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ABSTRACT 
Interaction logs generated by educational software can 
provide valuable insights into the collaborative learning 
process and identify opportunities for technology to provide 
adaptive assistance. Modeling collaborative learning 
processes at tabletop computers is challenging, as the 
computer is only able to log a portion of the collaboration, 
namely the touch events on the table. Our previous lab 
study with adults showed that patterns in a group’s touch 
interactions with a tabletop computer can reveal the quality 
of aspects of their collaborative process. We extend this 
understanding of the relationship between touch 
interactions and the collaborative process to adolescent 
learners in a field setting and demonstrate that the touch 
patterns reflect the quality of collaboration more broadly 
than previously thought, with accuracies up to 84.2%. We 
also present an approach to using the touch patterns to 
model the quality of collaboration in real-time. 
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ACM Classification Keywords 
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INTRODUCTION 
Tabletop computers have affordances for collaborative 
learning because of the large, shared interface that multiple 
people can see and interact with at once (Figure 1) 
[9,17,18,32,33]. However, the process of collaborative 
learning is complex and subject to a variety of factors 
external to the technology, such as students’ collaboration 
skills, group dynamics, and the nature of the learning 
activity [34]. When the collaboration process derails, 
students’ learning can be negatively impacted. So although 
tabletops may afford collaboration, small group work at a 

tabletop computer is just as susceptible to breakdowns in 
collaboration as group work using other kinds of tools. 
More can be done to capitalize on the affordances of 
collocated tabletop interaction to bring about resilient 
learning outcomes. 

One avenue for tabletop technology to better support 
collaborative learning is to detect and respond to 
breakdowns in collaboration in real-time. With this goal in 
view, we model the process of small-group collaborative 
learning at tabletop computers. By modeling collaboration, 
we plan to enable the design of software that supports the 
collaborative process through interventions that track, 
measure, and reinforce beneficial group dynamics.  

A significant challenge in modeling collaborative learning 
at an interactive tabletop is that the collaboration process is 
made up of verbal and gestural interactions between 
learners and their interactions with the tabletop, but only the 
latter—direct interaction with the tabletop—is visible to the 
computer. In our previous work [14], we found several 
patterns in those direct interactions that indicated the 
quality of content monitoring [34], a key collaborative 
learning process. In this paper, we present a follow-up 
study conducted in a classroom field setting with high 
school students to find out if these touch interaction 
patterns continue to reflect collaborative learning processes 
beyond the original lab setting. 

Today’s tabletop computers are an emerging technology, 
rarely seen in classrooms. It is predicted, however, that 
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Figure 1: A group’s touch interactions with a tabletop 
computer can be used to model collaboration in real-time. 
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tabletops will see widespread adoption in the near future 
[28]. If tabletops are to be adopted in educational settings, 
the peculiarities of these environments must be taken into 
account [2,12,20]. This is a key motivation for our work 
moving from the lab to the field.  

In this work, we address the following research question: 
can the quality of groups’ collaborative learning processes 
be detected using touch data alone? The contributions of 
this work are: (1) a refined set of touch patterns reflecting 
the quality of high school students’ collaborative learning 
processes; and (2) an approach to using these touch patterns 
to model collaborative learning processes in real-time that 
enables breakdowns to be detected using only touch data. 

COLLABORATIVE LEARNING & SOCIAL REGULATION  
Education research [5,10] shows that pedagogical 
approaches that give students the opportunity to discuss and 
collaborate with others can be particularly helpful in 
developing their higher-order thinking skills such as 
analyzing, synthesizing, and evaluating. Through working 
with their peers, learners are exposed to others’ problem 
solving approaches and are given the opportunity to better 
understand their own thinking by explaining it to others. 

In this paper, we use a definition of collaborative learning 
drawn from the Learning Sciences. Collaborative learning 
occurs when a group works together to construct a shared 
understanding of a problem [11]. This definition separates 
collaborative learning from cooperative learning, in which 
learners work independently before coming together, e.g., 
by dividing a task among group members. Although 
collaborative and cooperative learning both have strengths, 
the focus here is activities where collaboration is desirable. 

An implication of this definition of collaborative learning is 
that the unit of analysis is the group rather than the 
individual. To model the collaboration process, it is 
important to look at interactions among group members 
rather than contributions of individual members in isolation. 

Social Regulation in Collaborative Learning 
Social regulation refers to the processes that groups use to 
manage their learning [19,34]. When social regulation is 
successful, the group collectively establishes goals, 
monitors and develops shared understanding of the task, 
and monitors progress toward shared goals. Research shows 
that students often fail to capitalize on the benefits of 
collaborative learning because they do not engage in social 
regulation [19,34]. 

Social regulation involves three main processes: planning 
of task work and the group’s approach to task content; 
monitoring of the task plan, of group understanding of 
content, and progress; and behavioral engagement, the 
process of getting an off-task group member to engage with 
the task [34]. In our previous work [14], we found touch 
interaction patterns were associated with the quality of 
groups’ content monitoring, a sub-process of monitoring 
that groups use to check their understanding of the task at 

hand by asking questions and engaging in dialogue to 
confirm or challenge each other’s contributions. Of all the 
social regulation processes, content monitoring has been 
shown to be critical to groups’ development of shared 
understanding. According to Rogat and Linnenbrink-Garcia 
[34], content monitoring is high-quality when groups focus 
on building conceptual understanding of a task, rather than 
finding the right answer. 

While no single concept can encompass the full complexity 
of collaborative learning, social regulation’s influence on 
collaborative cognition and group outcomes [19,34] make it 
an appropriate tool for determining quality of collaboration 
in the context of this research. 

RELATED WORK 
Considerable work has been carried out on understanding 
how groups collaborate at tabletop computers, e.g. [3,39], 
with many researchers focusing on children, e.g. [15–
17,31,32]. Previous research has also explored how 
interaction design can help users manage territoriality 
[35,37] and resolve conflicts that occur due to the shared 
interface [27]. Additionally, visualization tools exist to help 
designers to understand and evaluate how users collaborate 
with their software [1,38].  

Most of the prior work in modeling collaboration at 
tabletop computers has taken place in lab settings, with 
groups of adults working on simulated tasks. A smaller 
body of work has begun to model tabletop collaborative 
learning specifically. Even less published research has 
taken place in authentic classrooms. The most extensive 
work in this area has come from Martinez-Maldonado et al. 
[25]. He and his colleagues used data mining techniques to 
extract application-specific sequential patterns of 
interaction associated with high- and low- achieving groups 
of elementary students. They also developed visualizations 
to show how much individual group members contributed 
in verbal utterances and touch interactions, which clearly 
showed the balance of participation among members but 
could not reveal quality [22,23]. Later, they combined these 
visualizations with a model task solution created by a 
content expert. Teachers could compare groups’ progress 
on a task to the expert model, enabling real-time 
identification of groups that needed help [21,24].   

In Martinez-Maldonado et al.’s approach, the process 
modeling and the software that students used were tightly 
integrated—the patterns detected were specific to the 
software. They also relied on an expert model, or clear 
“right answer,” which is not appropriate for open-ended or 
creative activities. In contrast, our goal is to develop a 
model of groups’ social regulation processes that can be 
used in a variety of contexts, including open-ended 
collaborative tasks. This requires an approach that is 
independent of the specific task or learning objectives.  

Social regulation occurs in the interactions between group 
members as well as their interactions with the learning 
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environment. A tabletop computer, however, can only 
detect direct interactions with the interface without the use 
of additional sensors. To model the collaborative learning 
process, we need to understand how physical interactions 
with the computer relate to the collaboration as a whole. A 
small body of work has been carried out in this area. 

Fleck et al. [16] explored the relationship between groups’ 
verbal interactions and physical actions on the tabletop. 
Verbal elements of successful collaboration, such as 
making and accepting suggestions or negotiating, were 
often complemented by particular actions in the software. 
Although Fleck et al. do not mention it directly, their 
markers of successful collaboration align with processes of 
social regulation, including content monitoring. 

Pontual-Falcão and Price [30] investigated instances of 
“interference” that interrupted or changed the flow of 
students collaborating on a tabletop activity. Although it is 
often assumed that such interference hinders the 
collaborative process, Pontual-Falcão and Price found that 
interference could be productive or counter-productive, 
depending on how the group responded to it. A key finding 
was that interference primarily took place through physical 
rather than verbal interactions.  

Both of these studies demonstrate that physical interactions 
are an integral part of the tabletop collaboration process, 
often directly coupled to or influencing verbal interactions. 
Building on this close relationship between physical and 
verbal collaboration processes, we identified touch patterns 
associated with quality of social regulation in a lab study of 
adults working on an open-ended poetry analysis task [14]. 
Although the quality of most social regulation processes 
was similar across groups, participants’ patterns of 
interaction clearly differed during low- and high-quality 
episodes of the regulatory sub-process content monitoring. 
This finding suggested that collaboration breakdowns could 
be detected independently of specific software or learning 
activities, and provided the rationale for the current work, 
whose main contribution beyond our previous work is an 
approach to using touch patterns to detect collaboration 
problems in real time. 

METHOD 
In this study, we sought to build upon our previous work 
[14] by evaluating the interaction patterns associated with 
quality of content monitoring in a field study with high-
school students in a different learning domain. Whereas the 
adults in our lab study [14] remained on-task and engaged 
at all times, studies of students using interactive tabletops in 
the field have shown them to be not quite so consistently 
well-behaved or motivated to stay on task [13,20]. Given 
the stark differences between the behavior of the adults in 
the lab setting and that of students in the wild, it is 
important to test this approach to detecting collaborative 
processes in an authentic setting.  

By studying students’ social regulation at a tabletop 
computer in a classroom, we determined: (1) whether the 
touch patterns associated with quality of content monitoring 
would transfer to this new, field-based context; (2) what 
combinations of patterns revealed about the collaboration 
process; and (3) whether the touch patterns could be used to 
detect automatically and in real-time the quality of 
collaboration. 

Participants 
Sixteen high school students (10 female, 6 male) 
participated in this study. The students were enrolled in a 
six-week user-centered design seminar offered as part of a 
summer program. The course was structured so that 
students learned about user-centered design while working 
on a group project to design and build a website around a 
topic of their choosing. The students were divided into four 
project groups with four students per group. 

Apparatus 
The participants used a Microsoft PixelSense, a vision-
based tabletop computer with a 40" multi-touch screen.  
The computer was placed to one side of the classroom with 
a wide-angle video camera mounted on a tripod on a desk 
next to the computer, leaving enough space for students to 
move freely around the tabletop. The camera was angled 
toward the screen so that it could capture every touch to the 
computer and interactions among the group members. 

Procedure 
We custom-built four distinct applications designed to be 
integrated into the program curricula and used alongside 
other classroom activities and resources. Each application 
was used in a different class session scheduled to fit the 
timing of particular curriculum topics. The students carried 
out each of the tabletop activities in their project groups.  

 
Figure 2: The applications created for this work. Top left: 

design critique. Top right: question brainstorming. Bottom 
left: search. Bottom right: heuristics. 

Each application addressed the specific learning objectives 
for a class session. Three of the applications used the native 
Microsoft PixelSense SDK and one was web browser-
based. The first application (Fig. 2, top left) supported 
design critiques and was used in the early stage of the group 
project to finalize their website layouts. A second 
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application (Fig. 2, top right) helped groups prepare a 
usability test plan. It included a question sorting component 
and a question brainstorming component. Most of the 
students had no web programming experience so a third 
application (Fig. 2, bottom left) developed groups’ search 
skills to help them find and evaluate online technical 
resources. The final application (Fig. 2, bottom right) was a 
Chrome browser plugin that enabled students to find and 
annotate, via drag-and-drop, real-world examples of designs 
that support or violate Nielsen’s usability heuristics [29].  

Each group was video recorded during each activity and the 
computer logged every touch. In all, 4253 touches were 
logged over 13 group sessions.  

In order to detect the touch patterns described in our earlier 
work [14], it was not necessary to know exactly which on-
screen objects were touched. For some of the touch 
patterns, however, it was important to know which objects 
were related in terms of their function in the learning 
software. For example, during high-quality social 
regulation, a group maintains shared focus on whatever 
aspect of the task it is working on. Knowing whether the 
objects being touched were related or unrelated makes it 
possible to determine if the group was maintaining shared 
focus. When a group was interacting with related objects, it 
was likely they were focused on a particular feature or 
aspect of the task. Conversely, when a group was 
interacting with unrelated objects, it was likely they were 
shifting focus between unrelated aspects of the task.  

Object relationships were described in simple XML files 
packaged with three of the applications. The XML files 
contained a top-level node for each on-screen object.  Each 
top-level node then contained a list of child nodes 
identifying any related on-screen objects. All relationships 
were symmetrical and unordered. Relationships were 
determined when the application was built, using the same 
criteria as in our previous study [14]: each object’s function 
in the context of the activity. 

Consider the following example from the search application 
(on-screen objects are italicized): This application includes 
a Vocabulary object, containing optional prompt words that 
groups may use to formulate a search query. The students 
type their query into a Search Query object using the on-
screen Keyboard. These three objects are therefore 
functionally related; while interacting with these elements 
the focus is creating a search query and all three objects 
could be expected to be involved. Once a group completes a 
Search Query they progress to Search Results, a separate 
object and the final stage of the search. As the Search 
Results object becomes available as a direct consequence of 
actions in the Search Query, these two objects are 
functionally related. At this stage of the search process, 
there is no reason for the group to interact with both the 
Search Results and Vocabulary, or both the Search Results 
and Keyboard, unless they are shifting focus from 

evaluating results to formulating a new query. Therefore, 
the Search Results and Vocabulary are unrelated, as are the 
Search Results and Keyboard.  

Because relationships were defined in XML files, not 
hardcoded in the applications, they could be adjusted at any 
time if the designer’s assumptions were later found to be 
false. No adjustment was necessary in this study, however. 

The browser-based application did not include a 
relationship file because browsing was unrestricted and 
therefore on-screen relationships could not be determined. 
Without a relationship file, one of the three touch patterns, 
which relies on the on-screen relationships, could not be 
applied to the touch data for the browser-based application. 

DATA ANALYSIS 
Video Analysis – Coding for Social Regulation 
The videos were thematically coded for social regulation 
independently from the touch data, a process that took a 
number of weeks (see Social Regulation Processes, Table 
1). The social regulation codes were drawn directly from 
Rogat and Linnenbrink-Garcia [34] and we relied heavily 
on their detailed descriptions and examples of each code. 
All stages of video coding were carried out multiple times 
by one researcher and validated with peer debriefing [7] 
until no further revisions were deemed necessary. 

First, the videos were viewed in their entirety to gain a 
general sense of each group’s interactions. The videos were 
then transcribed and each interaction between group 
members was coded for social regulation, where it was 
occurring, using Rogat and Linnenbrink-Garcia’s 
framework [34]. The planning and monitoring processes 
both have sub-processes (listed in Table 1), referring to 
which aspect of the collaboration was being planned or 
monitored. Interactions that represented planning or 
monitoring were coded at the more specific sub-process 
level. Occurrences of social regulation were also coded for 
quality, again drawing on Rogat and Linnenbrink-Garcia’s 
established framework. Table 1 does not provide the 
lengthy and detailed criteria used to determine quality as 
they were pulled directly from Rogat and Linnenbrink-
Garcia’s paper without modification (see p388 in [34]).  

The coded transcripts were reviewed alongside the videos. 
Additional narrative observations were added for events or 
interactions that did not fall under social regulation but 
described the nature of a group’s collaboration on the 
assigned task, such as when students were off-task. These 
observations were used to extend the list of codes 
(Additional Codes, Table 1) through collaborative coding 
[36] to a total of 10 codes: 6 social regulation codes 
consisting of the planning and monitoring sub-processes 
plus behavioral engagement, and 4 additional non-social 
regulation codes. Referring back to Rogat and Linnenbrink-
Garcia’s descriptions [34] and the video, the codes applied 
to the transcripts were adjusted as the subtleties of each 
code was teased out.  
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All dimensions of social regulation were included in the 
video coding for this study even though our previous work 
[14] only found touch patterns associated with content 
monitoring. In the previous study, all groups used 
consistently high-quality planning processes and remained 
collaborative and on task at all times, meaning that there 
was no need for behavioral engagement, the process of re-
engaging off-task group members [34]. This meant that the 
touch pattern analysis was limited to monitoring and its 
sub-processes, the only aspect of social regulation where 
there were differences between groups. In contrast to the 
lab study, we expected high school students in a naturalistic 
classroom setting to go off-task and show greater variation 
in quality of social regulation than the adults. This 
expectation led us to code for all social regulation 
processes, not just content monitoring.  

Table 1 also shows whether each code was considered to 
have a positive or negative impact on collaboration. Non-
collaborative interactions was a code used by Rogat & 
Linnenbrink-Garcia in their work on social regulation [34], 
referring to episodes in which group members work 
independently. While there are many cases where non-
collaborative interactions would be acceptable, none of the 
activities used in this study would have benefited from a 
divide-and-conquer approach and groups were explicitly 
told to complete the task collaboratively. Therefore, in this 
study, non-collaborative interactions were deemed negative.  

Off-task interactions refers to episodes in which the group 
was engaged with an activity other than the assigned task, 
such as gossiping about classmates or discussing TV shows.  

Task work refers to episodes in which groups were on task 
but not engaged in any discussion, such as when one group 
member was typing while other group members looked on.  

Software conflicts refers to episodes in which multiple 
students carried out conflicting actions in the software, 
bringing the activity to a halt until the issue was resolved. 
In these cases, the group’s attention was on the software, 
not the assigned task, which meant the episode could not 
easily be described with another code. The software 
conflicts code does not include conflicting actions that 
resemble Pontual-Falcão and Price’s [30] notion of 
interference – conflicts that moved task work forward, or at 
least allowed it to continue. Although our software conflicts 
code could be considered a type of off-task interaction, we 
decided that it described interactions that were qualitatively 
different from general off-task interactions and therefore 
merited a dedicated code. Software conflicts typically 
forced off-task interaction as the students had to stop what 
they were doing to address the fault. This is in contrast to 
general off-task interaction, in which groups voluntarily or 
spontaneously stopped working on the assigned task. 

The coding process allowed the videos to be broken down 
into episodes. In Chi’s terms [4], an episode is “an event, or 
a specific activity” (p. 284), for example when a group was 

engaged in a particular social regulation process or another 
activity, such as working in silence, or off-task 
conversation. Episodes could have multiple codes; for 
example, when some students in the group were off-task 
while the others were engaged in task planning. Episodes 
varied greatly in length – from a few seconds to several 
minutes of interactions.  
Social regulation processes Impact on collaboration 
Planning: 
• Task 
• Content 
Monitoring: 
• Content 
• Plan 
• Progress 
Behavioral engagement 

Processes coded as high or 
low quality 
High-quality processes 
considered to have positive 
impact 
Low-quality processes 
considered to have negative 
impact 

Additional codes  
• Non-collaborative interactions 
• Off-task interactions 
• Task work 
• Software conflicts  

• Negative 
• Negative 
• Positive 
• Negative 

Table 1: Codes used in the video analysis. Social regulation 
codes adapted from [34].  

Touch Data Pre-processing 
Touch data analysis began with pre-processing. It is 
important to note that the ability to distinguish between 
individuals is essential to using the modeling approach 
described in this work. The Microsoft PixelSense used in 
this study does not natively distinguish between users. 
Therefore, the first step was to use the video to manually 
label each touch with its author – the group member who 
performed the touch. Several alternative methods for 
distinguishing users exist; for example, through the use of a 
depth cameras [6,23] or wearable sensors [26]. 
Additionally, the DiamondTouch [8] table natively supports 
user tracking. Where these options can be used, manually 
labeling touches would not be necessary. 

Next, sequences of touches representing complete actions 
carried out by an individual group member were 
automatically extracted from the log files using the rules 
developed in our earlier work [14] and shown in Table 2. 

Elements 
touched are: 

Part of the same 
sequence 

Part of separate 
sequences 

related ≤ 50 seconds > 50 seconds 
unrelated ≤ 15 seconds > 15 seconds 

Table 2: Rules for grouping touches with the same author into 
sequences by time between touches, adapted from [14]. 

The XML relationship file for the application was queried 
to determine if two elements touched sequentially were 
related or unrelated, then the rules given in Table 2 were 
applied to determine if the second touch was part of the 
same sequence as the previous touch or the start of a new 
sequence. Sequences overlapped in time when multiple 
students were touching the tabletop simultaneously. 
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Touch Data Analysis 
We used the video timecodes marking the beginning and 
end of episodes to find the corresponding touch data in the 
log files. Episode boundaries were based on group activity 
and interactions in the video so episodes did not always 
neatly align with touch sequences. Longer episodes 
typically contained multiple touch sequences and episode 
boundaries sometimes fell in the middle of a touch 
sequence. In these cases, touch sequences were aligned with 
the episode containing the bulk of the sequence as 
determined by the timestamps associated with the touch 
data and the corresponding episode timecodes.  

Next, we inspected the processed touch logs to determine if 
the touch patterns originally identified in [14] continued to 
serve as indicators of the quality of content monitoring in 
the context of this study. Table 3 describes the touch 
patterns as they were applied to the data from this study. 
The quality thresholds in Table 3 were calculated from the 
results of the previous study. Episodes of touch data that 
fell between the thresholds were labeled “medium-quality.” 

Pattern High quality  Low quality  

1) Unrelated Touches – 
Frequency of touches to 
unrelated objects 

≤ 5% of 
touches in 
sequence 

> 10% of 
touches in 
sequence 

2) Touch Time – Amount of 
time spent touching the 
screen per person 

≤ 15% of time  > 30% of time 

3) Overlapping Sequences – 
multiple users interacting with 
the screen at the same time 

≤10% of 
touches are 
“overlapping” 

>20% of 
touches are 
“overlapping” 

Table 3: Touch patterns associated with quality of content 
monitoring. Quality thresholds are derived from [6]. 

Based on the results of this analysis, we then looked at how 
combinations of patterns reflected collaboration quality, 
e.g., when an episode was labeled high quality according to 
one pattern and low quality according to another.  

In the previous study [14], there were limited episodes of 
social regulation processes other than content monitoring so 
it had not been possible to determine whether the touch 
patterns might apply to other processes. Although there are 
numerous features that make each process distinct, all high-
quality processes share these key characteristics: the group 
maintains shared focus on the learning task and the group 
dynamic is cohesive and inclusive of all members’ 
contributions. If one or both of these characteristics is 
lacking, the social regulation process is deemed low quality.  

As the previous study had only been able to speak to quality 
of content monitoring, we decided to check the patterns 
against all video codes in order to find out if the patterns 
were detecting quality of content monitoring specifically or 
if they may be reflecting the common characteristics of 
social regulation more broadly. This decision was also 
made with a view to addressing an obstacle specific to 
using the touch patterns to model collaboration in real time. 

With video analysis, it is possible to identify episodes of 
content monitoring then use the patterns to determine each 
episode’s quality. In real time, however, all touch data 
would be checked against the patterns but, without the 
video analysis to identify which touch data represented 
episodes of content monitoring, there would be no way to 
tell if pattern quality reflected quality of content monitoring 
or something else entirely. Understanding how the patterns 
reflect common features of quality of collaboration beyond 
content monitoring could address this issue. 

The final step of the touch data analysis was to test an 
approach to using touch patterns to detect collaboration 
problems in real-time. In order to use the patterns in real-
time, the touch data would have to be checked against the 
patterns while the activity was in progress. While analyzing 
videos allows clear episode boundaries to be identified, this 
would not be possible in real-time or with touch data alone. 
Therefore, we checked for the patterns given in Table 3 at 
regular intervals.  

Intervals needed to be long enough to allow meaningful 
face-to-face interactions to take place, but short enough to 
allow early detection of behavior indicative of collaboration 
problems. In our analysis, an interval of 2 minutes was used 
as most (93%) of the episodes from the coded video data 
were under this duration. The first interval began when a 
log file was created at the start of an activity. Most 2-
minute intervals contained at least one complete episode. 
To reduce the potential for incorrect classifications caused 
by the artificial interval length, 2-minute intervals were 
started every minute so that they overlapped. Each interval 
was automatically labeled as high, low, or medium (falling 
between the thresholds) quality according to each pattern in 
Table 3. Finally, the automatically labeled intervals were 
compared to the coded episodes identified during video 
analysis using the timecodes marking the bounds of each 
episode to match them to the appropriate interval(s). In 
cases where an episode spanned the boundary of two 
intervals, the episode was aligned to the interval containing 
the majority of the episode (in seconds). 

RESULTS 
Our analysis showed that the high school students in a 
classroom setting used a greater range of social regulation 
processes with more variation in quality, enabling us to 
investigate the relationship between the touch patterns and 
quality of collaboration more broadly than in the previous 
study. We found that two of the touch patterns in 
combination—Unrelated Touches and a modified version of 
Overlapping Sequences—were clearly associated with 
quality of collaboration in up to 84.2% of cases. Checking 
these patterns against intervals of touch data, rather than 
video episodes, proved to be a viable approach to detecting 
quality of collaboration in real-time. 

Social Regulation & Quality of Collaboration 
Unlike the adults in [14], whose quality of social regulation 
remained consistent for the duration of the activity, the high 
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school students regularly engaged in both high- and low-
quality social regulation during an activity. Additionally, all 
groups of students employed behavioral engagement, a 
process not seen with the adult groups. Each group’s use of 
social regulation processes in all activities combined is 
shown in Table 4. The results are given as percentages to 
facilitate inter-group comparison as the number of episodes 
of social regulation in each group differed. 

 Group 1 Group 2 Group 3 Group 4 
Social 
regulation 
process 

HQ LQ HQ LQ HQ LQ HQ LQ 

Planning - 
task 0 36.8 0 2.9 0 0 0 6.7 

Planning - 
content 0 5.3 14.7 5.9 7.7 15.4 10.0 10.0 

Monitoring - 
content 31.6 5.3 32.4 17.6 23.1 30.8 16.7 33.3 

Monitoring - 
plan 0 10.5 2.9 5.9 0 0 0 13.3 

Monitoring - 
progress 0 5.3 2.9 2.9 7.7 0 0 0 

Behavioral 
engagement 0 5.3 8.8 2.9 0 15.4 10.0 0 

Total 31.6 68.4 61.8 38.2 38.5 61.5 36.7 63.3 

Table 4: Quality of social regulation by group, shown as the 
percentage of each group's social regulation episodes in all 

activities combined. 

Table 4 shows that each group employed social regulation 
processes differently, with some groups relying on 
particular processes more than others. For example, group 1 
engaged in considerably more task planning than any other 
group while group 3 failed to engage in task planning at all. 
Content monitoring was the most heavily used process in 
all groups, representing 47.9% of all social regulation 
episodes. With the exception of group 2, overall social 
regulation was low quality more often than high quality. 

 Mean number of episodes 
Code Group 1 Group 2 Group 3 Group 4 All Groups 
Non-
collaborative 
interactions 

1.7 1.3 1.3 0.3 1.2 

Off-task 
interactions 

2.0 2.0 3.0 0.7 1.9 

Task work 0 2.0 0.7 1.3 1.1 

Software 
conflicts 

1.0 1.8 2.0 1.3 1.5 

Table 5: Mean number of episodes of each additional code per 
activity by group. 

The high school students also differed from the adults in 
[14] in terms of the behaviors described by the additional 
codes given in Table 1: non-collaborative interactions, off-
task interactions, task work, and software conflicts. 
Whereas the adults remained on task and collaborative, the 
students frequently engaged in off-task and non-

collaborative interactions. Episodes of each of the 
additional codes occurred in all groups, with the exception 
of group 1, who did not have any episodes of task work. 
Table 5 shows the average number of episodes of each 
additional code per activity for each group. 

Touch Patterns and Quality of Content Monitoring 
Table 6 shows the number of episodes coded as high- or 
low-quality content monitoring in the video analysis and the 
percentage of automatically generated quality labels that 
matched the video code for those episodes. 

 High Quality Low Quality Overall 
Pattern # % correct # % correct % correct 
Unrelated 
Touches 

16 100.0 10 80.0 92.3 

Touch Time 25 76.0 18 0 44.2 
Overlapping 
Sequences 

25 16.3 18 72.2 46.5 

Overlapping 
Unrelated 
Sequences 

16 62.5 10 60 61.5 

Table 6: The number (#) of video episodes coded for each 
pattern by quality and the percentage of episodes where the 

automatically generated label matched the video code. Results 
are shown for the three patterns found in [14] and the revised 

pattern found in this study. 

As previously described, quality of content monitoring 
varied between and within groups, across activities and 
within activities. Although some groups (1 and 2) tended to 
be more effective at content monitoring, all groups had 
episodes of high and low quality. This is markedly different 
from the original study [14], in which the majority of 
episodes of content monitoring were high quality, with all 
low-quality episodes occurring in only one group. 

The video analysis confirmed that the Unrelated Touches 
pattern, the proportion of unrelated elements in touch 
sequences, was associated with quality of content 
monitoring in the classroom setting. As in the lab study 
[14], a high occurrence of touch sequences involving 
unrelated UI elements indicated low-quality content 
monitoring. Of the 26 episodes of content monitoring 
checked against this pattern, only two were mis-
categorized. Both were low-quality episodes; one was 
categorized as medium-quality, and the other as high 
quality. Fewer episodes were checked against Unrelated 
Touches than Touch Time and Overlapping Sequences 
because it requires the relationship definitions, which were 
unavailable for one of the applications.  

Review of the videos for high- and low-quality episodes of 
the Unrelated Touches pattern suggested that episodes were 
labeled high quality when all participants interacting with 
the screen were engaged in focused work, whether they 
were actively doing task work or not. During low-quality 
episodes, the participants interacting with the screen were 
shifting focus or playing with the interface, interacting with 
multiple unrelated elements without a particular purpose. 
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(a) 
Pattern quality label 

(b) 
# episodes 

(c) 
Most common episode 
code(s) 

(d) 
Distribution of 
positive / negative 
codes (episodes) 

(e) 
Intervals 

Unrelated 
Touches 

Overlapping 
Unrelated 
Sequences 

Positive 
codes 

Mixed codes Negative 
codes 

High High 28 Content monitoring – HQ (10) 75.0% positive 8 3 2 

High Med. 0 - - - 1 - 
High Low 17 Task planning – LQ (3), 

Software conflict (3), 
Content monitoring – HQ (3) 

64.7% negative 1 5 8 

Med. High 1 Task work (1) 100% positive 1 - 2 

Med. Med. 0 - - - - 1 

Med. Low 7 Non-collaborative (2), 
Off task (2) 

100% negative - - 3 

Low High 8 Content monitoring – LQ (4) 87.7% negative - - - 
Low Med. 0 - - - 1 - 

Low Low 19 Software conflict (5), 
Content planning – LQ (5) 

84.2% negative 1 3 24 

Table 7: Collaboration codes associated with all possible quality combinations of Unrelated Touches and Overlapping Unrelated 
Sequences. The two original patterns that did not transfer from the original setting, Touch Time and Overlapping Sequences, are 

not included. Column a) combination of automatically generated quality labels; b) number of episodes labeled with given 
combination; c) most common video code for the given combination; d) distribution of positive/negative video codes for episodes 
labeled with the given combination; e) distribution of positive/negative episodes in intervals labeled with the given combination. 

The video analysis showed that Touch Time, the time spent 
interacting with the screen per person, did not hold as an 
indicator of quality of content monitoring in this study. 
Almost all episodes were categorized as high quality by this 
pattern. Therefore, Touch Time was dropped from further 
analysis as not generalizable beyond the original context. 

Overlapping Sequences was also a poor indicator of content 
monitoring quality, most frequently categorizing episodes 
as low quality. The video analysis, however, suggested an 
amendment. In several cases, the video revealed that during 
an interval categorized as low quality by Overlapping 
Sequences, students were, in fact, engaged in positive 
collaborative interactions, such as helping each other 
complete a task or building on each other’s contributions. In 
these cases, we noticed that the overlapping touch 
sequences were occurring across related elements.  

Accordingly, we revised Overlapping Sequences to include 
a qualifier: a high number of overlapping sequences 
indicates low-quality content monitoring only when 
students interacting with the screen are working with 
unrelated objects. Conversely, a high number of 
overlapping sequences indicate high-quality content 
monitoring when the students are working with related 
objects. The results for the revised version of Overlapping 
Sequences, renamed Overlapping Unrelated Sequences, are 
shown in Table 6. Overlapping Unrelated Sequences 
replaced Overlapping Sequences in subsequent analysis. 
Review of the videos for high- and low-quality episodes of 
Overlapping Unrelated Sequences suggested that episodes 
were labeled high quality when the group members 

interacting with the screen were working collaboratively 
and low quality when they were working independently. 

Touch Pattern Combinations & Quality of Collaboration 
Our video analysis showed a much greater range of 
collaboration processes than reported in the lab study with 
adults [14]. Therefore, all episodes were included in our 
model in order to extend the analysis beyond content 
monitoring and investigate the relationship between the 
touch patterns and quality of collaboration more broadly.  

For Unrelated Touches and Overlapping Unrelated 
Sequences, we identified the most common video codes as 
well as the distribution of positive and negative 
collaborative processes (defined in Table 1) for each 
possible quality combination of the two patterns (listed in 
column a, Table 7). The pattern quality was determined 
using the video episode timecodes for a one-to-one match 
between the video codes and the automatically generated 
quality labels. Both remaining touch patterns required 
knowledge of the relationships between on-screen elements 
so data from the browser-based activity was omitted. The 
results are shown in columns a – d in Table 7. 

Column d in Table 7 shows how each combination of 
automatically generated quality labels aligned with the 
episode codes resulting from the video analysis. Most 
combinations of the two patterns aligned with episode 
codes indicating processes considered to have negative 
impact on collaboration e.g. low quality content monitoring 
or off-task behavior. There were only two combinations for 
which this was not the case: 1) the high-high combination, 
which was most often associated with episodes with 
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positive codes, particularly high-quality content monitoring; 
and 2) the combination of high for Unrelated Touches and 
low for Overlapping Unrelated Sequences, which was 
associated with a greater mix of positive and negative 
collaboration episodes than all other combinations.  

The fact that all but one of the combinations (high-low) 
tended to be primarily associated with either positive or 
negative collaboration behaviors, not just content 
monitoring, suggests that these patterns in combination 
reflect the shared characteristics of high- and low-quality 
social regulation in sum rather than the specific features of 
content monitoring. For example, when an episode is 
labeled high quality according to both patterns, we can 
predict that positive collaboration behavior is occurring, as 
was the case in 75% of occurrences in this study. When an 
episode is labeled low quality according to both patterns, 
we can predict that negative collaboration behavior is 
occurring, which was true for 84.2% of occurrences. 
Column b in Table 7 shows that the most frequently 
occurring combinations were 1) high quality for both 
Unrelated Touches and Overlapping Unrelated Sequences, 
which was associated with positive collaboration codes; 2) 
low quality for both patterns, which was associated with 
negative codes, and 3) high quality for Unrelated Touches 
combined with low quality for Overlapping Unrelated 
Sequences, which was associated with slightly more 
negative collaboration codes than positive. These results 
indicate that the high-high and low-low combinations are 
the clearest predictors of collaboration quality, with the 
high-low combination being more ambiguous. Other quality 
combinations were infrequent or not seen at all. Although 
several of the infrequent combinations were strongly 
associated with negative collaboration codes (87.7% - 
100% of cases), we are cautious about their association with 
collaboration quality due to their rarity in this study. 

Testing the Interval Approach to Detecting 
Collaboration Quality 
Column e in Table 7 shows how each quality combination 
compared to the video collaboration codes when the 
patterns were checked against intervals of touch data rather 
than individual episodes. The values in column e are the 
number of intervals containing primarily positive 
collaboration codes, the number containing a relatively 
even mix of positive and negative codes, and the number 
containing primarily negative episodes. For the interval 
approach to be useful for detecting quality of collaboration 
in real-time, the intervals’ distribution of positive or 
negative collaboration processes should closely resemble 
the category of the episodes contained in the interval. For 
example, as the high-high combination was associated with 
mostly positive collaboration episodes, we would expect 
that intervals labeled as high quality by both patterns would 
contain mostly positive collaboration episodes. 

When applied to intervals of touch data, the most 
commonly occurring quality combinations showed a similar 

distribution of positive and negative collaboration codes as 
when applied to individual episodes drawn from the video, 
e.g., pattern combinations primarily associated with 
episodes with negative collaboration codes continued to be 
primarily negative when applied to intervals of touch data. 
Of the three most common quality combinations, the low-
low combination had the closest match between intervals 
and episodes, associated with negative collaboration codes 
in 85.7% of the intervals compared to 84.2% of episodes. 
Because the interval approach yielded collaboration quality 
labels close to those of the video episodes, these results 
suggest that applying the patterns to intervals of touch data 
would make it possible to model collaboration quality in 
real-time. A primary goal of this work is to enable real-time 
detection of collaboration breakdowns so the ability to 
detect negative behavior is particularly useful. 

DISCUSSION 
The quality of social regulation and the other behaviors 
observed in this study differed greatly from previous work 
investigating adults’ use of social regulation during a 
tabletop collaborative learning activity. These differences 
could be due to the age of the participants, or differences 
between the classroom setting and the lab. Regardless, the 
prevalence of low-quality social regulation is in line with 
the Learning Sciences literature that shows that students 
frequently do not know how to collaborate effectively 
[19,34]. Given that the same Learning Sciences literature 
has also demonstrated that ineffective or poor social 
regulation negatively impacts learning outcomes, we 
believe that technology for collaborative learning should 
take into account students’ developing collaboration skills 
as well as content learning objectives in order to bring 
about the best possible learning outcomes.  

At the end of our lab study [14], it was not possible to state 
with any certainty that the patterns established as indicators 
of quality of collaborative processes (Table 3) in a lab study 
with adults would be valid outside the lab, with younger 
users, or with different software. The results from this study 
validate the Unrelated Touches pattern and refine the 
original Overlapping Sequences pattern to Overlapping 
Unrelated Sequences. While these results support the notion 
that collaboration quality can be detected using touch data, 
further validation would be needed before the patterns 
identified in this study could be considered generalizable. 

Two of the original patterns, Touch Time and Overlapping 
Sequences, did not indicate quality of content monitoring in 
this study. We expect that those patterns did not hold 
because they were a product of the specific interface used in 
the previous study. Differences in the interaction styles of 
adults and teenagers could also be a factor. For Touch 
Time, almost all episodes were labeled as high quality. 
Because high-quality Touch Time means less time spent 
interacting with the screen, this result suggests that, even 
during low-quality collaboration, the teenagers in our study 
spent less time touching the screen than the adults in [14].  
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In the case of Overlapping Sequences, the failure to transfer 
could be due to differences between teenagers and adults. 
The “helping” behavior seen in all groups of teenagers, that 
led Overlapping Sequences to be revised as Overlapping 
Unrelated Sequences, was not seen among the adults. An 
additional factor could be the level of familiarity between 
participants – the high school students knew each other well 
and were friends in many cases. The adults, for the most 
part, were strangers interacting with each other for the first 
time. The helping behavior seen with the high school 
students generally required reaching into each other’s 
personal space, which may be uncomfortable for strangers.  

The results for Unrelated Touches and Overlapping 
Unrelated Sequences in combination show that particular 
combinations are often associated with the quality of 
collaboration processes. When touch data is labeled as low 
quality according to both Unrelated Touches and 
Overlapping unrelated Sequences, it is likely that behaviors 
with a negative impact on the collaboration are occurring. 
Groups were engaged in negative collaboration behavior in 
84.2% of episodes with this quality combination. 
Conversely, when touch data is labeled as high quality 
according to Unrelated Touches and Overlapping Unrelated 
Sequences, it is likely that behaviors with a positive impact 
are occurring. Groups were collaborating positively in 75% 
of episodes with this quality combination. Applying these 
patterns to two-minute intervals of touch data yielded 
similar results as applying the patterns to the episodes 
drawn from the video. This result suggests that the interval 
approach will enable these patterns to be used to detect and 
respond to collaboration quality in real-time by identifying 
intervals likely to represent negative collaboration 
processes as they occur and triggering changes to the 
interface designed to encourage positive collaboration. 

The nature of such adaptations remains to be determined. 
The data from this study revealed different ways for 
collaboration to break down, with differing impacts on 
overall outcomes. For example, group 1 spent an excessive 
amount of time on low-quality task planning and 
accomplished relatively little measurable task work despite 
engaging in high-quality content monitoring. Group 3 
combined long periods off-task with frequent low-quality 
behavioral engagement, leading to a disjointed group 
dynamic with little cohesion. Group 4 had the fewest 
episodes of non-collaborative and off-task interactions but 
two of the students dominated task work to the exclusion of 
others. These very different collaboration issues suggest 
that a range of interactive interventions would be needed. 

Additionally, it is important to note that as our approach 
uses only touch data, it is only able to detect collaboration 
processes while students are actively interacting with the 
computer. Software adaptations designed to respond to the 
touch patterns described in this paper will need to take into 
account the fact that our modeling approach provides 

insight into groups’ real-time collaborative processes but 
does not provide the complete picture. 

Our video analysis showed episodes of software conflict to 
be particularly disruptive to groups’ collaborative processes 
and should therefore be a primary concern of software that 
can detect and respond to collaboration quality. Software 
conflicts were generally the result of three types of actions: 
(1) accidental touches, such as a misplaced elbow or a 
notebook resting on the screen; (2) intentional disruption – 
the intentional action of one student, e.g., flicking an on-
screen element across the screen to derail other group 
members’ work; or (3) lack of awareness – occurring when 
group members who were working independently, unaware 
or dismissive of what their peers were doing, carried out 
actions that were in opposition to other group members’ 
activities, such as clearing the screen while another group 
member was actively typing. 

The ability to distinguish between individuals is essential to 
using the touch patterns described in this work, most 
tabletop computers’ inability to natively distinguish 
between users is an obstacle to utilizing our approach. 
However, this is an active area of research at the time of 
writing and a number of approaches to this problem already 
exist e.g. [6,23,26]. We expect innovation in this area to 
continue, particularly as tabletop technology moves toward 
widespread adoption [28]. 

An additional requirement for this approach is the 
relationship definition for on-screen objects. While these 
relationship definitions are simple – elements can only be 
related or unrelated – relationships have to be defined 
within the application itself.  

FUTURE WORK 
In our future work, we intend to explore how tabletop 
software can adapt to encourage positive collaboration 
learning processes in response to detected breakdowns in 
collaboration.  

As well as helping groups of students to improve their 
collaboration processes, the approach to detecting 
collaboration quality described in this paper could be used 
to help teachers to monitor small group work in their 
classroom. Providing teachers with real-time information 
about groups’ collaboration processes could help them 
target groups that need their help the most. 

In this study, we saw many differences between our 
teenaged participants and the adult participants in our 
previous study [14]. The teenagers differed from the adults 
in their interactions with each other, their interactions with 
the tabletop computer, and their engagement in 
collaborative work. It seems likely that younger students 
would interact differently than teenagers and adults. 
Exploring younger students’ social regulation in tabletop 
collaborative learning is another area for future work. 
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CONCLUSION 
We have described small groups of students’ use of social 
regulation processes during collaborative learning activities 
at a tabletop computer in an authentic classroom setting. 
Our results show that high school students do not always 
have the skills to effectively regulate collaborative work, 
demonstrating the need for interventions to support the 
development of these skills.  

We have identified two touch patterns—Unrelated Touches 
and Overlapping Unrelated Sequences—that reflect the 
quality of groups’ collaborative learning processes with up 
to 84.2% accuracy. We have also demonstrated an approach 
using these touch patterns in combination to detect the 
quality of collaborative learning processes in real-time. Our 
approach to modeling collaborative learning is the first to 
look at metacognitive processes rather than simply 
quantifying participation or cognitive performance. 

Our empirical results show that the touch patterns we have 
identified are frequently associated with important social 
regulation processes. This work represents a significant step 
towards enabling interactive tabletops to intelligently 
support and reinforce high-quality collaborative learning. 
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