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ABSTRACT 
We present Group Touch, a method for distinguishing 
among multiple users simultaneously interacting with a 
tabletop computer using only the touch information supplied 
by the device. Rather than tracking individual users for the 
duration of an activity, Group Touch distinguishes users 
from each other by modeling whether an interaction with 
the tabletop corresponds to either: (1) a new user, or (2) a 
change in users currently interacting with the tabletop. This 
reframing of the challenge as distinguishing users rather 
than tracking and identifying them allows Group Touch to 
support multi-user collaboration in real-world settings 
without custom instrumentation. Specifically, Group Touch 
examines pairs of touches and uses the difference in 
orientation, distance, and time between two touches to 
determine whether the same person performed both touches 
in the pair. Validated with field data from high-school 
students in a classroom setting, Group Touch distinguishes 
among users “in the wild” with a mean accuracy of 92.92% 
(SD=3.94%). Group Touch can imbue collaborative touch 
applications in real-world settings with the ability to 
distinguish among multiple users. 
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INTRODUCTION 
Interactive tabletops can support collaboration because of 
the large, shared interface that multiple people can interact 
with together [9,22]. However, with the exception of two 
systems, DiamondTouch [8] and Fiberio [24], tabletops are 
limited by their inability to identify users. The capacity to 
distinguish among users is desirable for a number of 
reasons, ranging from basic usability (e.g., resolving 
conflicting gestures carried out by different people [32]), to 
enabling certain application features (e.g., allowing users to 

separate personal and shared space on the screen [27,40]), 
to tracking and evaluating an individual’s contributions to a 
group task [29]. For example, in the domain of 
collaborative classroom education [12], distinguishing 
among users can enable interventions that help students 
improve overall group collaboration (Figure 1).  

A number of methods have been proposed for distinguishing 
among tabletop users, but most existing approaches either 
rely on external sensors (e.g., [1,29,30,35,36]) or constrain 
interaction (e.g. [4,21,43]) so that users are prevented from 
taking full advantage of the tabletop’s multi-touch 
capabilities. In our prior investigation of tabletop 
collaboration in high school classrooms [12], the need arose 
for distinguishing among users engaged in unconstrained 
multi-touch interaction without using external sensors, 
which were not practical due to the physical constraints of 
the classroom. No existing approach could meet this need.  

This paper describes Group Touch, a novel user-independent 
approach to distinguishing among users that utilizes only 
the built-in capabilities of the tabletop computer and does 
not impose restrictions on users. Importantly, existing 
approaches have generally taken on the goal of trying to 
identify and track each user. In this work, we relax and 
reframe that goal, instead focusing on distinguishing one 
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Figure 1. Group Touch can distinguish among users “in the wild”
with a mean accuracy of 92.92% (SD=3.94%) using only touch
information. Pictured above are high school students in a classroom.
The challenge of distinguishing among users (i.e., knowing one
user’s touches are different from another’s) is a different challenge
than identifying them (i.e., knowing to whom each touch belongs). 



 

 

user from the next by determining when subsequent touches 
are from the same user or different users. We therefore do 
not achieve the ability to uniquely identify a user (e.g., for 
authentication purposes), but we do gain the ability to 
distinguish among multiple users during periods of 
simultaneous interaction. This reframing of the objective is 
a key insight that simplifies the problem but still retains 
many capabilities important for multi-user tabletop 
interaction scenarios. Use cases for Group Touch include: 
(1) resolving conflicting input that occurs when multiple 
people are simultaneously interacting with the same 
interface; (2) modeling the collaborative processes of small 
groups working at tabletop computers; and (3) evaluating 
and informing the design of software to better support small 
group collaboration at tabletop computers. 

We explain how Group Touch works, give example scenarios 
in which it works, and demonstrate its effectiveness on a 
collection of field data acquired by groups of high school 
students collaborating at a Microsoft PixelSense in a classroom 
setting. Our results show that Group Touch can distinguish 
among 4-6 simultaneous users of a tabletop computer “in 
the wild” with an accuracy of 92.92% (SD=3.94%). 

The contributions of this work are: (1) a novel approach to 
distinguishing among users at a tabletop computer that does 
not restrict multi-touch interaction or require additional 
sensors; and (2) an empirical study of the effectiveness of 
this approach using touch data collected entirely in a 
chaotic classroom field setting. 

RELATED WORK 
Common tabletop computers are vision-based, using either 
frustrated total internal reflection (FTIR) [19] or diffuse 
illumination (DI) [38] to detect touches. Existing approaches 
to distinguishing among users at vision-based tabletops fall 
into three categories: (1) approaches that augment the 
tabletop with additional sensors; (2) approaches that require 
the user to wear or hold external sensors; and (3) approaches 
that use only the built-in capabilities of the tabletop 
hardware. We review each of these in turn. 

Approaches that augment the tabletop with additional 
sensors are typically reliable, accurate, and unobtrusive to 
the user. These approaches make it possible to track 
individual users for the duration of their time at the 
tabletop. For example, proximity sensors have been added 
to the edges of tabletop computers in order to track users’ 
locations around the screen [2,41]. Multiple approaches 
have used cameras mounted above the tabletop to track 
users’ arms and hands [6,29,34]. Bootstrapper [35] uses a 
depth camera mounted under the table to track users by 
their shoes and then match touches to individuals using the 
touch orientation detected by the tabletop’s vision system.  

Other approaches augment users with additional sensors, 
such as rings [36], wristbands [30], gloves [28], or cards [25] 
that communicate with tabletops’ built-in sensors to identify 

users. Ackad et al. [1] used a combination of users’ personal 
mobile devices and an overhead depth camera. 

However, relying on external sensors is not always practical 
or desirable. For example, our work is motivated in part by 
the need to distinguish among users in the context of a 
study of collaborative learning at tabletop computers in 
authentic classroom settings [12]. The physical constraints 
of the study sites mean that the tabletop needs to be set up 
and then removed for each class session, making it 
impractical to use external sensors such as a depth camera 
that would need to be fixed in place. This problem has been 
encountered by other researchers studying tabletops in 
classroom settings [26]. Augmenting users (high school 
students) with wearable sensors was ruled out simply 
because such sensors require additional setup, storage, and 
maintenance, all of which increase time spent administering 
a learning activity and the burden of classroom 
management on the teacher. These factors go against 
evidence-based best practices and guidance on integrating 
new technologies into classrooms [3,10,11]. Therefore, 
deployments like this need an approach to distinguishing 
among users that does not rely on external sensors. 

Several studies have investigated the use of finger 
orientation and hand contours, captured by vision-based 
tabletops’ on-board cameras, to match touches to hands and 
users [7,13,42,43,44]. Ewerling et al. [13] developed an 
image processing technique to match touches to individual 
hands with four users simultaneously interacting with a 
tabletop computer. They did not explore the application of 
their technique to distinguishing users. Dang et al. [7] and 
Zhang et al. [44] both developed heuristic methods using 
touch orientation and distances between contact points to 
map touch points to hands. Mapping touches to hands could 
potentially improve gesture detection and thereby enhance 
the interactive experience. Both methods were highly 
effective at differentiating between the hands of single 
participants, but neither method was tested with groups or 
used to extrapolate from hands to users.  

Zhang et al.’s [43] See Me, See You algorithm used hand 
contours captured by the vision system to detect finger 
orientation and handedness. Using touch orientation along 
with a touch’s coordinates, Zhang et al. trained a support 
vector machine to predict a user’s location at the tabletop, 
thus distinguishing among different users. Their approach, 
however, does not support multi-touch input, purposefully 
constraining users to single-point touches in order to make 
identification possible. 

For touchscreens with capacitive sensing capabilities, 
Harrison et al.’s [21] capacitive fingerprinting technique 
takes advantage of the natural differences in electrical 
current passing through individual users. This approach 
does not restrict how users touch the screen, but a limitation 
of the prototype tested in Harrison et al.’s study is that it 
can only handle one touch at a time. 



 

 

Blažica et al. [4] enable identification of users across all 
types of tabletop computers using hand biometrics. 
However, their approach is only able to distinguish among 
multiple simultaneous users when they place a hand on the 
screen in a specific position—all five fingers splayed and 
touching the screen. Therefore, it is not a suitable approach 
for distinguishing users during “in the wild” tabletop 
interaction, such as in a high school classroom. 

Finally, application-based approaches take advantage of 
assumed or enforced social protocols. For example, an 
approach that automatically segments a tabletop interface 
into territories belonging to individual users [16] draws 
upon Scott et al.’s [39] findings that groups tend to divide 
the tabletop into personal and shared territories without any 
explicit coordination. However, social protocols can vary 
greatly depending on the context, limiting their 
generalizability as a means of distinguishing users. For 
example, research with adults in a lab setting has shown 
that participants are reluctant to reach into one another’s 
perceived personal space or territory on the tabletop [37], 
supporting the notion that it is possible to distinguish users 
by identifying those personal territories. In contrast, 
children engaged in collaborative learning around a tabletop 
often break or ignore boundaries of personal space, actually 
enhancing collaboration [15,33]. Given that our context is 
tabletop collaboration in authentic high school classrooms, 
these findings suggest that assuming young users will 
follow adult social protocols may be unwise. 

All of the approaches described above that use only the 
built-in capabilities of the hardware to distinguish users also 
impose restrictions on how users can interact with the 
tabletop. Some researchers argue that there are scenarios 
where users will be willing to sacrifice unconstrained 
interaction for the ability to track users [43]. However, this 
will only hold true when the value added by tracking users 
outweighs the inconvenience of artificial constraints on 
interaction. When this is not the case, such as when an 
application requires true multi-touch input, the above 
approaches are not suitable. Additionally, these approaches 
are at risk of failure with young users because it can be 
difficult to get children and adolescents to comply with 
behavioral constraints. With Group Touch, we address the 
problem of distinguishing users without utilizing external 
sensors and without constraining interaction.  

DESIGN AND EVALUATION OF GROUP TOUCH 
In order to support unconstrained multi-touch interaction, 
we forego the goal of identifying and tracking users 
(knowing to whom each touch belongs), which has been the 
focus of many of the aforementioned approaches. Instead, 
our aim is distinguishing among users (knowing one user’s 
touches are different than another’s). This means that our 
approach cannot enable sophisticated personalization of 
interfaces or authentication, but it can be used to address 
core usability problems that arise when multiple people 
interact with a single shared interface, such as determining 

whether simultaneous touches are by a single person 
performing a single multi-touch gesture or multiple people 
performing separate gestures (e.g., to resolve conflicts). Our 
approach could also be used for modeling collaboration in 
order to understand group working practices and inform the 
design of collaborative tabletop applications.  

Most approaches to distinguishing among users have 
tackled the problem at the individual level by trying to 
match touches to users. By relaxing the goal of tracking and 
identifying, we reframe the problem at the group level; after 
all, the need to distinguish among individuals only arises 
when there are multiple users in a group. This reframing 
leads us to compare touches to each other instead of 
attempting to match touches to specific individuals. 

Group Touch has two components. The first is a multilayer 
perceptron (MLP) model trained on touch data collected 
entirely “in the wild.” The model predicts, given a pair of 
touches, whether they were carried out by the same person 
or different people. The second component is an algorithm 
that uses the predictions of the MLP model to group 
touches that were likely to have been carried out by the 
same person. The following sections describe the dataset 
that was used to develop and evaluate Group Touch and the 
design of each component in turn. 

Creating the Touch Dataset 
Group Touch was developed and evaluated using touch data 
collected “in the wild” during a study of collaborative 
learning at tabletop computers in classroom settings [12]. 
Data were collected from high-school students using five 
distinct multi-touch applications (Figures 2 and 3) on a 
Microsoft PixelSense in two different educational programs.  

 
Figure 2. The mapping application used in the classroom. The two 
blue squares represent locations with available water quality data. 
Touching the squares opened up graphs and charts of the data. The 
shown toolbar provided access to additional navigation and settings. 

The participants in the first study setting—an after school 
science program—were eleven 9th to 12th grade students 
(6 male, 5 female). Figure 2 shows the custom-built 
mapping application used in this setting. The teachers of the 
science program had requested an application that would 
enable students to see stream-monitoring data they had 
collected laid out on a map of their study area that could be 
panned and zoomed to different levels of detail. Students 



 

 

could use the map to navigate to various data collection 
locations and to interact with tables, graphs, and images of 
data. Students interacted with the application using standard 
multi-touch gestures such as pinch-to-zoom, swipe-to-pan, 
and multiple-finger rotation. Four sessions were recorded 
across two class periods with the students using the 
computer in groups of five to six for around 30 minutes a 
session. A total of 1,072 touches were logged in this setting. 

Participants in the second study setting—a user-centered 
design course—were sixteen 10th and 11th grade students 
(6 male, 10 female). Figure 3 shows screenshots of the 
applications that were custom-built for this course. The 
students used each application for 10-15 minutes in groups 
of three to four over four class sessions. One application 
(Figure 3, top left) enabled the students to draw on 
wireframes for their design project. A second application 
(Figure 3, top right) helped groups brainstorm questions for 
a usability test. A third application helped students improve 
their search skills (Figure 3, bottom left) by finding and 
comparing resources for their projects. These applications 
were built using the PixelSense’s native interface 
components, which fully support multi-touch. The final 
application (Figure 3, bottom right) was a multi-touch-
enabled browser plugin for finding and annotating, via drag 
and drop, real-world examples of usability heuristics. 
Thirteen group sessions were logged in this setting, 
amounting to 9,255 touches. 

 
Figure 3. The applications used in the second study setting. From 
left to right, top to bottom, the first three applications used the 
computer’s native SDK. The fourth (bottom right) application was 
browser-based. All applications supported multi-touch. (See the text 
for details on each application.) 

In both classroom settings, the teacher determined the 
activities that the students carried out, and students were not 
given any instructions on how they should interact with the 
tabletop computer. The students elected to stand while 
using the computer and chose how to arrange themselves 
around the screen. They touched freely and rampantly, 
without any rules imposed on them to take turns or “be 
polite” to their collaborators. In this way, the environment 
paralleled many authentic classroom situations.   

All 17 sessions across both study sites were video recorded 
with a single camera and every touch was logged by 

software on the tabletop. The camera was mounted on a 
tripod to the side of the table, angled down so that the 
whole tabletop screen was visible. The purpose of the 
camera was to enable us to manually label the author of 
every single touch using the video to obtain ground truth. 
Manually labeling the touches took around 200 hours. 

The touch data collected in both settings proved to be as 
“messy” as might be expected from unconstrained field 
settings with high school students. We observed considerable 
variation in how students carried out standard multi-touch 
gestures, such as drag and rotation, echoing Hinrich and 
Carpendale’s [23] findings from their study of multi-touch 
gestures on tabletops “in the wild.” Students were free to 
move around the tabletop and often did, occasionally 
pushing and shoving each other. Figure 1 shows multiple 
students simultaneously interacting with the table, which 
was characteristic of much of the students’ time with the 
table, even though taking turns and adhering to the social 
protocols of effective collaborative work would have been 
beneficial for the learning activities. Additionally, a notable 
proportion of student interactions appeared to be carried out 
without an obvious task-related purpose. For example, 
students regularly spun or flicked on-screen objects while 
engaged in off-task conversation. These behaviors have also 
been noted in other reports of tabletop use in classroom 
settings [12,26].  

The MLP Model and Feature Selection 
The first component of Group Touch, the MLP model, 
predicts whether a pair of touches was carried out by the 
same person or different people based on three features 
(Figure 4): (1) the difference in touch orientations; (2) the 
pixel distance between the two touches; and (3) the time 
difference between touches, in milliseconds. 

 
Figure 4. The touch features used to predict whether a pair of 
touches was carried out by the same user are: (1) the difference θ 
between the touches’ orientations, (2) the distance d between the 
touch points, and (3) the time between t1 and t2. 

The three features were selected based on the following 
reasoning. Consider Figure 5, a raw image captured by the 
PixelSense’s on-board cameras. Even without any context, 
a human viewer can determine that the two touch points 
detected by the computer (the brightest points in the image) 



 

 

are being carried out by two different people—we can 
clearly see two hands in a configuration which would be 
very difficult for a single person to achieve given the size of 
the screen (40"). The primary features of the two touch 
points that enable us to infer that we are seeing the hands of 
two separate people are the difference in their orientations 
and the distance between the touch points. Touch 
orientation refers to the orientation of the finger’s contact 
area detected by the computer’s vision system. 

 
Figure 5. A raw image captured by Microsoft PixelSense on-board 
cameras showing two different people touching the screen. 

In Figure 5, the touch points are concurrent, which helps us 
determine that we are seeing two different people. If the 
touch points were not concurrent—for example, if the touch 
on the left of the screen took place 30 seconds after the 
touch at the top—we would be less confident that we were 
seeing two people rather than one person who has taken a 
few steps to their right in order to reach a different area of 
the screen. Therefore, a third feature, the time that has 
passed between the touches, is also necessary to make a 
prediction that the two touches were carried out by the same 
person or two different people. 

Based on the above examples, the three features included in 
the model are all needed to make a prediction of “same” or 
“different” but the exact nature of the relationship between 
them is not clear and is likely non-linear. Although 
including just three features makes for a simple model, the 
non-linearity adds complexity. The MLP classifier has been 
demonstrated to be well-suited for complex problems where 
the relative importance of each feature is unknown [17], 
making it a good choice for this work. Our main 
requirement for classifier selection was that the model 
output a probability with each classification, as this was 
necessary for our grouping algorithm, described below. We 
selected MLP as our classifier after using leave-one-out 
nested cross validation in Weka [18] to test a number of 
classifiers that output a probability. The Weka classifiers 
tested included Logistic Regression, LibSVM, and 
BayesNet among many others. Our use of a classifier 
learned from data, instead of a heuristic approach, also 
means that future versions of Group Touch could 
incorporate additional touch features found to be predictive.  

The MLP Model, Pre-processing, and Training 
The purpose of our MLP model is to predict, given a pair of 
touches, whether or not those touches are carried out by the 
same or different people. To prepare a touch log to train our 
model, each touch was processed sequentially.  

Pre-processing of the raw touch logs began by converting 
individual touches into pairs of touches. Each touch pair 
consisted of a given touch and the previous touch by each 
user in the session. The values of each of the features—
difference in orientation, distance, and time between 
touches (see Figure 4)—were calculated to form an instance 
with a class label of either “same” or “different.” A single 
instance comprised the new touch and the last touch carried 
out by the same user (with the class label, “same”). N-1 
instances comprised the new touch and the last touch 
carried out by each of the other users in the group (with the 
class label, “different”). So in a group of N users, each new 
touch resulted in N touch pairs, or instances. 

Consider, for example, that several of our user groups 
comprised four students. In these groups, each new touch 
resulted in four instances (or touch pairs)—one instance 
formed from the differences between the new touch and the 
last touch by the same person, and three instances 
describing the differences between the new touch and the 
last touch by each of the other three people.  

Creating touch pairs in the aforementioned manner helped 
to account for differences in how groups of users interact 
with any given application, as it always produced a similar 
distribution of instances with the “same” versus “different” 
class label for a group of N users regardless of the activity 
or the users’ working style. For example, a group of four 
users will always produce three instances with the class 
label “different” for every instance with the class label 
“same.” This consistency is important to prevent over-
fitting the MLP model to a particular application or group 
working style (e.g., turn-taking versus parallel interactions).  

Before training the model, each feature was normalized to 
the range [0, 1]. For two of the three features, normalization 
was straightforward as the possible range of values is 
inherently limited—the difference in orientation can only 
fall between 0º and 180º, and the maximum distance 
between two touch points is determined by the length of the 
screen diagonal. The elapsed time between touches, 
however, does not have a clear upper limit. We set the 
upper limit for time between touches to be the 90th 
percentile for our full dataset, or about 307 seconds, in 
order to remove outliers. Instances with a greater time 
between touches were dropped from the training data. 
Although this upper limit may seem high at just over five 
minutes, it was fairly common in our dataset for groups to 
take breaks from interacting with the screen to discuss 
something, or for some individual users to refrain from 
interacting for extended periods of time, therefore leading 
to lengthy gaps between touches by particular users. 



 

 

We trained and optimized Group Touch’s MLP models in 
Weka using leave-one-out nested cross validation to 
prevent overfitting. This method resulted in 17 models—
each one trained and optimized on the data from 16 of the 
study sessions and evaluated on the unseen data from the 
remaining study session.  

For every touch logged, as described above, there were 
more instances generated with the class label “different” 
than “same,” so the data were heavily weighted towards the 
“different” label (77.40% of instances across all sessions). 
To avoid overfitting the models to the majority class label, 
we applied the SMOTE filter [5] to balance the training 
data, resulting in an almost 50%-50% split between the two 
labels. MLP models can potentially be sensitive to the order 
of training instances, so we applied the Randomize filter to 
shuffle instances before training.  
Touch Grouping Algorithm 
After a touch pair is categorized with the “same” or 
“different” label, the next step is to establish groups of 
touches that are likely to have been carried out by the same 
user. The goal of Group Touch is to detect when additional 
users begin touching the screen and distinguish among 
multiple users as they are concurrently interacting with the 
computer; it is not intended to track or identify individual 
users for the duration of an activity. Key to our approach is 
that a “group” is not synonymous with a “user”—it is a 
group of touches that belong to a single user, representing a 
period of sustained interaction. Figure 6 illustrates the 
algorithm used to place touches into groups. 

The first touch creates the first group (Figure 6A). For 
every subsequent touch, a touch pair is created with the last 
touch in each group established so far. When the MLP 
model is queried, it returns the probability that the last 
touch belonged to the same user. If P(same) is less than a 
specified threshold (p), a new group is started (Figure 6B); 
otherwise, the touch is assigned to the group with the 
highest P(same) (Figure 6C).  

The value of threshold p can vary between 0.5 and 1.0. 
Higher thresholds mean that it is more likely a touch group 
will be made up of touches carried out by only one user 
because a more confident “same” prediction is required for 
a touch to be added to an existing group. However, higher 
thresholds also lead to new groups being created more 
often, with each group containing fewer touches and lasting 
a shorter period of time. In contrast, lower thresholds lead 
to touch groups that last for longer and contain more 
touches, but also increase the likelihood that touches by 
different users will be mistakenly grouped together because 
a weaker “same” prediction is sufficient to add a touch to 
an existing group.  

To evaluate the grouping algorithm and establish a suitable 
value for threshold p, we tested it on each session of touch 
data using a leave-one-out procedure. This testing involved 
 

 
Figure 6. An example of the algorithm to place touches into groups. 
A) The first touch creates the first group. B) For subsequent 
touches, we create touch pairs with the last touch of each group, 
then query the model for each pair. We create a new group if no 
pairs have a same-author with probability ≥ p, set to 0.80 in this 
example. C) If multiple touch pairs have a same-author probability 
≥ p, we add the touch to the group with the highest probability. 

using the algorithm to group the touches in a session 
according to predictions from the MLP model trained on 
touch data from the other 16 sessions. As well as being 
dependent on the performance of the MLP model, the 
outcome of the grouping algorithm would also be affected 
by the value of the probability threshold, p. Therefore, we 
tested the algorithm with a range of probability threshold 
values from 0.5 to 0.9, in increments of 0.1. This test was 
repeated with each of the 17 sessions of touch data in order 
to determine an optimal value of p. We determined that a 
threshold of 0.80 was suitable for our purposes, a decision 
that we discuss in more detail in the next section, together 
with implications of this decision. 

Approaches that use touch orientation to match touch points 
to hands [7,44] have shown thumb touches to be a source of 
error as the orientation of the thumb can be different from 
other fingers on the same hand. We anticipated this would 
also be an issue for Group Touch. Thumb touches are 
relatively infrequent in general interaction and do not 
feature in most standard gestures, with the exception of 
pinch-to-zoom. Thumb touches, however, are heavily used 
when typing on a virtual keyboard—typically when 
pressing the spacebar. To remedy this potential problem,



 

 

 (a) Session - 
Application 

(b) # of 
Touches 

(c) # of 
Users 

MLP Model (f) Grouping Accuracy 
(%) (d) Accuracy on Test Data (%) (e) Area under ROC Curve 

1 - Brainstorm 601 5 96.87 0.99 99.44 

2 - Heuristics 105 4 89.32 0.96 96.30 

3 - Heuristics 328 4 91.49 0.96 95.74 

4- Heuristics 241 5 94.29 0.97 98.40 

5- Heuristics 240 5 87.81 0.91 89.89 

6 - Map 104 5 92.19 0.93 94.74 

7 - Map 262 6 91.85 0.94 91.84 

8 - Map 519 5 93.85 0.95 91.76 

9 - Map 187 5 84.96 0.89 88.97 

10 - Resources 285 4 90.50 0.95 94.04 

11 - Resources 448 4 89.27 0.95 95.78 

12 - Resources 271 5 89.66 0.92 90.10 

13 - Resources 296 5 88.28 0.92 89.50 

14 - Wireframes 465 5 89.53 0.96 93.07 

15 - Wireframes 435 5 89.45 0.96 95.16 

16 - Wireframes 241 5 87.54 0.92 83.43 

17 - Wireframes 295 4 87.80 0.95 91.49 

Mean: 
SD: 

313.12 
138.32 

4.76 
0.56 

90.27 
2.91 

0.94 
0.03 

92.92 
3.94 

Table 1. Group Touch results by session. Columns (d) and (e) show how just the MLP model performed on the test data for each session. 
Column (f) shows the performance of the grouping algorithm with threshold p=0.80. Column (f) is therefore the performance of Group Touch. 

groups of touches on a virtual keyboard were merged when 
the same keyboard instance was touched and the touches 
occurred within 384 ms of each other. This threshold was 
chosen based on the typing speeds of participants in a study 
of typing on virtual keyboards [14]; it represents the time 
between keystrokes for the slowest participant. Touches to 
the same keyboard within this time could be assumed to 
have been carried out by the same user. 

Our evaluation of Group Touch was carried out offline but 
was set up as if it was grouping touches interactively at 
run-time—touches were processed in the order they were 
received and logged. Accuracy was calculated as the 
percentage of touches added to a group where the preceding 
touch correctly had the same user, using the manual labels 
assigned from the videos as ground truth. 

RESULTS 
Group Touch’s overall accuracy for a session ranged from 
83.43% to 99.44%, with a mean of 92.92% (SD=3.94%). 
However, only 2.66% of all touches logged were 
incorrectly added to a group of touches by a different user. 
This discrepancy between the overall accuracy and the 
number of touches added to incorrect groups occurs because 
our selection of a p threshold of 0.80 means the algorithm 
favors creating a new group of touches in the absence of a 
strong prediction of “same user” for any existing group. 
Therefore, groups of touches associated with a particular 
user persist for short periods of time but are highly 
accurate. Table 1 shows the complete results by session. 

To test the first component of Group Touch in isolation, the 
MLP model that predicts whether a pair of touches was 
authored by the same person or different people, we used 
leave-one-out cross-validation to evaluate the model, 

withholding a different session’s touch data each time. 
Within the training data for each fold in the leave-one-out 
cross validation, we conducted a 10-fold cross validation of 
the MLP model. These scores were highly consistent across 
sessions—the mean cross validation score was 89.22% 
(SD=0.29%). When the trained models were then tested on 
the withheld touch data, the mean accuracy was 90.27% 
(SD=2.91%). Leave-one-out test results for the MLP model 
are shown in Table 1(c). Figure 7 shows the ROC curves. 

 
Figure 7. The ROC curves for each MLP model. The area under 
the curve, listed in Table 1, ranged from 0.89 to 0.99. 

The second component of Group Touch, its grouping 
algorithm, adds a touch to the group for which the MLP 
model has returned a prediction of “same” person with the 
highest probability above a threshold p (see Figure 6). We 
tested threshold values between 0.5 and 0.9 in 0.1 increments 
and found that mean accuracy increased from 88.83% to 



 

 

94.23% (Figure 8). At the same time, the median duration 
of a group—the time elapsed from the first touch in a group 
to the last—decreased from 7,207 ms to 2,383 ms. Therefore, 
Group Touch can distinguish among simultaneous users for 
longer periods of time when the value of p is lower but with 
a tradeoff of lower accuracy within touch groups.  

 
Figure 8. As the value of p increases, the accuracy of Group Touch 
increases. However, the median time since the last group of touches 
with the same user and the median duration of groups decreases. 

To evaluate the threshold values, we also tracked another 
measure: the time between groups of touches belonging to 
the same person (i.e., the time that elapsed since that person 
last touched the screen). For example, Figure 8 shows that 
when p=0.8, the median time since the last group by the 
same user was 9,094 ms. This means that when a new group 
is started with a touch by user X, a median of 9,094 ms have 
passed since X last touched the screen. When the time 
between groups of touches belonging to the same person is 
brief, the system is being conservative in assigning new 
touches to existing groups. It therefore becomes more likely 
that sustained input by a single person will be ascribed to 
multiple people. Figure 8 shows that, as the value of p 
increased, the median time between groups of touches 
belonging to the same person decreased. Therefore, although 
accuracy within groups will be highest when p=0.9, longer 
sequences of related gestures by a single user are more 
likely to be split into multiple groups than when p is lower. 

Based on Figure 8, we chose 0.80 as the value of p. 
Although the average accuracy increases to 94.23% when 
p=0.90, both time metrics decrease to a point where Group 
Touch would only be reliably able to distinguish among 
users for brief interactions. At p=0.90, Group Touch still 
has valuable use cases (see the Discussion) but at p=0.80, 
Group Touch retains high accuracy and is able to distinguish 
among simultaneous users over longer periods of time, 
making it useful for a wider range of applications. When p 
was set to 0.80, the midspread (middle 50%) of groups 
lasted between 0.65 and 12.02 seconds and contained 2 to 6 
touches. The longest group recorded lasted 77.10 seconds 

and contained 80 touches. Table 1(d) shows the results of 
the evaluation of the grouping algorithm with the threshold, 
p, set to 0.80. 

To understand why Group Touch creates new groups for 
touches by an existing user, we investigated the differences 
between touches that resulted in a new group and those that 
were added to an existing group. Figure 9 shows the 
average features of touch pairs by the MLP model’s 
probability that a pair was carried out by the same user, 
P(same). The “New groups created” region shows the 
average features of false negatives—touch pairs that were 
actually by the same user (based on the labels assigned 
manually) but were incorrectly labeled by Group Touch as 
being by different users, leading to the creation of a new 
group. For these touch pairs, the MLP model returned a 
probability, P(same), below our threshold of 0.80 (see 
Figure 6B). Moreover, 62.41% of false negatives occurred 
when the MLP model returned P(same) < 0.1, a strong 
prediction that the touches were carried out by different 
people. Clear trends emerged for each feature as P(same) 
increased. Typically, touch pairs with the lowest values of 
P(same) had large values for time between touches 
(M=162.54 s, SD=76.70 s). Difference in orientation 
(M=69.86°, SD=47.14°) and distance between touch points 
(M=601.37 px, SD=347.47 px) also tended to be higher but 
there was more variation for these features. These results 
suggest that extended time between touches results in the 
creation of a new group when an existing group of touches 
by the same user is available.  

 
Figure 9. Average features of touch pairs by the probability they 
were carried out by the same user according to the MLP model. 

For comparison, Figure 9, “Added to existing groups,” 
shows the average features of touch pairs that resulted in a 
touch being added to an existing group. These are pairs 
where the MLP model returned the highest value of 
P(same) above our 0.80 threshold (see Figure 6C). 93.58% 
of these touch pairs were true positives that were correctly 
assigned—both touches were carried out by the same user. 
91.16% of these touch pairs had a P(same) of at least 0.90. 
The time between touches for pairs with a P(same) of at 
least 0.90 was brief (M=1.03 s, SD=1.54 s). Difference in 
orientation (M=25.25°, SD=24.75°) and distance between 



 

 

touches (M=130.35 px, SD=130.79 px) were also at their 
lowest when P(same) was at least 0.90. This means that a 
touch was more likely to be correctly added to an existing 
group when it was close to the last touch in the group in 
terms of all three features. 

DISCUSSION 
Group Touch’s overall accuracy (Table 1(d)) shows that it 
was successful at grouping touches that belonged to the 
same user. There was little variability in the accuracy of 
both the MLP model (Table 1(c)) and the grouping 
algorithm (Table 1(d)) across the 17 sessions of touch data 
collected in five different applications. These results 
indicate that Group Touch is user-independent and can 
perform consistently across a range of applications. 

Group Touch favors creating a new group of touches when 
the MLP model does not return a strong prediction of “same 
user” for any touch pair. This means that group assignments 
are highly accurate, with only 2.66% of all touches in our 
dataset being added incorrectly to a group by another user. 
However, this also means that it is important to understand 
when and why the model is unable to return a strong 
prediction of “same user,” leading to the creation of new 
groups. The trends shown in Figure 9 suggest that extended 
time between touches is a strong reason that new groups are 
created when an existing group of touches by the same user 
is available. Therefore, Group Touch is likely to perform 
better and create groups that persist for longer when users 
are regularly interacting with the screen, so time between 
touches is brief. Given that Figure 9 also shows that touches 
are correctly added to groups when the time and distance 
between touches are low, Group Touch is probably not 
suited for applications where users frequently jump around 
different areas of the screen. This might explain why 
session 16 had a much lower accuracy than all other 
sessions at 83.46%, 6.46% lower than the next lowest 
result. The students in this session spent much of the time 
flicking the on-screen objects at other objects to make them 
bounce around the edges, then reaching across the full 
length of the screen to retrieve the object. 

The value of the threshold p used to assign touches to 
groups of touches by the same user impacted the group 
duration and time between groups by the same user, as well 
as the accuracy. We selected 0.80 as our value of p because 
it resulted in a high grouping accuracy and the decrease in 
group duration was much steeper with a p above 0.80. 
However, the value of p and the resulting tradeoff between 
group duration and accuracy affects the potential use cases 
for Group Touch and therefore should be adjusted 
depending on how Group Touch is to be used. 

The simplest and most generalizable use case for Group 
Touch is resolving conflicting input that occurs when 
multiple people are simultaneously interacting with the same 
interface. For example, without the ability to distinguish 
among users, the touch input of multiple people attempting 
to drag an object in different directions will look very much 

like that of a single user carrying out a pinch-to-zoom 
action. Another example would be a user attempting to 
close a window that another user is actively working in [31]. 
Group Touch makes it possible to resolve these and other 
conflicts and determine how the application should respond 
because it is not necessary to know the identity of the users, 
just whether or not multiple users are interacting with the 
application concurrently. In this scenario, Group Touch 
would affect the application’s behavior in ways that are 
visible to users. Therefore, the high accuracy of the top 
value of p, 0.90, would likely be favored over groups that 
persist for longer, particularly as conflicting gestures will 
occur with a small number of overlapping touches. 

In addition to resolving conflicting gestures, there are 
numerous application scenarios where the ability to detect 
when multiple people are attempting to interact with the 
same object would be useful. For example, in a collaborative 
document editing application, it would be useful to prevent 
concurrent interaction in some situations (e.g., one user 
scrolling a page while another is making edits). Online 
collaboration tools, such as Google Docs, handle this 
situation by allowing each user to control navigation of 
their own view of the document—they can see others’ edits 
as they occur but they can move around their own view of 
the document independently. This approach would not 
transfer to a similar application on a shared screen. Group 
Touch could help in this scenario by making it possible to 
temporarily block interaction from users other than the 
person actively working in the document. Additionally, 
tracking concurrent versus individual edits to a document 
could make document revision history more useful.  

The ability to temporarily block other users from interacting 
with an object that a user is currently holding could also be 
used to enforce turn-taking in a collaborative learning 
environment or as a game mechanic in a competitive game 
where players have to steal objects from their opponents. 
Taking the opposite approach to the same incident—only 
responding to input if multiple people are simultaneously 
interacting with an object—would make it possible to 
support cooperative gestures. Cooperative gestures have 
been shown to be useful for increasing awareness of 
important functionality and increasing participation in 
applications for collaborative work and play [31, 32]. 

Group Touch could also be used to model the collaborative 
processes of small groups working at tabletop computers. 
For example, the ability to distinguish when multiple 
people are interacting with an application makes it possible 
to detect when users are taking turns, interfering with the 
actions of others, or working in parallel, all of which have 
been shown to impact collaborative learning 
[12,15,20,26,33]. For this use case, it would be important to 
capture longer interactions that contain more than just a 
small number of isolated gestures. Therefore, a lower p 
threshold, which creates groups that persist for longer 
would be preferable to increasing accuracy. 



 

 

Application designers could also use information about 
when and where conflicting gestures occur, and how groups 
use their applications, to evaluate and refine their designs to 
enable better collaborative use. For example, Group Touch 
would make it possible to automatically identify areas of the 
screen where there is typically only one user interacting at a 
time and those where there tend to be multiple users 
interacting. This information could be used to determine 
placement of shared interface elements and how to divide 
the screen into individual and shared workspaces.  

Group Touch offers an enhancement to existing touch-
detection on large, multi-user touchscreens that adds a new 
capability without breaking existing touch functionality when 
errors occur. For example, Group Touch false positives may 
cause an application to interpret the touches of multiple 
users as a single gesture. This outcome is typical of most 
current commercial tabletops. Therefore, when Group 
Touch produces a false positive, behavior will be the same 
as in current systems.  

In the case of false negatives, the primary causes are 
extended time between touches, or touches close together in 
time that have very different orientations or locations. How 
false negatives impact a user will largely depend on what an 
application does with information provided by Group Touch. 
For example, when detecting and resolving conflicting 
gestures, false negatives due to touches that are far apart in 
time are unlikely to produce a conflict in the interface and 
therefore unlikely to affect the user. In some cases, however, 
a false negative could cause a zoom gesture to look like two 
separate pan gestures. These cases occur infrequently and 
application-level design could help to mitigate any impact. 

Limitations 
The main limitation of Group Touch is that it does not track 
or identify users for the duration of an activity, and therefore 
cannot enable personalization, such as color-coding each 
user’s touches [43], or tracking individual contributions to 
the group effort [29]. It also cannot be used for 
authentication [4,24]. However, existing approaches to 
distinguishing users that are able to provide these features 
either rely on external sensors or artificially constraining 
interaction. As stated, Group Touch is intended for situations 
where such methods are impractical or undesirable. 

Additionally, the applications we used to design and 
evaluate Group Touch all featured highly collaborative 
tasks in which group members worked with shared objects. 
We expect accuracy would be about the same for other 
tasks of this nature. However, we expect that Group Touch 
may have lower accuracy in situations where individual 
users frequently interact with objects in very different areas 
of the screen (e.g., rapidly reaching from the top left corner 
to the bottom right). Based on our analysis of touch group 
characteristics (Figure 9), these types of interactions would 
look like touches carried out by different people. In 
applications requiring this functionality, Group Touch may 
not be the best option for distinguishing among users. 

Finally, in this work we have not yet identified the exact 
situations where Group Touch performs poorly. For example, 
we have not investigated how good Group Touch is at 
recognizing two-handed input by a single person versus 
single-handed input. This limitation is because all of our 
touch data were collected “in the wild” in uncontrolled field 
settings and extracting these types of specific interactions 
would be an extremely laborious process. A controlled lab 
study would likely be necessary to gain this kind of insight.  

FUTURE WORK 
One avenue for future work would be to address some of 
the limitations of Group Touch by testing the approach with 
data collected in less collaborative applications and to 
conduct a controlled study that can identify the exact types 
of low-level input that Group Touch is best able to handle.  

Additionally, it would be worthwhile to investigate ways to 
improve Group Touch by combining it with other approaches 
that focus on finger and hand detection (e.g. [7,44]), which 
may help make Group Touch even more robust. 

In our future work, we intend to use Group Touch to model 
the processes of collaborative learning with tabletop 
computers in high school classroom settings using the touch 
patterns described by Evans et al. [12]. To date, identifying 
indicators of the quality of collaborative learning processes 
has required manually labeling touch data using video 
recordings. Group Touch will make it possible to detect and 
respond to these touch patterns in real-time. 
CONCLUSION 
We have presented Group Touch, an approach to 
distinguishing among multiple simultaneous users by detecting 
when the users interacting with a vision-based tabletop 
computer change. Our approach achieved a mean accuracy 
of 92.92% (SD=3.94%). Group Touch is the first approach 
to distinguishing users that was designed and evaluated 
using data collected entirely “in the wild.” It uses only the 
built-in capabilities of the tabletop hardware and does not 
require the use of extra sensors, making it more flexible and 
easier to deploy than many existing approaches. 

Group Touch is not intended to replace existing approaches 
to distinguishing users, nor is it a suitable approach if 
individual users need to be identified and tracked for the 
duration of a session. Instead, it is intended to bring the 
capability of distinguishing among concurrent users to new 
settings that other approaches cannot support, namely, 
settings where use of external sensors is impractical and 
artificially constraining interaction is undesirable.  
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