in XML files on his computer.

Although such log files do not enable one to

rigorously quantify speed and accuracy as in a

controlled experiment, they do allow one to measure

the stroke savings gained by using word prediction

and completion. One can also look at the number of

completions undone to gain some insight into

selection accuracy and compare this to the number

of letters undone (i.e. backspaced).

Figure 23 shows these quantities graphed over 2

months of Jim’s intermittent use. It represents

897.52 hours of software running-time for 13 288

total strokes. Of these, 8774 were character strokes,

2201 were word-selection strokes, 1451 were back-

spaces and 249 were selection undos. In all, 15 629

characters were entered, 6855 of which were from

completions. For example, if Jim stroked the letters

‘t’ and ‘h’ and then selected ‘there’, this would result

in six entered characters: two from character strokes

and four from the selected completion. (The 6th

character is a trailing automatic space.)

The top line shows the percentage of letters

entered as predictions or completions. Without

stroke-based word completion, these letters would

all have to be entered in full. The weighted mean

over all weeks is 43.9%. The spike in week 6 is an

outlier due to a week of relative inactivity. Only 70

letters were entered that week, compared to most

weeks which saw 1500 – 3500 letters. A regression

line shows this trend to be slightly increasing.

The bottom line is the percentage of word

completions undone. The weighted mean over all

weeks is 7.7%. As an indicator of completion errors,

this value is probably inflated, since users may undo

selected completions for reasons other than errors

(e.g. as a result of changing what they want to write).

A regression line shows this trend to be slightly

decreasing.

For comparisons, the percentage of letters undone

(backspaced) is shown as the middle line. The

weighted mean for undone letters is 16.5%. This

value is not surprising in light of previous results

indicating that backspace is the second most

common keystroke in desktop text entry [9]. A

regression line shows this trend to be slightly

decreasing.

Across all weeks, the average number of characters

entered per completion was 3.11. Thus, with a

simple ‘pulse’ into one of four corners, users avoid

entering over three more characters for every single

word they write.

Discussion

It is clear from the theoretical and empirical

evaluations that word-level stroking improves the

entry rate of Trackball EdgeWrite considerably. What

is particularly interesting is that the amount of

improvement indicated by these very different

evaluations is quite similar percentage-wise. When

taking into account an approximation for visual

search time, the theoretical model showed a 45.0%

increase in speed between the character-level and

word-level versions of Trackball EdgeWrite – 23.1 vs

33.5 wpm. This theoretical difference is quite similar

to the empirical 46.5% speedup obtained for Jim

between his best character-level performance and his

word-level performance (see Figure 22(a)). This is

also similar to the 43.9% stroke savings obtained with

word-level Trackball EdgeWrite as indicated by the

log file analysis (see Figure 23). In other words, the

theoretical prediction for a word-level advantage is

actually manifested in quantifiable speed and stroke

savings (i.e. efficiency improvements).

Furthermore, the fact that the efficiency improve-

ments shown in the log files are similar to the

measured speed improvement show that the stroke

savings more or less translate directly to speed gains.

This suggests that the perceptual, cognitive and

motor costs of using Trackball EdgeWrite’s word-level

stroking design are not overly taxing, which has

been a problem with some prior word prediction

systems [29,31].

Figure 23. Results from 11 weeks of Trackball EdgeWrite use

showing usage of word completion and backspace. Week 3 is

omitted because Jim did not use his computer that week.

Enabling devices, empowering people 53

D
ow

nl
oa

de
d

B
y:

 [W
ob

br
oc

k,
 J

ac
ob

 O
.]

A
t:

23
:3

5
2

Fe
br

ua
ry

 2
00

8

It is clear from this work that the process of

designing technology can benefit from incorporating

both theoretical models and real-world participants.

The use of a theoretical model helped correct an

erroneous intuition in the design of Trackball Edge-

Write, namely that removing the need to move to

the first corner would result in a faster technique

(Figure 14). Although this intuition seemed straight-

forward, it turned out to be wrong both in theory and

in practice.

Recent correspondence with Jim indicates that, 2

years after his initial exposure to Trackball EdgeWrite,

he is still actively using the technology. He writes:

‘I use EdgeWrite all time, especially if I am Googling

things and I don’t want to bother with the micro-

phone and the dictation software. I think it’s the

handiest program ever written. . . . I have no com-

plaints or major suggestions’ (6 April 2007).

Future work

An obvious limitation of the current study is that it

only used a single motor-impaired subject over

multiple sessions. This was to promote focused and

rapid iteration of the design. Thus, future work

should include a study of more users and wider

deployment for people with disabilities.

Although stroke-based word completion substan-

tially increases the speed of Trackball EdgeWrite, it

could still be improved upon. One of Jim’s quotes

indicated that he preferred the words offered by

WiViK’s WordQ to those offered by Trackball

EdgeWrite. EdgeWrite’s language models could be

recreated using sources other than newspaper

articles, perhaps including some of Jim’s own texts.

The culmination of this idea would be to provide the

end-user with an interface to incorporate their own

texts into EdgeWrite’s language model.

The software for Trackball EdgeWrite may also be

useful in an eye-tracking [25] or nose-pointing

version [48]. Eye-tracking and nose-pointing can

be used to move a mouse cursor and Trackball

EdgeWrite would allow goal crossing to replace target

pointing while writing. This may make it possible to

write gesturally with one’s eyes or nose.

The authors have also studied how Trackball

EdgeWrite performs on an isometric joystick em-

bedded in a mobile phone (Figure 24) [49,50]. Like

trackballs, isometric joysticks have no notion of

position, so the same software works without

modification. Studies on mobile phones show that

the character-level version of EdgeWrite is competi-

tive with Multitap and that the word-level version is

competitive with T9 (http://www.tegic.com), allow-

ing able-bodied users to reach speeds above 16 wpm.

Conclusion

This article has presented Trackball EdgeWrite, a

design for gesture-based text entry on everyday

trackballs targeted at users with motor impairments.

Among other design innovations, Trackball Edge-

Write includes a method for word-level stroking,

which improves the speed and accuracy of the system

over its character-level version without altering the

way in which character strokes are made. In a study

of a real trackball user with a spinal cord injury, his

best prior performance with character-level Trackball

EdgeWrite was both slower and less accurate than his

performance with the new word-level version. The

study also demonstrated that Trackball EdgeWrite

rivals the major commercial on-screen keyboard

Figure 24. An isometric joystick embedded in a mobile phone. The same software for Trackball EdgeWrite works for the isometric joystick,

which can be controlled with the thumb.

54 J. O. Wobbrock & B. A. Myers

D
ow

nl
oa

de
d

B
y:

 [W
ob

br
oc

k,
 J

ac
ob

 O
.]

A
t:

23
:3

5
2

Fe
br

ua
ry

 2
00

8

WiViK, being just as fast as WiViK but visually less

tedious. Although Trackball EdgeWrite is more error

prone during entry, it produces error-free text in the

same amount of time due to efficient error correc-

tion. Over the course of both studies, the subject Jim

went from a peak on-screen keyboard speed of

6.90 wpm without word prediction to 12.09 wpm

with word-level Trackball EdgeWrite. His success with

Trackball EdgeWrite even resulted in a television news

story in which Jim was interviewed [51]. As it was for

Jim, Trackball EdgeWrite could be useful to other

motor-impaired users who wish to ‘write’ with their

trackballs.

Acknowledgements

The authors thank Duen Horng Chau, John

SanGiovanni, Richard Simpson and especially

‘Jim’. This work was supported in part by Microsoft,

General Motors and the National Science Founda-

tion under grant UA-0308065. Any opinions, find-

ings, conclusions or recommendations expressed in

this material are those of the authors and do not

necessarily reflect those of the National Science

Foundation or any other supporter.

Portions of this article are adapted from [40,52].

Notes

1. ‘Clutching’ occurs when a user reaches the limit of allowable

motion and must lift a device or finger to regain freedom to

move in a particular direction. With a mouse, this happens

when the mouse reaches the edge of the mouse pad or table.

With a touchpad or trackball, it happens when the user’s finger

or thumb can no longer move in a given direction and therefore

must be lifted.

2. This would turn out to work quite poorly, but the investigation

was illuminating and so it is described here.

3. For example, ‘ad’ is a prefix for words ‘added’, ‘addition’,

‘administration’ and ‘additional’, all of which are more

common than ‘ad’.

4. During the test, Jim transcribes simple English phrases pres-

ented to him in both methods. Uncorrected errors are those that

Jim leaves in his transcribed strings. Corrected errors are those

that Jim initially makes but fixes (using backspace) during entry.

See Soukoreff and McKenzie [47] for more details.

5. Total error rates are simply the sum of the uncorrected and

corrected error rates.

References

1. Fuhrer CS, Fridie SE. There’s a mouse out there for everyone.

Proceedings of CSUN’s 16th Annual Conference on Tech-

nology and Persons with Disabilities. Los Angeles, CA, 19 –

24 March, California State University Northridge; 2001.

2. Wu T-F, Wang H-P, Chen MC. Enabling computer access

for children with cerebral palsy. Proceedings of the 11th

International Conference on Human – Computer Interac-

tion (HCI Int’l ’05). Las Vegas, Nevada, 22 – 27 July.

Mahwah, NJ: Lawrence Erlbaum Associates; 2005. On

proceedings CD.

3. Dawe M. Complexity, cost and customization: Uncovering

barriers to adoption of assistive technology. Refereed Poster at

the ACM SIGACCESS Conference on Computers and

Accessibility (ASSETS ’04). Atlanta, Georgia; 18 – 20

October 2004.

4. Dawe M. Desperately seeking simplicity: How young adults

with cognitive disabilities and their families adopt assistive

technologies. Proceedings of the ACM Conference on Human

Factors in Computing Systems (CHI ’06). Montréal, Québec,

22 – 27 April. New York: ACM Press; 2006. pp 1143 – 1152.

5. Fichten CS, Barile M, Asuncion JV, Fossey ME. What

government, agencies, and organizations can do to improve

access to computers for postsecondary students with dis-

abilities: Recommendations based on Canadian empirical

data. Int J Rehabil Res 2000;23:191 – 199.

6. Guerette P, Sumi E. Integrating control of multiple assistive

devices: A retrospective review. Assist Tech 1994;6:67 – 76.

7. Spaeth DM, Jones DK, Cooper RA. Universal control

interface for people with disabilities. Saudi J Disabil Rehabil

1998;4:207 – 214.

8. Anson DK, Moist P, Przywara M, Wells H, Saylor H,

Maxime H. The effects of word completion and word

prediction on typing rates using on-screen keyboards.

Proceedings of the RESNA 28th Annual Conference (RESNA

’05). Atlanta, Georgia, 23 – 27 June. Arlington, Virginia:

RESNA Press; 2005. On proceedings CD.

9. MacKenzie IS, Soukoreff RW. Text entry for mobile

computing: Models and methods, theory and practice.

Hum – Comp Interact 2002;17:147 – 198.

10. MacKenzie IS, Sellen A, Buxton W. A comparison of input

devices in elemental pointing and dragging tasks. Proceedings

of the ACM Conference on Human Factors in Computing

Systems (CHI ’91). New Orleans, LO, March. New York:

ACM Press; 1991. pp 161 – 166.

11. MacKenzie IS, Kauppinen T, Silfverberg M. Accuracy

measures for evaluating computer pointing devices. Proceed-

ings of the ACM Conference on Human Factors in Comput-

ing Systems (CHI ’01). Seattle, WA, 31 March – 5 April. New

York: ACM Press; 2001. pp 9 – 16.

12. Card SK, Mackinlay JD, Robertson G. The design space of

input devices. Proceedings of the ACM Conference on

Human Factors in Computing Systems (CHI ’90). Seattle,

WA, 1 – 5 April. New York: ACM Press; 1990. pp 117 – 124.

13. Epps BW, Snyder HL, Muto WH. Comparison of six cursor

devices on a target acquisition task. Proceedings of the Society

for Information Display. San Diego, California, 6 – 8 May.

San Jose, CA: Society for Information Display; 1986. pp

302 – 305.

14. Sperling BB, Tullis TS. Are you a better ‘mouser’ or

‘trackballer’? A comparison of cursor-positioning perfor-

mance. SIGCHI Bull 1988;19:77 – 81.

15. Accot J, Zhai S. Performance evaluation of input devices in

trajectory-based tasks: An application of the Steering Law.

Proceedings of the ACM Conference on Human Factors in

Computing Systems (CHI ’99). Pittsburgh, Pennsylvania,

May 1999. New York: ACM Press; 1999. pp 466 – 472.

16. Paradise J, Trewin S, Keates S. Using pointing devices:

Difficulties encountered and strategies employed. Proceedings

of the 11th International Conference on Human – Computer

Interaction (HCI Int’l ’05). Las Vegas, Nevada, 22 – 27 July.

Mahwah, NJ: Lawrence Erlbaum Associates; 2005. On

proceedings CD.

17. Trewin S, Pain H. Keyboard and mouse errors due to motor

disabilities. Int J Hum – Comp Stud 1999;50:109 – 144.

18. Hinckley K, Sinclair M. Touch-sensing input devices.

Proceedings of the ACM Conference on Human Factors in

Computing Systems (CHI ’99). Pittsburgh, PA, 15 – 20 May.

New York: ACM Press; 1999. pp 223 – 230.

Enabling devices, empowering people 55

D
ow

nl
oa

de
d

B
y:

 [W
ob

br
oc

k,
 J

ac
ob

 O
.]

A
t:

23
:3

5
2

Fe
br

ua
ry

 2
00

8

19. Shein F, Hamann G, Brownlow N, Treviranus J, Milner M,

Parnes P. WiViK: A visual keyboard for Windows 3.0.

Proceedings of the RESNA 14th Annual Conference (RESNA

’91). Kansas City, MI, 21 – 26 June. Washington, DC:

RESNA Press; 1991. pp 160 – 162.

20. Bishop JB, Myers GA. Development of an effective computer

interface for persons with mobility impairment. Proceedings

of the 15th Annual Conference on Engineering in Medicine

and Biology. Los Alamitos, CA: IEEE Press; 1993. pp 1266 –

1267.

21. Ward DJ, Blackwell AF, MacKay DJC. Dasher – A data entry

interface using continuous gestures and language models.

Proceedings of the ACM Symposium on User Interface

Software and Technology (UIST ’00). San Diego, CA, 6 – 8

November. New York: ACM Press; 2000. pp 129 – 137.

22. Ward DJ, MacKay DJC. Fast hands-free writing by gaze

direction. Nature 2002;418:838.

23. Isokoski P, Raisamo R. Device independent text input: A

rationale and an example. Proceedings of the ACM Con-

ference on Advanced Visual Interfaces (AVI ’00). Palermo,

Italy, May. New York: ACM Press; 2000. pp 76 – 83.

24. Wobbrock JO, Myers BA. Gestural text entry on multiple

devices. Proceedings of the ACM SIGACCESS Conference on

Computers and Accessibility (ASSETS ’05). Baltimore, MD,

9 – 12 October. New York: ACM Press; 2005. pp 184 – 185.

25. Isokoski P. Text input methods for eye trackers using off-screen

targets. Proceedings of the ACM Symposium on Eye Tracking

Research and Applications (ETRA ’00). Palm Beach Gardens,

FL, November. New York: ACM Press; 2000. pp 15 – 21.

26. Zhai S, Kristensson P. Shorthand writing on stylus keyboard.

Proceedings of the ACM Conference on Human Factors in

Computing Systems (CHI ’03). Ft. Lauderdale, FL, 5 – 10

April. New York: ACM Press; 2003. pp 97 – 104.

27. Mankoff J, Abowd GD. Cirrin: A word-level unistroke

keyboard for pen input. Proceedings of the ACM Symposium

on User Interface Software and Technology (UIST ’98).

San Francisco, CA, November. New York: ACM Press; 1998.

pp 213 – 214.

28. Perlin K. Quikwriting: Continuous stylus-based text entry.

Proceedings of the ACM Symposium on User Interface

Software and Technology (UIST ’98). San Francisco, CA,

1 – 4 November). New York: ACM Press; 1998. pp 215 – 216.

29. Goodenough-Trepagnier C, Rosen MJ, Galdieri B. Word menu

reduces communication rate. Proceedings of the RESNA 9th

Annual Conference (RESNA ’86). Minneapolis, MN, 23 – 26

June. Washington, DC: RESNA Press; 1986. pp 354 – 356.

30. Koester HH, Levine SP. Effect of a word prediction feature on

user performance. Augment Alt Comm 1996;12:155 – 168.

31. Soede M, Foulds RA. Dilemma of prediction in communica-

tion aids. Proceedings of the RESNA 9th Annual Con-

ference (RESNA ’86). Minneapolis, Minnesota, 23 – 26 June.

Washington, DC: RESNA Press; 1986. pp 357 – 359.

32. Wobbrock JO, Myers BA, Kembel JA. EdgeWrite: A stylus-

based text entry method designed for high accuracy and

stability of motion. Proceedings of the ACM Symposium on

User Interface Software and Technology (UIST ’03).

Vancouver, British Columbia, 2 – 5 November. New York:

ACM Press; 2003. pp 61 – 70.

33. Fitts PM. The information capacity of the human motor

system in controlling the amplitude of movement. J Exp

Psychol 1954;47:381 – 391.

34. MacKenzie IS. Fitts’ law as a research and design tool in

human – computer interaction. Hum – Comp Interact 1992;7:

91 – 139.

35. Accot J, Zhai S. Beyond Fitts’ law: Models for trajectory-based

HCI tasks. Proceedings of the ACM Conference on Human

Factors in Computing Systems (CHI ’97). Atlanta, Georgia,

22 – 27 March. New York: ACM Press; 1997. pp 295 – 302.

36. Accot J, Zhai S. More than dotting the i’s: Foundations for

crossing-based interfaces. Proceedings of the ACM Con-

ference on Human Factors in Computing Systems (CHI ’02).

Minneapolis, Minnesota, 20 – 25 April 2002. New York:

ACM Press; 2002. pp 73 – 80.

37. Kristensson P, Zhai S. SHARK2: A large vocabulary short-

hand writing system for pen-based computers. Proceedings of

the ACM Symposium on User Interface Software and

Technology (UIST ’04). Santa Fe, New Mexico, 24 – 27

October. New York: ACM Press; 2004. pp 43 – 52.

38. Wobbrock JO, Myers BA, Chau DH. In-stroke word

completion. Proceedings of the ACM Symposium on User

Interface Software and Technology (UIST ’06). Montreux,

Switzerland, 15 – 18 October. New York: ACM Press; 2006.

pp 333 – 336.

39. Zipf G. Selective studies and the principle of relative

frequency in language, Cambridge, MA: MIT Press; 1932.

40. Wobbrock JO, Myers BA. Trackball text entry for people with

motor impairments. Proceedings of the ACM Conference on

Human Factors in Computing Systems (CHI ’06). Montréal,

Québec, 22 – 27 April. New York: ACM Press; 2006.

pp 479 – 488.

41. Kucera H, Francis WN. Computational analysis of present-

day American English, Providence, RI: Brown University

Press; 1967.

42. Clarkson PR, Rosenfeld R. Statistical language modeling

using the CMU-Cambridge toolkit. Fifth European

Conference on Speech Communication and Technology

(Eurospeech ’97). Rhodes, Greece; September 1997.

pp 2707 – 2710.

43. Hick WE. On the rate of gain of information. Q J Exp Psychol

1952;4:11 – 26.

44. Hyman R. Stimulus information as a determinant of reaction

time. J Exp Psychol 1953;45:188 – 196.

45. Soukoreff RW, MacKenzie IS. Theoretical upper and lower

bounds on typing speed using a stylus and soft keyboard.

Behav Inf Tech 1995;14:370 – 379.

46. Horstmann HM, Levine SP. The effectiveness of word

prediction. Proceedings of the RESNA 14th Annual Con-

ference (RESNA ’91). Kansas City, MI. 21 – 26 June.

Washington, DC: RESNA Press; 1991. pp 100 – 102.

47. Soukoreff RW, MacKenzie IS. Metrics for text entry

research: An evaluation of MSD and KSPC, and a new

unified error metric. Proceedings of the ACM Conference

on Human Factors in Computing Systems (CHI ’03). Ft.

Lauderdale, FL, 5 – 10 April. New York: ACM Press; 2003.

pp 113 – 120.

48. Austen I. A new rule of cursor control: Just follow your nose.

New York: The New York Times; 28 October 2004.

49. Chau DH, Wobbrock JO, Myers BA, Rothrock B. Integrating

isometric joysticks into mobile phones for text entry. Extended

Abstracts of the ACM Conference on Human Factors in

Computing Systems (CHI ’06). Montréal, Québec, 22 – 27

April. New York: ACM Press; 2006. pp 640 – 645.

50. Wobbrock JO, Chau DH, Myers BA. An alternative to push,

press, and tap-tap-tap: Gesturing on an isometric joystick for

mobile phone text entry. Proceedings of the ACM Conference

on Human Factors in Computing Systems (CHI ’07). San

Jose, CA, 28 April – 3 May. New York: ACM Press; 2007.

pp 667 – 676.

51. Ivanhoe Broadcast News. Hi-tech typing. Discoveries and

breakthroughs inside science. Winter Park, FL, USA: The

American Institute of Physics; 2005.

52. Wobbrock JO, Myers BA. From letters to words: Efficient

stroke-based word completion for trackball text entry.

Proceedings of the ACM SIGACCESS Conference on

Computers and Accessibility (ASSETS ’06). Portland, OR,

23 – 25 October. New York: ACM Press; 2006. pp 2 – 9.

56 J. O. Wobbrock & B. A. Myers

