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ABSTRACT
Elicitation studies, where users supply proposals meant to
effect system commands, have become a popular method for
system designers. But the method to date has assumed a within-
subjects procedure and statistics. Despite the benefits of exam-
ining the relative agreement of independent groups (e.g., men
versus women, children versus adults, novices versus experts,
etc.), the lack of appropriate tools for between-subjects agree-
ment rate analysis have prevented so far such comparative
investigations. In this work, we expand the elicitation method
to between-subjects designs. We introduce a new measure for
evaluating coagreement between groups and a new statistical
test for agreement rate analysis that reports the exact p-value to
evaluate the significance of the difference between agreement
rates calculated for independent groups. We show the useful-
ness of our tools by re-examining previously published gesture
elicitation data, for which we discuss significant differences in
agreement for technical and non-technical participants, men
and women, and different acquisition technologies. Our new
tools will enable practitioners to properly analyze their user-
elicited data resulted from complex experimental designs with
multiple independent groups and, consequently, will help them
understand agreement data and verify hypotheses about agree-
ment at more sophisticated levels of analysis.

Author Keywords
Guessability study, elicitation study, participatory study,
between-subjects design, agreement rate, methodology,
statistical test, user-defined gestures, toolkit.

ACM Classification Keywords
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INTRODUCTION
Participatory design studies are a powerful tool to understand
users’ perceptions, attitudes, and conceptual models for inter-
acting with new prototypes and applications that are yet in the
design stage [4,22]. Consequently, they provide designers with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

CHI’16, May 07–12, 2016, San Jose, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3362-7/16/05...$15.00
http://dx.doi.org/10.1145/2858036.2858228

Figure 1: Comparing agreement rates of different groups of
participants opens new ways to understand user-elicited data,
not possible before this work; e.g., we can now investigate the
effect of age group [39], gender [44], technical expertise [44],
disability [20], gesture implementer [2], etc., on agreement.
Our new tools (measures, statistical test, and software appli-
cation) enable agreement analysis for elicitation studies with
between-subjects designs and complement the tools of Vatavu
and Wobbrock [47] for within-subject elicitation experiments.

valuable user feedback at the early stages of the design process
to inform better prototypes. Elicitation experiments are one in-
stance of participatory design studies that enable user interface
designers to collect and cluster users’ preferences for specific
interactive situations for which little or no design knowledge
exists in the community. First proposed by Wobbrock et al. in
2005 [50], elicitation studies have since been widely adopted
by researchers to compile gesture sets for various interaction
scenarios [30,37,42,51] and applications [3,35,36,43,44,48].

However, inferring experimental findings of elicitation studies
(i.e., agreement rates [50]) to the entire user population can-
not be done without statistical reasoning. The lack of tools
for analyzing user-elicited data has been a major deficiency
of the elicitation methodology [50,51], depriving practition-
ers from the probabilistic assurance of the significance and
validity of their findings when extended to the wider user
population. Vatavu and Wobbrock [47] have recently made
the first steps toward formalizing agreement analysis in the
Human-Computer Interaction community with the Vrd statis-
tic that evaluates the effect of referents (i.e., commands to
be invoked in some application) on participants’ agreement
rates. While their test considerably strengthens the designer’s
confidence in interpreting agreement results (i.e., it enables
statements such as “users’ agreement over referent ‘zoom-in’
was found significantly higher than agreement over referent

‘zoom-out’, p < .05”), the test only applies for data collected
from elicitation experiments with within-subjects designs in
which the same participants contribute to all referents.
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Nevertheless, the opportunity to compare agreement between
independent groups of participants would open new ways to
understand user-elicited data at deeper levels of sophistication;
see Figure 1. For example, we may ask whether users with
technical backgrounds are more inclined to reach agreement
than non-technical users to understand more precisely the prac-
tical implications of the legacy bias phenomenon [31,38]. We
may also ask whether men tend to reach higher agreement rates
than women in terms of the interactive gesture commands they
propose, knowing that women generally employ more non-
verbal behavior and body movement than men [16]. Also, we
may want to study the effect of age group (i.e., child or adult)
on the agreement of what is intuitive touch gesture interaction
to inform user interface designs for smartphones and tablets
adapted to the user’s age [45,46]. Or, we may simply want to
compare the agreement rates reached by different researchers
running independent elicitation studies within the same appli-
cation domain [43,48,52] as a reliable way to validate previous
findings and confirm the reproducibility of agreement results.
While these are just a few directions of investigation in the
area of gesture set design made possible by our new tools, our
formalization of between-subjects elicitation studies is likely
to have a much broader impact to virtually any elicitation
experiment with a between-subjects design.

The contributions of this work are: (1) we propose a formal-
ization of the guessability methodology [50] for elicitation
studies with between-subjects experimental designs, for which
we introduce a new measure to characterize the degree of
agreement shared between independent groups of participants;
(2) we introduce a statistical test for comparing agreement
rates of different groups that reports the exact p-value of sig-
nificance in analogy with the principles behind Fisher’s exact
test [13]; (3) we conduct a re-examination of several published
elicitation datasets that shows the benefits of our methodology
to compare agreement rates between independent groups. As
an example, this work is the first to examine the effect of par-
ticipants’ technical background on agreement, an important
aspect to further understand the legacy bias phenomenon for
gesture elicitation studies [31]; also, it is the first work to ex-
amine the influence of participants’ gender on agreement over
elicited gesture proposals; (4) we offer a toolkit to compute
agreement measures and run tests of significance for k ≥ 2
independent groups. It is our hope that these contributions will
advance the current knowledge in agreement rate analysis for
elicitation studies, allowing researchers and practitioners to
understand user-elicited data at unprecedented levels of rigor.

RELATED WORK
We review in this section prior work on measuring agreement
between participants or raters in scientific experiments. We
also discuss elicitation studies employed in the HCI commu-
nity, and we examine tools and measures for computing and
analyzing agreement observed from users’ elicited proposals.

Measures of agreement analysis
The degree of consensus between participants or raters has
been evaluated with various measures in the literature of many
scientific disciplines [15]. For example, in statistics, inter-rater
reliability experiments ask participants (referred to as “raters”)

to independently produce categorizations of a sample of ob-
jects or phenomena into predefined categories or to rank the
subjects of a study according to some criterion. For instance,
two or multiple raters are asked to categorize the performance
achieved by several subjects tested for some task into three
categories, e.g., “basic”, “intermediate”, or “advanced”. Or,
the raters need to rank subjects by how well they did during
the evaluation task. The extent to which raters’ categorizations
match each other represents the inter-rater reliability. The
goal of inter-rater reliability testing is to guarantee the inter-
changeability of raters, i.e., the researcher does not need to
worry about which specific categorization they use from the
available raters, if they know that categorization is not affected
by the rater factor. Inter-rater reliability has been evaluated
using the percent agreement [18,32], Scott’s π statistic [40],
and Cohen’s κ (kappa) [8] and Fleiss’ κ [14] coefficients.

The percent agreement, popularized by Osgood [32] and Hol-
sti [18] is probably the first (and the most basic) approach to
capture the degree of consensus between raters when there
is a fixed number of rating categories. The statistic is calcu-
lated as the percent of all ratings for which all raters were in
agreement. For instance, if 2 raters each classify 10 subjects
into one of 3 categories and they all agree 4 times for the first
category, 2 times for the second, and 5 times for the third, the
percent agreement is 11/(3 · 10)=36.7%. However, because
the problem is to assign subjects to a fixed number of prede-
fined categories, agreement by chance may occur when raters
are not sure about the right categorization. In that case, even
if raters independently make a subjective choice, they could
still be in agreement, which is an undesirable outcome since
it does not follow from raters mastering the rating process,
but rather from chance alone. This issue has caused several
chance-corrected agreement coefficients to be proposed in the
literature. For example, the Brennan-Prediger coefficient [5]
corrects the percent agreement according to the number of
nominal categories in the rating scale (q) by considering that
the probability of chance agreement is proportional to 1/q. A
popular coefficient to measure agreement of two raters has
been Cohen’s κ [8], extended by Fleiss’ κ [14] to more than
two raters. The κ coefficient subtracts the probability of agree-
ment occurring by chance (i.e., the probability of expected
agreement, pe) from the percent agreement and divides the
result by the degree of agreement attainable above chance
(i.e., 1− pe). Scott’s π coefficient uses a similar calculation
formula, but computes the probability of chance agreement
slightly differently [40]. The weighted κ coefficient reports
agreement by weighting different disagreement situations with
different weights to properly reflect the seriousness by which
those disagreements may affect the final result [9]. When rank-
ings of subjects are required instead of their categorization into
predefined classes, Kendall’s W coefficient [21] can be used
to assess the degree of agreement between multiple raters.

Unfortunately, the above statistics are not appropriate to eval-
uate agreement for elicitation studies [50,51], during which
participants suggest proposals for referents without being of-
fered any set of predefined categories. The particularity of
an elicitation study is that the researcher wants to understand
participants’ unconstrained preferences over some task, which
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ultimately leads to revealing participants’ conceptual mod-
els for that task [51]. Consequently, the range of proposals
is potentially infinite, only limited by participants’ power of
imagination and creativity. This limitation of existing statistics
to reflect agreement between participants for elicitation stud-
ies has led Wobbrock et al. [50] to introduce the Agreement
Rate measure to properly quantify the consensus between par-
ticipants’ proposals. Findlater et al. [12] first improved the
agreement rate formula and then the measure was updated by
Vatavu and Wobbrock [47].

The elicitation methodology and agreement rates
Wobbrock et al. [50] proposed a participatory design methodol-
ogy for maximizing the guessability of symbolic input for user
interfaces. To apply the methodology, the practitioner presents
participants with commands called “referents,” for which “pro-
posals” are asked. For example, the practitioner may want to
design a good keyboard shortcut to invoke a new menu com-
mand called “Upload to FTP account.” He asks 20 participants
to think of good combinations of keys for that command, and
then groups all elicited data into clusters of equivalent propos-
als. The number of proposals that are equivalent is used to
calculate the agreement rate among participants. For instance,
say that 15 participants believe “Ctrl+U” is a good keyboard
shortcut for that command, while the remaining 5 are in favor
of “Shift+F”. The resulted agreement rate is then computed
as the sum of square ratios reflecting the support that each
proposal has in the group, A =

(
15
20

)2
+
(

5
20

)2
= .625 [50]

(p. 1871). Wobbrock et al. evaluated the guessability method-
ology on the EdgeWrite alphabets [50] and, later, applied it
for the first gesture elicitation study on tabletops [51].

Findlater et al. [12] proposed a variation for Wobbrock et
al.’s original agreement rate measure [50] that evaluates in
[0..1]. Recently, Vatavu and Wobbrock [47] introduced a
corrected version for the agreement rate formula that has even
more desirable properties, such as reported agreement is more
consistent under large samples of participants with the same
ratios of proposals. The corrected agreement rate for the above
example is AR = 20

19

((
15
20

)2
+
(

5
20

)2)− 1
19 = .605, where

coefficients 20
19 and 1

19 have the role to correct the magnitude
of agreement with respect to the sample size of participants
according to the actual number of degrees of freedom; see
Vatavu and Wobbrock [47] for more examples and discussions.

Researchers have also worked with other measures derived
from agreement rates when analyzing data from elicitation
studies. For example, Vatavu and Wobbrock [47] discussed
disagreement and coagreement measures. They also gener-
ated the probability distribution function for agreement rate,
which made possible the interpretation in a larger context of
the magnitudes of agreement rates reported in the literature.
Morris [30] proposed two new measures, max-consensus and
the consensus-distinct ratio, to evaluate the agreement between
participants when multiple proposals were elicited. Vatavu and
Zaiţi [48] used Kendall’sW coefficient of concordance [21] to-
gether with agreement rates, and reported similar magnitudes.
Chong and Gellersen [6] proposed a measure of popularity
of preferences function of the number of participants and the

number of times the same proposal occurred. Vatavu [44] de-
fined confidence values for referents as the maximum percent
of participants in consensus for those referents.

Applications of elicitation studies
Elicitation studies have found valuable application in the HCI
community for gesture interface design. For example, Wob-
brock et al. [51] was the first to employ the elicitation method-
ology in a study aimed at understanding users’ conceptual
models of touch gesture interaction on tabletops. From that
point on, the community has started to employ elicitation
studies for a variety of gesture acquisition technologies and
application domains. For example, Ruiz et al. [37] examined
motion gestures for invoking generic commands on mobile
devices; Vatavu [44] and Kuhnel et al. [24] investigated users’
preferences for controlling home appliances with gestures;
Vatavu [43] and Vatavu and Zaiţi [48] examined free-hand
Kinect and Leap Motion gestures for Smart TVs; Piumsom-
boon et al. [35,36] explored users’ gesture preferences for aug-
mented reality interfaces; Seyed et al. [41] and Kurdyukova et
al. [26] examined gestures for multi-display environments; An-
thony et al. [2] employed the agreement rates methodology to
characterize user consensus in articulating stroke gestures; and
Kray et al. [23] elicited gestures that span multiple devices.

AN EXACT TEST OF SIGNIFICANCE FOR EVALUATING
THE EFFECT OF STUDY GROUP ON AGREEMENT RATE

Preliminaries
Let G1, G2, ..., Gk be k independent groups of participants
from which proposals were elicited for some referent r. For
example, these may be k=2 groups withG1 composed of male
and G2 of female participants, for which we want to learn
whether men reached higher agreement over r than women.
Or, they may represent k=3 groups with G1 composed of
children less than 6 years old, G2 children between 7 and 18
years old, and G3 composed of adults, for which we want to
examine whether age affects consensus over some referent r.

We employ the definition of Vatavu and Wobbrock [47] to eval-
uate the amount of agreement in each group Gi, i = 1..k, ex-
pressed as the ratio of the number of pairs of participants from
Gi that are in agreement over referent r and the maximum
number of pairs from Gi that could have been in agreement:

AR(r,Gi) =

∑
Pj⊆Gi

1

2
|Pj | (|Pj | − 1)

1

2
|Gi| (|Gi| − 1)

(1)

where Pj are subsets of participants from group Gi that are in
agreement over r, and |Pj | denotes the cardinality of subset Pj .
For example, suppose that in a group of |Gi|=10 participants,
three distinct proposals emerge for referent r supported by
three subgroups of |P1|=5, |P2|=3, and |P3|=2 participants.
This elicitation result allows us to write the group size as the
partition 10 = 5 + 3 + 2. The agreement rate of the group is
AR(r,Gi) = (5·4

2 + 3·2
2 + 2·1

2 )/ 10·9
2 = 14

45 = .311.

Agreement rates can also be expressed using Kronecker’s
δp,q notation [19] (p. 240), where we set δp,q(r) to 1 when
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participants p and q are in agreement over r and 0 otherwise:

AR(r,Gi) =
ai
ni

=

|Gi|∑
p=1

|Gi|∑
q=p+1

δp,q(r)

1

2
|Gi| (|Gi| − 1)

(2)

where we use ai to denote the number of pairs in agreement
in group Gi and ni the total number of pairs of that group,
ni = 1

2 |Gi|(|Gi| − 1). Correspondingly, the number of pairs
in disagreement is di = ni−ai. Using the ai and di notations,
we organize agreement data for referent r as a 2× k contin-
gency table listing the frequencies of a dichotomous variable
AGREEMENT for each group; see Table 1. We denote by n the
number of all pairs in all the k groups, n =

∑k
i=1 ni.

Contingency tables, such as Table 1, are traditionally analyzed
for the association between row and column variables using
Pearson’s Chi-Square test [33], the G-test [7], or Fisher’s exact
test [13]. Pearson’s Chi-Square test compares the observed
frequencies in the data with the frequencies expected to arise
by chance under the null hypothesis and is implemented with
the χ2 statistic as the sum of normalized square differences
between observed and expected frequencies. The G-test is
a log-likelihood ratio significance test for which the statistic
takes the form of the Kullback-Leibler divergence [25] for ob-
served and expected frequencies. Both Pearson’s Chi-Square
test and the G-test have asymptotic chi-square distributions
(i.e., the larger the sample is, the better their sampling dis-
tributions approximate the chi-square distribution under the
null hypothesis), and one test may be preferred over the other
under various small samples, sparseness, and efficiency as-
sumptions [10]. Actually, it has been shown that Pearson’s
formulation of the χ2 statistic is an approximation of the G2

statistic obtainable by expanding the G2 log-likelihood for-
mula in a Taylor series, an approximation that works well
when the differences between observed and expected frequen-
cies are small [17] (pp. 4-5). However, because they are
approximate tests, results may not be accurate when sample
sizes are small or when data is unequally distributed among
the cells of the contingency table; e.g., Pearson’s Chi-Square
is not recommended when there are cells in the table with less
than 5 observations [13] (p. 96). Nonetheless, low agreement
rates are frequently observed in gesture elicitation studies
(see Vatavu and Wobbrock [47], Table 5 for an overview of
agreement results in gesture elicitation research), which makes
Pearson’s Chi-Square or the G-test inadvisable for analyzing
agreement frequencies. On the other hand, Fisher’s exact test
computes the exact value of the probability of observing the
frequencies of a 2× 2 contingency table and, consequently, is
the preferred test when sample sizes are small. Fisher’s exact
test also generalizes to R× C contingency tables [29].

Still, none of the above tests can be directly applied to analyze
agreement data. The reason is that they all assume independent
and identical trials as a condition to derive the formulas of
their test statistics, which is not always the case when measur-
ing agreement at the level of pairs of participants. For example,
once we have measured that participant p is in agreement with
participant q over some referent, and also that participant p

AGREEMENT(r)
GROUPS OF PARTICIPANTS

G1 G2 ... Gk TOTAL

YES a1 a2 ... ak a

NO d1 d2 ... dk d

TOTAL n1 n2 ... nk n

Table 1: Contingency table showing the number of pairs of
participants that are in agreement (ai) and in disagreement
(di) over referent r for each independent group Gi, i = 1..k.

is in agreement with participant u, then it also must be that
participants q and u are in agreement for that referent, which
makes the (q, u) observation dependent on the first two. On
the other hand, we cannot say anything about (q, u) when both
p and q and p and u are not in agreement. Because dependence
arises not from the study design, but simply in the data itself,
it is not a priori dependence, but dependence that may occur a
posteriori. Note that independence of observations is present
from the start because every participant is different from every
other and every observation has the chance to be independent,
but pairing participants may induce dependence. This transi-
tivity of agreement means that the probability of observations
that may turn out to be dependent on previous ones is 1.00.
Consequently, the formula of Fisher’s exact test [13] (p. 100)
may not prove accurate for all cases of agreement, because it
assumes the same probability for the event to occur in each
trial, i.e., the identical trials assumption. Therefore, a new test
would be preferable to prevent possible inaccurate conclusions
that traditional tests may produce for agreement data.

In the following, we formulate one such significance test to
evaluate the effect of independent study groups on agreement.
We were inspired by the principle of Fisher’s exact test [13]
(p. 99-101) that calculates the exact probability to observe
a given numerical configuration of the contingency table. In
our case, we are concerned with the probability of observing
a given configuration of agreement for k independent groups,
i.e., the values a1, a2, ..., ak corresponding to column totals
n1, n2, ..., nk in Table 1. In other words, we wish to evaluate
how likely our observed configuration of agreement is from
all possible agreement configurations that could have occurred
for the same numbers of pairs ni in each group. The null
and alternative hypotheses for agreement rates over referent r
computed for k independent groups are:

H0: ALL GROUPS HAVE EQUAL AGREEMENT RATES.
H1: THERE IS A DIFFERENCE AMONG THE AGREEMENT

RATES OF THE k ≥ 2 GROUPS.

The null hypothesis states that the relative proportions of the
number of pairs in agreement (ai) to the total number of pairs
in each group (ni) are independent of the study group, i.e., no
association between the rows and the columns of the table.

Counting all possible ways to reach agreement
We show in the following how to count all the possible ways
in which a given number of pairs in agreement (ai) can be
reached for a group of size |Gi|. We start by noting that
while the ai values are integers that range between 0 and
ni = 1

2 |Gi|(|Gi|−1) corresponding to the extreme cases of no
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PARTITIONS OF PROPOSALS α ai(α) fα|21

α1 : 7 = 1 + 1 + 1 + 1 + 1 + 1 + 1 0 1

α2 : 7 = 1 + 1 + 1 + 1 + 1 + 2 1 21

α3 : 7 = 1 + 1 + 1 + 1 + 3 3 35

α4 : 7 = 1 + 1 + 1 + 2 + 2 2 105

α5 : 7 = 1 + 1 + 1 + 4 6 35

α6 : 7 = 1 + 1 + 2 + 3 4 210

α7 : 7 = 1 + 1 + 5 10 21

α8 : 7 = 1 + 2 + 2 + 2 3 105

α9 : 7 = 1 + 2 + 4 7 105

α10 : 7 = 1 + 3 + 3 6 70

α11 : 7 = 1 + 6 15 7

α12 : 7 = 2 + 2 + 3 5 105

α13 : 7 = 2 + 5 11 21

α14 : 7 = 3 + 4 9 35

α15 : 7 = 7 21 1

TOTAL 877

Table 2: All the possible partitions of proposals for a group of
|Gi|=7 participants showing the number of pairs in agreement
ai(α) as well as the frequency fα|21 of observing each parti-
tion α given the (7 · 6)/2 = 21 distinct pairs of participants
from Gi. NOTE: partition 1+2+4 means that there are three
subgroups of participants in agreement: one subgroup of 4,
one of 2, and one of 1 participant, with the resulting number
of pairs in agreement being ai = 4·3

2 + 2·1
2 + 1·0

2 = 7.

agreement (ai = 0) and absolute agreement (ai = ni) between
ni pairs of participants, not all the intermediate values between
these two extremes are actually attainable. For instance, all the
possible values observable for ai for a group of |Gi|=7 partic-
ipants (ni=21) are {0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 15, 21}, and
there is no way to obtain, for instance, 8, 13, or 17 pairs in
agreement from a set of that size (see Table 2). This result
follows from the transitivity of agreement across pairs of par-
ticipants, i.e., if participant p is in agreement with participant
q and also in agreement with u, then it also follows that partic-
ipants q and u are in agreement. However, while some values
cannot be reached at all for some ai given |Gi|, others may
occur from multiple partitions. For example, there is more
than one way to obtain a value of ai = 6, such as from parti-
tions α5 and α10 listed in Table 2 that correspond to the sets of
proposals {ª, ª, ª, ª, v, H, ¨} and {¨, ¨, ¨, ª, ª, ª, H}.
At the same time, there is only one partition (α12) that will
evaluate to exactly 5 pairs of participants in agreement, i.e.,
the set of proposals {v, v, ª, ª, ¨, ¨, ¨}. Consequently,
some values for ai will be impossible to obtain for some group
size |Gi| and, from the values actually attainable, some will
be theoretically more probable to observe than others.

We now consider the number of ways in which participants
may permute under the same partition. Each partition α can
be observed multiple times depending on which actual par-
ticipants from Gi are in agreement each time. For instance,
partition 7=2+2+3 means that there are three subgroups of par-
ticipants in agreement: one subgroup of 3 and two subgroups
of 2 participants each. However, the actual participants that

compose these subgroups are free to vary. The number of
ways in which participants may vary for a partition α gives
the frequency of occurrence of that partition, which we de-
note by fα|ni

. For instance, the sets of proposals {¨, ¨, ¨,
v, v, ª, ª}, {¨, ¨, v, ¨, v, ª, ª}, and {ª, ¨, ¨, ª, v,
v, ¨} represent different permutations of the same partition
7=2+2+3: in the first permutation, participants 1, 2, and 3
form the subgroup of three (that suggested the proposal ¨);
for the second permutation, we have participants 1, 2, and 4
for the same subgroup of three; and, in the third permutation,
the subgroup of three is composed of participants 2, 3, and 7.

In the following, we show how to arrive at a formula for
calculating frequencies fα|ni

by working with an example.
Consider the same partition as before (7=2+2+3) with three
subgroups that agreed on three distinct proposals. We can
choose the 2 participants of the first subgroup from the set of
7 participants in

(
7
2

)
ways1, which then leaves us the option to

choose the 2 participants of the second subgroup in
(
7−2
2

)
=
(
5
2

)
ways and, lastly, we can choose the 3 participants of the third
subgroup in only

(
7−2−2

3

)
=
(
3
3

)
= 1 way. Therefore, the total

number of ways in which we can form the three subgroups
with 7 participants is

(
7
2

)(
5
2

)(
3
3

)
. In general, we write partition

α =
∑
j |Pj | (see eq. 1), for which the above product of

binomial coefficients for group Gi becomes:∏
j

(|Gi| −∑t<j |Pt|
|Pj |

)
(3)

Going back to our example, we note that we have two sub-
groups of size 2 and it does not matter the order in which these
subgroups are considered, i.e., whether the first or the second
group comes first in the partition is irrelevant to the structure
of the partition. Therefore, we need to divide our result by 2!,
which gives a frequency of

(
7
2

)(
5
2

)(
3
3

)
/2! = 105. In general, if

we have m subgroups of the same size under partition α, we
need to divide the result of eq. 3 by m!, because the order in
which subgroups of the same size appear in the partition is not
relevant. The final formula for fα|ni

is thus:

fα|ni
=

1∏
m≥2m!

∏
j

(|Gi| −∑t<j |Pt|
|Pj |

)
(4)

where m represents numbers of subgroups of the same size
occurring more than once in partition α.

We can now compute the frequency of observing exactly ai
pairs of participants in agreement given ni total pairs as:

fai|ni
=
∑
α→ai

fα|ni
(5)

where the sum goes over all the partitions α of group size
|Gi| that evaluate to exactly ai pairs in agreement (α → ai).
Considering the data shown in Table 2, the frequency of ob-
serving 3 pairs of participants in agreement from a total of
21 pairs is f3|21 = fα3|21 + fα8|21 = 35 + 105 = 140. The
example box next shows more calculation details of how to
count frequencies of agreement levels ai for group sizes |Gi|.
1(n

k

)
is the binomial coefficient of “n choose k”,

(
n
k

)
= n!

k!(n−k)!
.
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+ EXAMPLE. Let’s assume two independent groups of
sizes |G1|=7 and |G2|=8 participants from which pro-
posals were collected for a given referent r. For the first
group, the partition of proposals is 7=5+1+1 (i.e., three
distinct proposals for r), while for the second group partic-
ipants agreed in proportions 8=3+3+1+1 (i.e., four distinct
proposals were observed for r). The number of pairs in
agreement for the two groups are a1=10 and a2=6, out
of the total numbers of pairs that could have been in agree-
ment n1=21 and n2=28, which makes agreement rates
AR1(r) = 10

21 = .476 and AR2(r) = 6
28 = .214. We

are interested to learn how frequently a1=10 and a2=6
pairs in agreement can be observed for the two groups un-
der random samplings of participants. For the first group,
7=5+1+1 is the only partition that evaluates to 10 (see
Table 2), for which we have

(
7
5

)
ways to choose the 5

participants of the first subgroup,
(
2
1

)
ways to choose 1

participant for the second subgroup, and
(
1
1

)
=1 way to

select the remaining participant for the third subgroup. Be-
cause we have two subgroup sizes of one, the frequency
of observing 10 pairs in agreement from 21 total pairs is
f10|21 = 1

2!

(
7
5

)(
2
1

)(
1
1

)
= 21. For the second group, there

are two partitions that evaluate to a2=6 pairs in agreement,
namely 8=3+3+1+1 and 8=4+1+1+1+1 with frequencies
1

2!·2!
(
8
3

)(
5
3

)(
2
1

)(
1
1

)
= 280 and 1

4!

(
8
4

)(
4
1

)(
3
1

)(
2
1

)(
1
1

)
= 70.

Therefore, the frequency of observing 6 pairs in agree-
ment from 28 total pairs is f6|28 = 280 + 70 = 350.

Computing the probability of reaching agreement
Knowing now that the observance of a given number of pairs
of participants in agreement ai is conditioned by the number
of all the distinct pairs in that group ni, we refer to the condi-
tional probability of observing ai given ni, which we denote
πai|ni

following our previous convention and the notations of
Agresti [1] (p. 37) for describing contingency tables. This
probability is calculated by dividing the frequency of observ-
ing exactly ai pairs of participants in agreement (fai|ni

) by the
sum of frequencies of observing agreement at any level among
the ni pairs of group Gi. However, what is really of interest to
us at this moment is the conditional probability of observing
an agreement configuration of exactly a1, a2, ..., ak pairs in
agreement given n1, n2, ..., nk distinct pairs of participants
(i.e., the column marginal totals of Table 1), which is:

πa1,a2,...,ak|n1,n2,...,nk
=

k∏
i=1

fai|ni∑
ε1,ε2,...,εk

k∏
i=1

fεi|ni

(6)

where ε1, ε2, ..., εk denote all possible configurations of agree-
ment for the k groups. This probability tells us how likely it is
to see the particular configuration of agreement that was actu-
ally observed during the experiment, given all the possibilities
to obtain agreement for the k groups.

Now, similar to Fisher’s exact test [13] (pp. 99-101), we
want to know what is the probability of observing agreement
configurations that are “more extreme” than the configuration

resulted from our study, i.e., that deviate more from the null
hypothesis according to which the proportions of pairs in
agreement are the same across all the k groups. This approach
is similar to computing the difference between agreement
rates (e.g., .476− .214 = .262; see the previous example) and
evaluating the probability of the difference being close to zero.
To evaluate extremeness, we use a modified version of the χ2

statistic comparing observed and expected agreement:

Vb(ε1, ..., εk) =
k∑
i=1

(
εi −

ni
∑k
j=1 εj

n

)2

(7)

where n is the total number of pairs and
ni

∑k
j=1 εj

n is the
expected number of pairs in agreement for group Gi under
the null hypothesis, i.e., same proportions for all groups. For
example, the expected numbers of pairs in agreement for two
groups of size |G1|=7 and |G2|=6 for which a1=15 and a2=3

pairs in agreement were observed are 21·(15+3)
21+15 =10.5 and

15·(15+3)
21+15 =7.5. The Vb statistic2 will be larger for agreement

configurations that deviate more from the expected levels for
each group. We don’t normalize the terms of eq. 7 by the
expected agreement (as in the original formula of χ2), because
a zero level of agreement is possible to obtain. Using the Vb
statistic, we evaluate one configuration of agreement more
extreme than another if its associated Vb statistic is larger.

+ EXAMPLE. Let’s consider two groups of equal size,
|G1|=7 and |G2|=7 for which a1=10 and a2=6 pairs in
agreement were observed (AR1=.476 and AR2=.286).
We want to calculate the probability of seeing such a con-
figuration of agreement from all possible configurations
of n1=21 and n2=21 total pairs. Knowing that a1 and a2
can take 13 possible distinct values for a group of size 7
(see Table 2), there are 169 ways to reach agreement in
the two groups. Therefore, the probability to observe the
configuration 10 and 6 is:

π10,6|21,21 =
f10|21f6|21∑

ε1

∑
ε2

fε1|n1
fε2|n2

=
21 · 105

769129
= 0.00286

which means there is 0.3% chance to observe exactly 10
and 6 pairs in agreement for two groups of size 7 each.

We can now define the conditional probability of observing
the configuration of exactly a1, a2, ..., ak pairs in agreement
or configurations that are more extreme given n1, n2, ..., nk
distinct pairs of participants:

Πa1,a2,..,ak|n1,n2,...nk
=

1

2
πa1,a2,..,ak|n1,n2,...nk

+∑
ε1,...,εk

Vb(ε1,ε2,...,εk)>Vb(a1,...,ak)

πε1,ε2,...,εk|n1,n2,...,nk
(8)

2Notation V in Vb stands for the variation between agreement rates
and subscript b denotes a between-subjects experimental design.
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a1 a2 Vb πa1,a2|21,21 a1 a2 Vb πa1,a2|21,21
0 15 112.5 .00001 15 0 112.5 .00001
0 21 220.5 .00000 15 1 98.0 .00019
1 15 98.0 .00019 15 2 84.5 .00096
1 21 200.0 .00003 21 0 220.5 .00000
2 15 84.5 .00096 21 1 200.0 .00003
2 21 180.5 .00014 21 2 180.5 .00014
3 21 162.0 .00018 21 3 162.0 .00018
4 21 144.5 .00027 21 4 144.5 .00027
5 21 128.0 .00014 21 5 128.0 .00014
6 21 112.5 .00014 21 6 112.5 .00014
7 21 98.0 .00014 21 7 98.0 .00014

Table 3: Agreement configurations that are more extreme in
terms of the Vb statistic than a1=10 and a2=6 for two groups
of 7 participants each. NOTE: The Vb statistic for 10 and 6
pairs in agreement is 8.0, see the example box in the text.

where the sum goes through all the agreement configura-
tions ε1, ε2, ..., εk that are more extreme (i.e., less likely) than
the observed one, to which we add half the probability for
our observed agreement. Equation 8 is known as the mid-P
method [27] and is recommended over the ordinary P-value
technique (i.e., without the 1

2 ) for small-sample distributions
as a “sensible compromise between having overly conserva-
tive inference and using irrelevant randomization to eliminate
problems from discreteness” [1] (p. 20).

+ EXAMPLE. Let’s compute the Vb statistic for each
of the 169 possible ways to obtain agreement for the
two groups of the previous example. The expected num-
ber of pairs in agreement corresponding to a=10+6=16,
n1=21, and n2=21 is 16·21

42 =8 for each group. Therefore,
the Vb statistic for 10 and 6 pairs in agreement, respec-
tively, is (10− 8)

2
+(6− 8)

2
=8. Table 3 lists the values

of the Vb statistics and probabilities for all configurations
of agreement that are more extreme than the observed one.
The probability Π10,6|21,21 to observe our agreement data
or more extreme proportions is then .0039, which results
from adding up all the probabilities of more extreme con-
figurations and half of the probability of the configuration
of agreement observed in the study.

A test of significance for between-subjects designs
The value of the cumulative probability Πa1,a2,..,ak|n1,n2,...nk

tells us how extreme our observed agreement data is when con-
sidering all the possible agreement outcomes that could have
occurred. Similar to the principle of Fisher’s exact test [13],
we reject the null hypothesis H0 at the p level (e.g., p=.05) if
this probability is smaller than p:

Reject H0 if Πa1,a2,..,ak|n1,n2,...nk
< p (9)

which says that if the null hypothesis were true, agreement
observations of this type would be highly exceptional. For
the previous example, Π10,6|21,21 = .0039 and we will reject
the null hypothesis that agreement rates .476 and .285 for the
two groups of size 7 are nonsignificantly different. The Vb
statistic is Vb(2,N=42)=8.000 and can be interpreted as the size
of the effect, in the case in which a significant difference was
detected. The number of degrees of freedom is k=2 because

both a1 and a2 are free to vary, while we only constrain the
numbers of pairs n1 and n2 to be the same across different
samplings of agreement.

SOFTWARE SIMULATION
To evaluate the accuracy of the new Vb test statistic, we ran a
simulation procedure by repeatedly generating populations (of
size 100) of various controlled AR rates (from .100 to .900),
from which we repeatedly drew two samples of equal size
(|P | = 20) and we computed the number of Type I errors for
p = .05, .01, and .001; see Table 4. After 9× 105 simulation
runs, we found that the average number of Type I errors was
close to the p value for AR < .200 and at least one order
of magnitude below the p value for AR > .200; it becomes
nearly zero for AR > 300 and p < .01. These results show
that the predictions of Vb are accurate in general and very
accurate for agreement rates of practical significance.

p
Agreement rate (average value, simulated over 9× 105 runs)

.100 .200 .300 .400 .500 .600 .700 .800 .900

.050 0.190 0.041 0.004 0.000 0.000 0.003 0.001 0.002 0.000

.010 0.103 0.017 0.002 0.000 0.000 0.000 0.000 0.000 0.000

.001 0.050 0.012 0.001 0.000 0.000 0.000 0.000 0.000 0.000

Table 4: Average number of Type I errors produced by the Vb
test statistic compared to p values. Note how the number of
errors is one order of magnitude below p for AR > .200.

COAGREEMENT BETWEEN INDEPENDENT GROUPS
Each individual agreement rate (eq. 1) captures how much
consensus there is within its group but, considered alone,
cannot describe the consensus between groups. For exam-
ple, consider three independent groups of participants, for
which the following proposals were elicited in response to
some referent: G1={¨, v, ¨, ª, ¨, ¨}, G2={¤, ¤, «,
¤, ¤, ©}, and G3={v, ¨, v, ¨, ¨, v}. The agree-
ment rates for every group are numerically identical, i.e.,
AR1=AR2=AR3=.400, but looking at participants’ actual
proposals, there is clearly more agreement between partici-
pants from groups G1 and G3, whom all suggested propos-
als ¨ and v, compared to the proposals ¤ and « preferred
by the participants of group G2. Consequently, the use of
the agreement rate formula alone is not always reflective of
between-group agreement behavior: although agreement may
be reached numerically, the actual preferences of the indepen-
dent groups may vary. To capture such behavior accurately,
we introduce the between-group coagreement rate:

CRb(G1, G2, ...Gk) =

k∑
i=1

k∑
j=i+1

|Gi|∑
p=1

|Gj |∑
q=1

δp,q

k∑
i=1

k∑
j=i+1

|Gi| · |Gj |

(10)

where δp,q is Kronecker’s notation from eq. 2 that evalu-
ates to either 1 or 0 depending whether participants p and
q are in agreement or not, and the sum goes for all pairs
of participants selected from all pairs of groups Gi and Gj ,
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1 ≤ i < j ≤ k. For example, the between-group coagree-
ment rate for the k = 3 groups from the example above is
CRb(G1, G2, G3) = 0+15+0

6·6+6·6+6·6 = .139, which is low for the
reasons discussed above, but the coagreement between groups
G1 and G3 is much higher, i.e., CRb(G1, G3) = 15

6·6 = .417.
The between-group coagreement rate can be used by the prac-
titioner in conjunction with individual agreement rates and
the Vb statistic to further investigate causes of differences in
agreement between groups; the Case Studies section of this
paper illustrates the joint use of agreement and coagreement.

SOFTWARE TOOL: AGATE 2.0
To make computation of between-subject agreement rates and
p values easy, we provide the AGATE 2.0 tool (AGreement
Analysis Toolkit). The tool is implemented in C# .NET
4.5, and is freely available to download at http://depts.
washington.edu/aimgroup/proj/dollar/agate.html.

Because the computation of the exact p value requires gen-
eration of all possible configurations of agreement for the k
groups, the complexity of the algorithm implementing the test
is exponential with power k. Knowing that ai can take the
maximum value ni, we can estimate the upper margin of this
complexity to beO(

∏k
i=1 ni) = O(

∏k
i=1 |Gi|2). For the case

in which all the groups have the same number of participants
|G|, the complexity of running our test is O(|G|2k). Actual
time measurements showed that the test completes immedi-
ately for k=2 groups of 20 participants each (which is the
maximum size employed for gesture elicitation studies so far),
it takes 6 seconds for k=3 groups of 20 participants each (i.e.,
60 participants in total), and 10 minutes for k=4 (80 total
participants). Time measurements were performed on a 2.4
GHz Intel Core 2 Quad CPU running Windows 7 on 32 bits
and 2 GB RAM. These results show that the time performance
of our toolkit is reasonable for practical scenarios, despite the
exponential complexity required by the algorithm in the gen-
eral case. We estimate that most between-subjects designs will
consist of k=2 groups (e.g., men versus women, novices ver-
sus experts, etc.), because more complex experimental designs
generally require too many participants, e.g., 80+ participants
for k=4 groups. Nevertheless, for designs of that size, we ex-
pect that a Monte Carlo approach [11] will reduce the running
time, an optimization that we leave for future work.

CASE STUDIES
In this section, we briefly re-examine data from several pub-
lished elicitation studies [3,35,36,44,48] from the perspective
of between-subjects analysis. We do not attempt to be com-
prehensive in our analysis, but instead we want to reveal the
capability of our measures to unveil new discoveries for user-
elicited data, not attainable prior to this work. We hope that
researchers and practitioners will benefit from our case studies
to inform their own data analysis for independent groups.

The effect of users’ technical background on agreement
Previous elicitation studies have shown that users’ prior ex-
perience with technology (e.g., with Windows-like graphi-
cal user interfaces) affects their proposals for gesture com-
mands [36,43,44,48,51], a phenomenon known as the “legacy

bias” [31]. However, the lack of tools for agreement analy-
sis has hindered rigorous examination of the significance and
effect size of this phenomenon. In the following, we present
the first analysis on the effect of users’ technical expertise on
agreement rate enabled by our statistics and using the dataset
of the gesture elicitation study of Vatavu [44]. In that study, 20
participants (out of which 7 were non-technical) were asked
to propose free-hand gestures to control 22 functions of a
multi-screen TV system. Figure 2 shows the agreement rates3

computed for each referent and each group of participants.

Figure 2: Agreement rates computed for technical and non-
technical participants using the dataset of Vatavu [44]. NOTE:
Referents are shown on the horizontal axis in ascending order
of the exact p value of the Vb test; error bars show 95% CIs.

Using the Vb test, we found several differences in the agree-
ment of the technical and non-technical groups. For example,
there was more agreement for non-technical participants for
minimize (1.000 versus .321, Vb(2,N=20)=252.784, p=.001),
move (1.000 versus .359, Vb(2,N=20)=224.977, p=.001), and
volume down (.524 versus .154, Vb(2,N=20)=74.938, p=.028),
while technical participants achieved higher consensus for help
(.372 versus .048, Vb(2,N=20)=57.537, p=.050) and undo
(.359 versus .048, Vb(2,N=20)=53.076, p=.057); see Figure 2.
To understand more about these differences, we computed
between-group coagreement rates for each referent. For ex-
ample, coagreement for minimize was CRb=.538, showing
that only half (53.8%) of all pairs of participants across the
two groups were in agreement about how to minimize a TV
window, i.e., by drawing hands together [44] (p. 202). The
reason why the other half disagreed was that while all non-
technical participants minimized content by drawing their
hands together (corresponding to shrinking something in the
real-world), the technical group proposed more variations,
such as one and two-hand gestures, employed interaction
metaphors, such as double click, and worked with an imagi-
nary space outside the display [44] (p. 206). All these propos-
als elicited from the technical group indicate a clear influence
of the legacy bias that was significant (p=.001) for minimize
and exhibited the largest effect size (Vb=252.784) among all
the 22 referents. The same effect was observed for maximize

3There is a difference in the magnitude of the agreement rates that we
report and those from Vatavu [44] (pp. 196-197), because Vatavu
used the original definition of agreement rate introduced by Wob-
brock et al. [50], while here we employ its corrected version [47].
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Figure 3: Agreement rates computed for 6 referents common
to 4 independent studies with 78 participants [3,36,44,48].
NOTE: Referents are shown in ascending order of the exact p
value of the Vb test; error bars show 95% CIs.

as well, but this time from another perspective: although the
agreement rates of the two groups were similar (.590 versus
.476) and the difference not significant (Vb(2,N=20)=7.060,
n.s.), the coagreement rate showed different gesture prefer-
ences for the two groups (CRb=.549).

Similar findings emerged for other referents as well. For ex-
ample, most of the technical participants drew the question
mark symbol to invoke help (AR=.372), which is a common
icon in graphical user interfaces, while non-technical partici-
pants came up with significantly more different suggestions
(AR=.048), which were grounded in the non-technical real-
world, e.g., raise shoulders or raise arms in a shrug. This
finding was also reflected by low a coagreement value for
help, CRb=.198. On the other hand, referents with direc-
tional mappings received high coagreement, i.e., CRb=.791
for go to previous channel and go to next channel, for which
agreement rates were also similar (.846 versus .714, n.s.). We
also found that for abstract referents, such as open menu, hide
menu, duplicate channel, and mute, there were no significant
differences between the agreement of the two groups. Coa-
greement was between .022 and .187, which shows the need
for specific gesture designs for those referents, regardless of
users’ technical backgrounds.

These examples of between-group analysis illustrate how the
original discussion of Vatavu [44], which was limited to only
reporting qualitative differences between groups, could have
been consolidated with numerical tools that evaluate signif-
icance and coagreement between groups quantitatively. We
hope that our brief illustration of how to apply the between-
group methodology will inspire researchers and practitioners
to investigate the “legacy bias” phenomenon in more depth.

The effect of gesture application domain on agreement
Previous elicitation studies have employed various acquisi-
tion technologies to capture users’ gestures, such as free-
hand [35,36,48], accelerated motion [37], whole body [43,44],
and touch gestures [51] for various application domains, such
as appliance control [24,43,44,48], mobile device interac-
tion [37], augmented keyboards [3], stroke-gesture alpha-
bets [50], augmented reality [35,36], and generic touch in-

teraction on tabletops [51]. Inadvertently, these studies have
examined similar referents, such as previous, next, accept,
open, close, etc. due to the application-independent nature of
these commands. While analyzing these studies, we were
able to find similar results reflective of generic user behav-
ior, such as users falling back on already acquired interaction
models or users assigning similar gestures for dichotomous
tasks [36,37,43,44,51], but also many observations particularly
related to the gesture technology or application context under
evaluation, which suggests a potential effect of application do-
main on agreement. However, no work so far has investigated
users’ agreement over referents across application domains,
one reason being the lack of tools to properly quantify and
evaluate the significance of differences between independent
groups of participants. In the following, we present the first
analysis of such an effect by using our new Vb test statistic
and 4 datasets with a total number of 78 participants: (1) the
whole-body gesture dataset of Vatavu [44] for TV control (Mi-
crosoft Kinect, 20 participants, 22 referents), (2) the free-hand
gesture dataset of Piumsomboon et al. [36] for augmented
reality (Asus Xtion Pro Live, 20 participants, 40 referents),
(3) the free-hand dataset of Vatavu and Zaiţi [48] for TV con-
trol (Leap Motion, 18 participants, 21 referents), and (4) the
gesture dataset of Bailly et al. [3] for gesture-enhanced key-
boards (Métamorphe keyboard, 20 participants, 42 referents).
Figure 3 shows agreement rates of 6 referents that we found
common to all these elicitation datasets together with the exact
p-values of the Vb test.

Using the Vb test statistic, we found significant effects of the
application domain on the agreement rates of all groups and all
referents (p ≤ 0.0045); see Figure 3. Follow-up post-hoc tests
(Bonferroni corrected at p =.05/6=.0083) revealed more pre-
cise differences. For instance, we found significantly more
agreement for key gestures performed on the Métamorphe key-
board to invoke accept (AR=.374) than for whole-body ges-
tures (AR=.074), free-hand gestures (AR=.183) performed
to control a Smart TV, and free-hand gestures elicited for aug-
mented reality (AR=.226), with exact p-values under .0033.
This result shows that a tangible constraint, such as a key on a
keyboard, affects significantly the number of potentially dis-
coverable gestures, which results in higher agreement. There
was no significant difference between the agreement rates of
free-hand gestures for augmented reality and TV (.226 versus
.183, Vb(2,N=38)=35.693, p=.279), which are acquisition sce-
narios that leverage similar gesture types; but the whole-body
scenario led to significantly smaller agreement than hand ges-
tures (p=.003 and p=.033). Both next and previous referents
received maximum agreement (1.000) for free-hand gestures
in the augmented reality context, significantly larger than all
other groups (p<.001). However, we found no significant
difference between free-hand gestures captured with Leap Mo-
tion and key gestures on the Métamorphe keyboard (.601 and
.511, Vb(2,N=38) = 118.392, n.s. for next and .516 and .584,
Vb(2,N=38) = 66.175, n.s. for previous). This non-significant
result suggests that similar agreement levels may be reached
across application domains for directional referents when ges-
tures are elicited at the same scale of the body, i.e., finger scale
in this case. Note that results presented in this section do not
come from a single experiment in which participants would
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Figure 4: Agreement rates computed for male and female participants using the dataset of Bailly et al. [3]. NOTE: Referents are
shown on the horizontal axis in ascending order of the exact p value of the Vb test; error bars show 95% CIs.

have been randomly allocated to the various devices, so further
investigations in this direction are necessary to confirm our
findings. However, we believe that such investigations could
reveal even more aspects to understand potential invariance of
gesture commands across application domains.

The effect of gender on agreement
We know from the literature of behavioral science that women
generally express more non-verbal behavior than men in the
form of smiles, laughs, and head and body movements [16].
We also know that there are cognitive differences between
men and women, and that women generally exhibit more ver-
bal fluency than men [34], while men perform better during
visuo-spatial tasks [49]. Given that gestures and language are
one system of mutual relationships expressing thought and
that gestures have inherent visuo-spatial representations [28],
it may be that women and men reach different levels of agree-
ment in gesture elicitation studies. In the following, we present
the first analysis of the effect of gender on agreement rates.
We use the dataset of the elicitation study of Bailly et al. [3]
in which 20 participants (9 males and 11 females) proposed
key gestures for 42 referents for the Métamorphe keyboard.

Figure 4 shows the agreement rates reached by men and
women for each referent. Overall, men and women reached
similar levels of agreement (.322 and .353), but per-referent
analysis showed significant differences (p<.05) for 7 referents.
For instance, women reached significantly higher agreement
than men for next (1.000 versus .250, p=.00004), previous
(1.000 versus .333, p=.00014), align top (.818 versus .417,
p=.0038), increase volume (.491 versus .194, p=.0196), and
decrease volume (.491 versus .139, p=.0085). On the other
hand, men were more in consensus for shrink (.444 versus .091.
p=.0077) and rotate (.778 versus .509, p=.0214). Differences
in agreement rates were marginally significant (p=.0544) for
align left and align right (1.000 versus .778). These results
show that women and men reach consensus over gestures in
different ways that depend on the nature of the referent and
that may be driven by different cognitive processes and capa-
bilities to employ analogies of how things work. For instance,
the perfect agreement for next and previous reached by women
indicates very stable and predictable metaphors for referents

of such semiotic nature. On the other hand, men were more in
consensus for ergotic tasks, e.g., rotate and shrink, that relate
to the idea of work and mechanical modeling of the world.
Furthermore, coagreement rates varied between a minimum of
.111 (for save as and task switch) and a maximum of .889 (for
align left and align right), which further highlights differences
for some referents and agreement for others. Informed by these
findings, the designer can now take a second, informed look at
participants’ proposals to understand what made them agree
for some referents and disagree for others. While we only
point to such differences to demonstrate the usefulness of our
measures, we see benefits of further explorations of the types
of gestures preferred by each gender and their corresponding
levels of agreement that will lead to valuable understanding of
gender-related gesture preferences, a topic under-examined so
far by the gesture community.

CONCLUSION AND FUTURE WORK
We introduced in this paper new measures to evaluate differ-
ences in agreement between independent groups of partici-
pants and we showed their applicability to reveal new find-
ings for various experimental conditions, findings unattainable
prior to this work. Future work will consider a statistical test
to evaluate whether the coagreement between independent
groups is different from 0, which will enable the use of coa-
greement rate alone during analysis of significance. A new
test for analyzing agreement data from elicitation experiments
with mixed designs will prove useful for complex studies.
However, the joint use of the Vb test for agreement rates and
examinations of coagreement values can help designers today
to examine differences between their groups of participants
and use that knowledge to inform their current designs. It is
our hope that this work will consolidate the practice of design-
ing elicitation studies and analyzing agreement results, which
will in turn inform improved user interface designs.
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