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Abstract 
Virtual reality (VR), and especially the Metaverse, offers a new set of experiences for users who 
can operate in immersive 3-D environments, but such environments must be made accessible for 
movement and observation. To this end, we are pursuing a research program to understand and 
improve the accessibility of VR for two user groups: (1) people with motor impairments, who 
might face difficulty moving through virtual environments, and (2) people who are blind or have 
low vision (BLV), and thus cannot see virtual environments. To date, we have conducted studies 
on locomotion techniques in VR, gathering data to build predictive models capable of matching 
users’ abilities to their most suitable techniques. We are also developing a smartphone-based VR 
controller, supporting touch-based “scene reading” as an analog to “screen reading” to enable 
BLV users to understand and move through virtual environments. This workshop paper reviews 
our efforts and posits avenues for future research. 
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1. Introduction 

Virtual reality (VR), and especially the Metaverse, hold great promise for making possible 
new experiences previously unimagined. People can meet in virtual environments to learn 
[29], play [30], work [7], travel [27], and socialize [34]. VR has also been used for both 
mental [6,28] and physical [18,33] therapeutic purposes. VR has been around for decades 
[26], and very early its promise to provide benefits to people with disabilities was observed 
[25]. But realizing those benefits requires VR, and large-scale environments like the 
Metaverse, to be made accessible for movement and observation. Unfortunately, as is often 
the case with new media, virtual environments like the Metaverse are largely inaccessible 
to people with motor and visual impairments. If these environments are to deliver their full 
potential, they must become accessible to all users [23]. 
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Figure 1: (left) A study participant using Grab and Pull reaches forward and pulls the ground 
towards himself to move. (right) Sketch of our prototype system using a smartphone as a touch-
based controller for “scene reading,” object selection, and navigation. (The headset view is displayed 
on the smartphone to enable sighted observation.) 

To this end, we are pursuing a research program to understand and improve the 
accessibility of VR for people with motor impairments and for people who are blind or have 
low vision (BLV). Specifically, we have experimentally studied the use of locomotion 
techniques by people with limited upper-body motor function [11], developing predictive 
models that can recommend a locomotion technique for a user given that user’s answers on 
a questionnaire [12] or actions with VR hardware (Fig. 1, left). 

In other work, we are developing a novel touch-based controller for BLV users that 
enables a user’s smartphone to replace conventional button-based controllers 
(Fig. 1, right). By using a smartphone in landscape orientation, BLV users can explore virtual 
environments using touch and gesture, receiving auditory and vibrotactile feedback. 
Specifically, we are creating a method of “scene reading” (as an analog to “screen reading”), 
whereby BLV users can explore virtual scenes with their fingers, much like our Slide Rule 
prototype [21] enabled finger-driven screen reading on smartphones. 

2. Related work 

We review related work focused on accessible locomotion techniques and the accessibility 
of VR for BLV users. Due to limitations of space, a full review is prohibited; readers are 
directed to thorough treatments elsewhere [5,10,11]. 

There are over one hundred locomotion techniques for VR [5], although relatively few 
research efforts have attempted to understand their accessibility to people with motor 
impairments. Di Luca et al. [5] examined the amount of motion required for numerous 
locomotion techniques to assess their accessibility. Franz et al. [10] created a taxonomy of 
scene viewing techniques and applied it to the accessibility of head movements in VR, 
evaluating techniques with 16 participants to identify accessibility tradeoffs. Mott et al. [24] 
conducted semi-structured interviews to uncover physical accessibility barriers with VR 
devices like headsets and controllers. They drew upon our ability-based design perspective 
[37,38] to uncover “ability assumptions” in the design of VR devices. Franz et al. [9] devised 
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Nearmi, a framework for creating accessible point-of-interest viewing techniques. By 
contrast, our work [11] empirically evaluates locomotion techniques for their accessibility, 
and creates predictive models to aid in the selection of such techniques for specific users. 

Some researchers have undertaken the challenge of making VR accessible to BLV users. 
SeeingVR [42] offered 14 tools for low-vision users to modify virtual environments with 
video and audio enhancements. HOMERE [22] combined force, thermal, and auditory 
feedback to simulate sensations through a cane. Canetroller [41] was also a physical cane 
for use in VR, providing haptic feedback in response to virtual objects and surfaces. Early 
examples of haptic feedback for BLV VR users were from Colwell et al. [4] and Jansson et al. 
[19], where virtual textures and objects were simulated with the Impulse Engine 3000 and 
PHANToM 1.5, respectively. Haptics were also explored by Tzovaras et al. [36] using a 
CyberGrasp device. More recently, Collins et al. [3] explored how sighted guides in VR can 
enhance social interactions for BLV users. And Herskovitz et al. [17] studied how blind users 
can use augmented reality with guided prompting. By contrast, our ongoing work explores 
the use of a smartphone’s touch screen to act as both an input and output device, enabling 
finger-driven “scene reading,” object selection, and navigation. 

   
Figure 2: (left) A study participant leans forward to move in her gaze direction with Chicken 
Acceleration. (middle) Target order and positions in one of our studies. (right) A user aims their 
controller where they want to go and presses a trigger to jump to that position with Teleport. 

3. Understanding locomotion techniques for users with motor 
impairments in virtual reality 

To better understand the accessibility of locomotion techniques for users with motor 
impairments, we conducted a formal experiment of six seated locomotion techniques with 
20 participants [11] (Fig. 2, left). We built a custom testbed enabling us to arrange targets 
and obstacles (Fig. 2, middle), and log movement times, paths, hits, misses, and low-level 
controller and headset data. Participants used a Meta Quest 2 headset connected to an 
Alienware m15 P79F laptop with standard controllers. The six locomotion techniques we 
evaluated required a range of different motor abilities: 

1. Astral Body: Elevated third-person perspective controlled with a thumbstick. 
2. Chicken Acceleration: Lean forward or rotate one’s head to move in that direction. 
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3. Grab and Pull: Reach forward, hold the trigger, and pull the controller to oneself. 
4. Sliding Looking: Hold a button while looking in the desired movement direction. 
5. Teleport: Use controller to position a landing spot and press trigger to jump there. 
6. Throw Teleport: Throw a ball with the controller and jump to where the ball lands. 

In our experiment, 20 participants each completed 12 trials using each locomotion 
technique in a counterbalanced fashion. They then filled out a NASA-TLX workload 
questionnaire [15,16] and answered interview questions about their experience. 

Our results show that three of our six techniques performed similarly well: Teleport, 
Astral Body, and Sliding Looking. These techniques used only one controller, required little 
upper-body movement, and had low perceived workload. Our post-study interviews 
revealed Teleport (Fig. 2, right) to be generally favored, although other factors besides 
accessibility mattered, such as enjoyment, exercise, and a sense of presence. Fig. 3 shows 
results for trial time, target hit rate, and obstacles hit. 

 
Figure 3: Compared to other techniques: (left) Astral Body, Sliding Looking, and Teleport had lower 
trial times. (middle) Astral Body, Sliding Looking, and Teleport had higher hit rates. (right) Teleport 
had the least obstacles hit. 

One of the goals of our ongoing work is to see whether self-report data from a 
standardized questionnaire, Quick DASH [12], can be predictive of locomotion performance. 
Our preliminary results show that these 11 questions, taking only five minutes to complete, 
explain 30-50% of the variance in performance with our techniques. We are also examining 
how controller and headset movement data can improve our models, which could enable us 
to predict performance with only a few questions and basic movement tasks. 

4.  “Scene reading,” object selection, and navigation for BLV users in VR 

Virtual reality is an inherently visual medium, making the accessibility of virtual 
environments a significant challenge for BLV users. In our past work, we created Slide Rule 
[21], a finger-driven screen reader for the iPhone 1. Slide Rule allowed a “reading finger” to 
explore the screen while contents were announced, modified by traversal speed. A split-tap 
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gesture, where a separate finger (or thumb) taps anywhere on the screen, triggers whatever 
target is beneath the “reading finger.” In this way, users can explore the screen and trigger 
targets without lifting a finger. 

Along similar lines, we are exploring the use of a smartphone touch screen as a controller 
for BLV users in VR. Touch screens have been used as input to virtual and augmented reality 
for some time (e.g., [2,17,35]), but have scarcely been applied to VR accessibility for BLV 
users. Specifically, we map the VR headset’s view onto the smartphone via our custom Meta 
Quest 2 and Apple iOS apps (see Fig. 1, right). We enable gestures where one finger “reads 
the scene” and two fingers trigger movement. 

Specifically, dragging one finger over the screen announces different objects as they are 
traversed using our “scene reading” technique (Fig. 4a). A split-tap provides detail on the 
object beneath the reading finger (Fig. 4b). Scene reading can be done on the live, dynamic 
scene, or on a static “snapshot” of the scene taken using a three-finger tap. 

Two fingers cause movement. A two-finger tap on an object or person jumps the user to 
it, subsequently following it if it is in motion (Fig. 4c). If the user swipes up or down with 
two fingers, they move forward or backward proportionally. Similarly, pinch-to-zoom can 
also move the user forward or backward. A two-finger swipe left or right rotates the user 
discretely, or a two-finger clockwise or counterclockwise circle can rotate the user 
continuously and reversibly (Fig. 4d). 

(a) (b)   (c)   (d) 

 
Figure 4: (a) One-finger “screen reading” leading to (b) a split-tap for further object information. 
(c) A two-finger tap jumps to that object. (d) A two-finger counterclockwise circle rotates the user. 

Along with touch and gesture input, we employ audio output in the form of success and 
failure sounds, text-to-speech descriptions and instructions, and vibrotactile feedback to 
indicate object collisions. 

Thus far, we have designed and prototyped our system, prioritizing a simple and 
consistent gesture vocabulary. We plan to work closely with BLV users to iteratively test 
and improve our prototype, as it is now capable of supporting rapid design exploration and 
evaluation. 
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5. Future work and open challenges 

Our projects suggest multiple avenues for future work. For users with motor impairments, 
physical barriers with headsets and controllers remain problematic [24]. With the advent 
of lighter hardware, this issue might improve, but it is unlikely to be solved unless the 
accessibility of hardware is addressed as a top-level priority, perhaps through universal 
design, which has been used successfully before in physical product design [31,32]. 

Like any screen reader, our “scene reading” technique requires a labeled world. Just like 
how images on the Web, in mobile apps, and on social media often lack ALT text [8,40], most 
virtual environments, including the Metaverse, are not fully annotated, and their objects 
lack metadata. As with ALT text, developer compliance is unlikely to remedy the issue. A 
solution might be to use generative A.I. to provide object descriptions of static, 
“snapshotted” scenes, but the accuracy of this approach is uncertain. 

Users with motor impairments and BLV users might benefit from greater use of speech 
recognition in VR. For the former group, locomotion might be possible through discrete 
speech commands, such as “take me to the birch tree,” or through continuous non-speech 
vocalizations, such as those used in the Vocal Joystick [13,14,20]. For the latter group, speech 
recognition might enable the user to query a scene, asking, “how many people are currently 
around?” or “what object is directly to my right?” 

Improving the accessibility of social interactions in VR is also a priority. Inaccessible 
locomotion techniques can make it difficult for users with motor impairments to engage 
with other people’s avatars, and BLV users might not know who is nearby or what 
environmental features are being discussed. Avatar disability signifiers [39] can augment 
social interactions by providing awareness of a user’s disability status, but do not solve the 
usability challenges social VR poses. 

Finally, as is often the case, accessible computing research attempts to make accessible 
that which is inaccessible from the start, and indeed this is important [23]. But stepping 
back, we might ask what experience VR intends to provide, and then pursue good ways to 
provide that experience [37,38]. For example, if VR is chiefly concerned with providing a 
sense of immersion, how can we best achieve this for BLV users? By pursuing the intended 
experience, we can open the design space to new disability-first possibilities (e.g., [1]).  

6. Conclusion 

In this workshop paper, we have described our work on making VR accessible to users with 
motor impairments and to BLV users. We have formally studied the former group’s use of 
six locomotion techniques, finding Teleport, Astral Body, and Sliding Looking to be fastest 
and most accurate, but that enjoyment, exercise, and a sense of presence mattered a great 
deal [11]. We are creating and validating predictive models that can recommend promising 
locomotion techniques for users based on questionnaire and other data [12]. For BLV users, 
we are creating a smartphone-based controller that enables touch-and-gesture “scene 
reading,” object selection, and navigation. Multiple promising avenues exist for future work, 
including hardware accessibility, world labeling, speech input, social interaction, and 
focusing on delivering the intended experience to all users. 
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