
Mouse Pointing Endpoint Prediction 
Using Kinematic Template Matching 

Phillip T. Pasqual and Jacob O. Wobbrock 
Information School | DUB Group 

University of Washington 
Seattle, WA, USA 98195 

phillpas, wobbrock@uw.edu 
 

ABSTRACT 
We present a new method of predicting the endpoints of 
mouse movements. While prior approaches to endpoint 
prediction have relied upon normative kinematic laws, 
regression, or control theory, our approach is 
straightforward but kinematically rich. Our key insight is to 
regard the unfolding velocity profile of a pointing 
movement as a 2-D stroke gesture and to use template 
matching to predict the endpoint based on prior observed 
movements. We call our technique kinematic template 
matching (KTM), which is simple to implement, user-
adaptable, and kinematically expressive. In a study of 17 
able-bodied participants evaluated over movement 
amplitudes ranging from 100-800 pixels, we found KTM to 
predict endpoints that were within 83 pixels of the true 
endpoint at 50% of the way through the movement, within 
48 pixels at 75%, and within 39 pixels at 90%, using 1000 
templates per participant. These accuracies make KTM as 
successful an approach to endpoint prediction as any prior 
technique, while being easier to implement and understand 
than most. 

Author Keywords 
Endpoint prediction; target prediction; kinematics; mouse 
pointing; template matching. 
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Interfaces: input devices and strategies.  

INTRODUCTION 
Despite steady advances in input and interaction techniques, 
mouse pointing remains a dominant form of interaction 
with computers. Some studies show that mouse pointing 
comprises up to 65% of our desktop computer usage [12], 
and that our use of the mouse is 3-5 times our use of the 
keyboard [6,17]. But the pointing process itself is rarely of  

 
Figure 1. (a) Movement endpoints are predicted by (b) 
regarding a movement’s velocity profile as a 2-D stroke 
gesture and comparing this “gesture” to profiles of prior 

pointing movements in a process we call “kinematic template 
matching.” 

interest; rather, it is the resulting endpoint of that process 
that matters. If we could create a means of knowing an 
endpoint in advance of its delivery by a mouse-click, we 
could increase the efficiency of mouse pointing, perhaps 
considerably, with techniques such as target expansion 
[16,20] or gravity wells [11]. Such is the goal of endpoint 
prediction, an attempt to predict the future when pointing.   

Past attempts at endpoint prediction have relied upon 
simple regression [1], normative kinematic laws [15] (e.g., 
the minimum jerk law [10]), Kalman filters [2], neural 
networks [4], or inverse control theory [23]. Heuristics and 
normative laws are known to be brittle, as individual 
humans often deviate from these prescriptions. More 
sophisticated mathematical approaches are more adaptable 
but are highly complex, and are difficult to implement and 
scrutinize. Also, many prior approaches require knowledge 
of possible targets, making them target-aware and 
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impractical to deploy compared to target-agnostic 
techniques, such as the technique we present here.1 

In contrast to prior techniques, we conceive of the 
unfolding velocity profile of an aimed pointing movement 
as a 2-D stroke gesture (Figure 1). While mouse 
movements themselves have been regarded as 2-D gestures 
in the past, we are the first to regard velocity time series 
data as a “stroke” in 2-D space. By employing this concept, 
we are able to then utilize template matching to determine 
which of a set of prior movements is most like the current 
unfolding movement, and predict endpoints accordingly. 
We call this approach kinematic template matching (KTM), 
and find its simplicity, adaptability, and accuracy to be its 
biggest advantages over prior techniques. Another 
significant advantage over some prior techniques is that it is 
entirely target-agnostic, requiring no information about 
actual targets on the screen. 

To evaluate KTM, we conducted a study of 17 participants. 
We found that on average, KTM is able to predict within 83 
pixels of the true endpoint when 50% of the movement 
duration has been completed, within 48 pixels at 75%, and 
within 39 pixels at 90%, using 1000 templates per 
participant.  

The key contributions of this work are: (1) the 
conceptualization of time-series velocity data as 2-D stroke 
gestures for the purpose of stroke gesture recognition; (2) 
the creation of a specific template matching algorithm to 
determine the endpoint of the current movement based on 
prior movements; and (3) empirical results showing that 
KTM outperforms prior approaches while being 
significantly simpler and more adaptable than prior 
techniques. 

RELATED WORK 
Previous work has taken both regression-based 
extrapolation approaches and target-aware classification 
approaches to predict the intended target of aimed pointing 
movements. Each of these methods has benefits and 
shortcomings, which we describe in this section.  

Regression-Based Extrapolation 
Based on prior research which revealed a relationship 
between the peak velocity of a movement and its final 
distance [21], Asano et al. [1] use a simple linear regression 
model to predict the location of a distant target. Their 
process involves first calibrating the system for each user 
based on previously collected pointing tasks. The distance 
of the target is then given to be: 

ܦ ൌ ܽ ܸ௫  ܾ 

where ܽ and ܾ are user-specific constants provided by the 
linear regression model from the calibration stage, and ܸ௫ 
is the peak velocity of the movement. Similarly, Keuning-

                                                           
1 For a discussion of target-aware vs. target-agnostic interaction 

techniques, the reader is directed to prior work [22]. 

Van Oirschot and Houtsma [13] find that doubling the 
distance of a movement’s peak velocity roughly predicts the 
final movement length. In general, these linear regression 
techniques, while simple, do not produce high-quality 
predictions. By contrast, our approach based on KTM 
enjoys much of the simplicity of these techniques while 
being capable of much more accurate predictions. 

Taking a more advanced approach, Lank et al. [15] derive a 
predictive equation based on normative kinematic laws. 
Built upon the minimum jerk law [10], Lank et al.’s method 
involves a two-step process. First, the points of an 
unfolding movement are used to create a velocity-over-
distance profile. This profile is fit with a quadratic curve 
using least-squares regression, and the endpoint is 
calculated to be the non-zero x-intercept of this curve. 
Second, due to the numerical instability of this process, 
predictions commonly overshoot the actual endpoint. To 
correct for this overshoot, a coefficient from a pre-
calculated table is applied.  

To better accommodate the numerical instability of 
extrapolation, the authors altered their algorithm in later 
work [19]. Instead of applying tabulated coefficients to 
correct the endpoint after extrapolation, the stability of a 
new prediction is checked directly. A prediction is defined 
to be stable if the following criterion is satisfied: 

݈ െ	 ݈ିଵ
݈

൏ 0.02 

where ݈ is the length of the current prediction and ݈ିଵ is 
the length of the previous prediction. With this newly 
refined method, Ruiz et al. [19,20] additionally provide a 
“single shot” version of the algorithm that returns a single 
predicted value when the ratio of transpired movement to 
predicted movement crosses a threshold. 

Results for Ruiz et al. for the continuous algorithm show 
that 51.4% target accuracy was achieved when 90% of the 
motion had been completed for targets of size 15-75 pixels. 
For the single shot algorithm, target accuracy was only 
33.7% when 85% of the motion had been completed. As we 
show in our results, our approach compares favorably to our 
recreated version of Ruiz et al., being about 25.2% more 
accurate overall. Furthermore, Ruiz et al.’s approach 
derives from normative kinematic laws, which assume 
normative movement behavior. By contrast, our approach 
allows for user-specific adaptability, as it is not built on 
normative kinematic laws, from which certain users may 
deviate. 

Target Classification 
Related to endpoint prediction is target prediction—that is, 
from among a set of possible targets, predicting which one 
the user intends to select. Classification techniques have 
been used in this regard, and unlike the regression-based 
approaches discussed above, they must be target-aware, 
making them very difficult to deploy [7,22]. Perhaps the 
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simplest method for target prediction selects targets simply 
based on their distance from the cursor position [14].  

Work by Murata et al. [18] uses a cumulative score for each 
target as each new movement point is collected. At each 
sampling interval, the system calculates the angle between 
the movement direction vector and the vector connecting 
the current position to each potential target. The resulting 
angle is then added to the cumulative score for each target 
and the predicted target is selected to be the target with the 
lowest cumulative score; that is, the target most “on line” 
with the direction of movement. 

The most recent work in target classification contributes 
two techniques [2,4]. In the first technique, the authors train 
a neural network on the angle, velocity, and acceleration of 
a movement to predict whether it has entered the corrective 
submovement phase. If it has, the direction of the 
movement is calculated and the intended target is chosen to 
be the nearest target in that direction. In the second 
technique, the authors use a Kalman filter based on the 
angle and distance to each potential target. Probabilities are 
then assigned to each target based on the model and the 
target with the largest probability is selected. Evaluating the 
two techniques with both able-bodied and motor-impaired 
users, target prediction accuracies of about 60% were 
achieved.  

Finally, Ziebart et al. [23] provide an approach to attach 
probabilities to targets using inverse optimal control and 
Bayes’ rule. Their technique first casts pointing as a control 
problem. Specifically, the authors represent an 
instantaneous pointing state to be the combined position, 
velocity, acceleration, and jerk at a given time. They 
represent the transitions between such states to be based on 
changes in velocity. Taking this perspective, inverse 
optimal control techniques are used to create a probabilistic 
model of pointing movements based on the target locations 
of previously collected movements. Then, assuming a 
uniform prior distribution over all targets, Bayes’ rule is 
applied to provide a probability for each target. Results 
show that approximately 60% target accuracy is achieved 
when 90% of a movement has been completed. 
Additionally, the authors achieve higher target accuracies 
than previous approaches when less than 60% of a 
movement has been completed. 

While the sophistication of the above target classification 
techniques varies from simple to complex, they all have the 
disadvantage of being target-aware. By contrast, our 
approach is target-agnostic, user-adaptable, and easy to 
implement. By framing the velocity profile of an unfolding 
movement as a 2-D stroke gesture, we achieve good results 
while balancing simplicity and sophistication.  

KINEMATIC TEMPLATE MATCHING 
Kinematic template matching (KTM) frames the velocity 
profile of a pointing movement as a 2-D stroke gesture 
allowing it to be recognized via template matching in a 
three-step process. First, a library of templates from prior 

movements is constructed. Second, preprocessing is 
performed on the templates to prepare them for comparison 
to a candidate movement, which is preprocessed similarly. 
Third, the best-matched template is chosen and the 
predicted endpoint is calculated based on the total distance 
the matching template movement traveled. To the best of 
our knowledge, we are the first to conceive of time-series 
velocity profiles as stroke gestures and to employ template 
matching for endpoint prediction. The above steps are 
described in more detail in the following subsections. 

Building the Template Library 
A library of templates is built using previously collected 
pointing movements in order to compare them to future 
movements a user makes. Each template is created from a 
distinct sequence of position-time points (x, y, t) that 
describe a pointing movement; these points are first filtered 
and then used to produce the template’s velocity profile. 
The movement points, velocity profile, and total distance 
traveled are stored as part of the template in order to reduce 
computational complexity while matching candidates. 

The predictive accuracy of KTM is dependent on the 
number of templates in the library. We hypothesized that as 
the number of templates increased, so would the predictive 
accuracy. However, empirical evidence revealed that the 
accuracy did not significantly increase when using more 
than 1000 templates (Figure 2). Therefore, we found 1000 
templates to be sufficient for accurate predictions when 
target amplitudes were between 100 and 800 pixels, which 
was the range of pointing movements tested.  

 

Figure 2. Average distance of predicted endpoint from 
observed endpoint in pixels. Lower is better. 

When creating the template library, the goal is to create a 
mapping that relates velocity profiles to distances traveled. 
As a result, movements that overshoot their endpoint 
produce a velocity profile that misrepresents the final 
distance of a movement and, if matched by KTM, lead to 
overshooting the candidate movement’s endpoint. 
Therefore, given the sequence of movement points used to 
build a template for KTM, a simple filter is applied to check 
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and correct for overshooting. For each movement point  
in the sequence of points	ܲ ൌ 	 ሼଵ, … ,  ሽ, if

‖ െ ଵ‖ଶ ൏ ିଵ‖ െ  ଵ‖ଶ

then ܲ is truncated so that ܲ	 ൌ 	 ሼଵ,… ,  ିଵሽ. Employing
this filter is advantageous to our technique, as it allows 
KTM to make use of movements with overshoots, which 
are common when pointing with a mouse [5].  

Once the filter has been applied, the points in ܲ are 
temporally resampled at 20 Hz in preparation for smoothing 
before comparisons. The resampled points are then used to 
create the complete velocity-over-time profile of the 
template. Note that each template needs to only be 
preprocessed in this way once, not prior to each comparison 
to a candidate movement. 

Preprocessing Pointing Movements 
While a candidate pointing movement is being made, new 
points are appended in real-time to a cumulative list of 
position-time points, or (x, y, t) values. As each new point is 
collected, the list is temporally resampled at 20 Hz and used 
to produce the candidate movement’s partial velocity 
profile. The velocity profile is then smoothed using a 1-D 
Gaussian kernel filter with a standard deviation of 7 to 
reduce noise [9] (Figure 3). The chosen resampling rate and 
standard deviation were based on comparing different 
resampling rates ranging from 20-200 Hz and different 
kernel filters with standard deviations ranging from 3-7 
(higher values smooth more). The (20, 7) combination 
resulted in the best predictions overall. 

 

Figure 3. Stages of preprocessing the candidate movement.  
(a) The raw movement points are (b) temporally resampled. 

These resampled points are used to create (c) the velocity 
profile, which (d) is then smoothed. 

Once the candidate’s smoothed velocity profile has been 
created, the velocity profile of each template also needs to 
be smoothed. However, when the library is constructed, the 
velocity profile of each template is representative of a 
complete pointing movement. Conversely, the candidate is 
still in the process of unfolding and has a velocity profile 
that reflects movement only up to a certain point in time. To 
allow for equitable template-candidate comparisons, each 

template is transformed to reflect its motion at a similar 
point in time as the candidate. Therefore, before smoothing, 
if a template’s velocity profile ends at a later time than the 
candidate’s, the template’s velocity profile is shortened to 
the same length as the candidate. Alternately, if a template 
movement is temporally shorter than the candidate, its 
velocity profile is left unmodified (Figure 4). 

 

Figure 4. (a) The gray template’s velocity profile is longer than 
the blue candidate’s, so (b) the template’s profile is truncated 

before (c) being smoothed. (d) The gray template’s velocity 
profile is already complete and is (e) not modified before (f) 

being smoothed. 

It is tempting to consider smoothing all of the template 
velocity profiles immediately after data collection to reduce 
computational complexity. However, it is important to note 
that truncating a template’s velocity profile after smoothing 
produces a different profile than first truncating the same 
template’s saved movement points and then smoothing. As 
a pointing movement unfolds, it is only possible to smooth 
the movement points received thus far. Therefore, it is no 
surprise that truncating each template’s movement points to 
match the candidate movement’s points before smoothing 
leads to better-matched templates and higher accuracies. 

Template Matching and Endpoint Prediction 
The candidate movement C is compared to each template Ti 
in the library at the arrival of each new movement point 
using the following cumulative scoring function ܵሺ ܶሻ: 

ܵሺ ܶሻ ൌ ܵሺ ܶ
∗ሻ  ൞

∑ หೕି	்ೕห

ೕసబ


,																										݊  ݊௧

∑ |ೕି்ೕ|	ା		∑ ೕ

ೕసశభ


ೕసబ


,									݊  ݊௧	

 (1) 

where ܶ is the ݅௧ template in the library; S(Ti
*) is the 

cumulative score for Ti from all prior movement points 
considered thus far; ܥ and ܶ	are the ݆௧ velocity values 
from the candidate’s and current template’s smoothed 
velocity profiles, respectively; ݊ is the number of points in 
the candidates smoothed velocity profile; and ݊௧ is the 
number of points in the current template’s smoothed 
velocity profile. Once S(Ti) is computed, it will become the 
next S(Ti

*) upon the arrival of the next movement point. 
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In the case that ݊  ݊௧, the score is simply the normalized 
total difference between the velocity values at each 
timestamp (Figure 5a). However, when ݊  ݊௧, it becomes 
less likely that selecting ܶ as the best-matched template 
will produce a desirable prediction. In order to negatively 
weight these shorter templates, the candidate’s remaining 
velocity values are added to increase the score (Figure 5b). 

 

Figure 5. (a) Comparison of two velocity profiles of equal 
length. (b) Comparison of two profiles of unequal length. 

We found using a cumulative scoring function to be crucial 
in the success of KTM. As stated, once S(Ti) is computed in 
Equation 1, it becomes the next S(Ti

*) upon the arrival of 
the next movement point. The resampled velocity profile of 
a candidate movement changes as each new point is added 
and, in most cases, a template’s smoothed velocity profile 
will change as well. Assuming that movements that unfold 
similarly over time cover similar distances, a cumulative 
score effectively assigns higher weight to templates that 
consistently scored well over the arrival of each new 
candidate movement point. 

Once the candidate has been compared to the entire 
template library, the template with the lowest cumulative 
score is chosen as the best-matched template. Finally, the 
total as-the-crow-flies length of the best-matched template 
(݀௧) is calculated and the candidate movement’s endpoint is 
predicted to be ݀௧ pixels away from its original start point 
in the current direction of motion. 

Summary 
The complete process for predicting the endpoint of a 
candidate movement in real-time is as follows: 

For each new movement point added to the candidate: 

1. Temporally resample the points of the candidate 
movement at 20 Hz; 

2. Construct the velocity-over-time profile of the 
candidate by taking the derivative of the temporally 
resampled points; 

3. Smooth the newly constructed velocity profile using a 
1-D Gaussian Kernel filter with a standard deviation 
of 7; 

4. For each template, ܶ, in the library: 
a. If necessary, truncate the velocity profile of ܶ as 

shown in figure 4; 
b. Smooth the velocity profile of ܶ; 
c. Compare the candidate C to ܶ using Eq. 1. 

5. Select the template with the lowest cumulative score 
and add its final length to the candidate’s original 
start point in the current direction of motion. 

We now turn our focus to evaluating how well KTM works 
to predict endpoints of mouse movements, comparing KTM 
to the revised kinematic endpoint prediction (KEP) 
algorithm [19] in the process. 

EXPERIMENT 
We ran a study to evaluate the predictive accuracy of 
kinematic template matching (KTM) in both one-
dimensional and two-dimensional pointing tasks. 

Method 
Participants 
Seventeen able-bodied participants (13 males, 4 females) 
participated in our study with an average age of 25.0 years 
(SD=7.3). All but two participants were right-handed and 
when asked to self-rate their computer proficiency (0-10, 
with 0 being lowest), results ranged from 4 to 10 (M=7.4, 
SD=1.8). Subjects were given a small payment for 
participating in the study. 

Apparatus 
We created a custom C# application to administer the tasks, 
log data, and calculate results. Our application ran on a 27-
inch Apple iMac desktop running Windows 7 64-bit 
displaying a screen resolution of 2560 × 1440. The 
computer was equipped with a 2.7 GHz Intel i5 processor, 
8 GB of RAM and a Microsoft Basic Optical Mouse v2.0, 
which was used as the input device. 

Procedure 
Participants were asked to complete two sets of 1100 trials, 
where a “trial” consisted of clicking a single target. Targets 
were sequentially displayed on the screen in blocks of 21 
trials. Each trial displayed only one target on the screen and 
consisted of a single click, which initiated the next trial. If 
the target was missed, a ding! sound was played and the 
trial was logged as an error. Subjects were asked to click 
the targets “as quickly and accurately as possible” and were 
allowed to take a break between blocks to avoid fatigue. 
Each set of 1100 trials took approximately 20 minutes to 
complete. 

The first set used vertical ribbon targets 32 pixels wide to 
collect data on 1-D pointing movements. The first target of 
each block was placed in the center of the screen and data 
for this trial was not recorded. A random distance between 
100 and 800 pixels was generated at the start of each 
consecutive trial and the new target was placed this distance 
away from the previous target. Once all blocks had been 
completed, participants were encouraged to take a break 
before starting the second task.  

The second set used circular targets 32 pixels in diameter to 
capture 2-D pointing movements. The targets of each block 
were displayed one at a time using a layout similar to the 
ISO 9241-9 ring-of-circles arrangement. The first target of 
each block was chosen to be the top-most circle in the ring. 
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However, distances from one target to the next were 
randomly set between 100 and 800 pixels.  

For both sets of trials, the goal of using random distances 
between targets was to generate sufficient data for a 
continuous range of target amplitudes, and to more closely 
simulate pointing in the real world. 

Analysis 
We created two separate template libraries for each of the 
17 subjects: one using data from the 1-D task and one using 
the data from the 2-D task. The template libraries were 
evaluated independently of each other. The 1-D and 2-D 
trials had average error rates of 7.1% and 6.3% 
respectively; trials marked as errors were nevertheless 
included in the evaluation of KTM.  

The evaluation of KTM proceeded as follows. First, a 
template was chosen at random from the template library 
and removed. The points from the selected template were 
appended to a new list, one at a time, which was used to 
simulate a candidate movement. The overshoot filter was 
not used on the selected template in order to produce a 
natural, unaltered movement path. The KTM algorithm was 
used to predict the final distance of the simulated candidate 
each time a new point was added. Each predicted distance 
was compared to the movement’s ground truth distance to 
calculate the accuracy of a prediction. After the final 
prediction was made, the selected template was admitted 
back into the library and a new template was chosen at 
random. This process was repeated 100 times for each 
template library.  

To compare the predictive accuracy of KTM to the current 
state of the art in target-agnostic prediction, we also 
implemented the revised kinematic endpoint prediction 
(KEP) algorithm of Ruiz et al. [19]. KEP was evaluated 
using the same data as we used to evaluate KTM; however, 
trials marked with errors were not used, as per KEP’s 
formulation. Movements were selected from the log files 
and fed pointwise through KEP. Distances were predicted 
as each point was added, which were then compared to the 
ground-truth distance of the given movement. KEP 
performance was tested for both 1-D and 2-D tasks. 

The predictive accuracy of both KTM and KEP was 
evaluated at movement-distance-percentage intervals from 
10% to 90% in 10% increments. Although we evaluate 
KTM in isolation based on percent time complete, we 
compare KTM to KEP using percent distance complete 
because with so few collected points at early times in a 
movement, KEP tends to return predictions with extremely 
high error rates, which is a side effect of extrapolating. We 
felt, therefore, it was fairer to KEP to report results based 
on percent distance complete, which was calculated by 
dividing the distance traveled at the moment of evaluation 
by the total distance of the completed movement.  

Results 
1-D Pointing Task 
Figure 6 shows a box-and-whisker plot of the predictive 
accuracy of KTM at different percentages of horizontal 1-D 
movements. Boxes contain the upper and lower quartiles of 
the error values and whiskers extend to the most extreme 
data point within 25%-75% of the error range. Predictions 
are generally centered around the true endpoint (zero on the 
y-axis), but do seem slightly more prone to overshoot rather 
than undershoot, particularly in the 20%-40% range (the 
mean is a little above zero). Overall, the mean of the box-
plot centers is +32.4 (SD=23.6). That the spread looks to be 
well balanced around the center confirms that our 
prediction approach using kinematic template matching is 
not systematically biased with respect to the true endpoint.  

 
Figure 6. Distribution of KTM prediction errors in pixels from 

true endpoint based on 1-D pointing trials. Fraction of 
movement complete is based on percent time. 

As it can be seen from Figure 7, in the case of one-
dimensional horizontal movements, KTM predicts with 
significantly better accuracy than KEP for the first 40% of 
distance traveled. When more than 40% of a movement has 
been completed, KTM and KEP preform similarly, 
although KEP slightly outperforms KTM during the last 
20%.  

Not surprisingly, both KTM and KEP reach their peak 
predictive performance when approximately 90% of a 
movement has been completed and predict, on average, to 
within 69 and 51 pixels of the true distance, respectively. 
Additionally, when we examine KTM at 90% of completed 
movement duration (i.e., percent time), we see predictions 
within 48 pixels of the true endpoint. 
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Figure 7. The predictive accuracy of KTM compared to KEP 

for 1-D pointing trials. Fraction of movement complete is 
based on percent distance.  

Importantly, both KTM and KEP are target-agnostic and 
not using any knowledge of target locations or dimensions 
to predict endpoints. That said, given that 1-D targets of 32 
pixels in width were used to collect this data, we can show 
how often the predicted endpoint actually landed within the 
target. Table 1 below shows the percentage of times 1-D 
targets would have been hit for both KTM and KEP at each 
movement distance increment. The hit-rate for KTM is 
significantly higher than KEP according to a Wilcoxon 
signed-rank test (Z=-2.07, p<.05).  

Percentage of 
Distance Traveled 

Target Hit Rate 
(KTM) 

Target Hit Rate 
(KEP) 

50% 3.3% 4.0% 

60% 5.0% 3.9% 

70% 8.1% 4.9% 

80% 11.3% 6.6% 

90% 18.8% 13.33% 

Table 1. Target hit rates for KTM and KEP for 1-D trials. 

2-D Pointing Task 
Figure 8 shows a box-and-whisker plot of the predictive 
accuracy of KTM at different percentages through 2-D 
movements. The boxes and whiskers show the same ranges 
of values as displayed in Figure 6 for the 1-D task. Similar 
to the 1-D task evaluation, KTM seems to overshoot the 
endpoint more often than fall short of it, but the spreads still 
look to be well balanced around the center (zero on the y-
axis). Overall, the mean of the box-plot centers is +19.5 
(SD=8.8).  

Additionally, the distribution of 2-D prediction errors is 
much tighter than that of the 1-D task. In the 2-D task, the 
average box height is 151.5, whereas in the 1-D task, it is 
197.9. These differences in the distribution of undershoots 
and overshoots between 1-D and 2-D tasks were significant 
(Z=-2.55, p<.02). This finding indicates that KTM is 
generally more accurate in 2-D than in 1-D. 

 

Figure 8. Distribution of KTM prediction errors in pixels from 
true endpoint based on 2-D pointing trials. Fraction of 

movement complete is based on percent time. 

Both KTM and KEP perform more accurately overall for  
2-D pointing tasks than they did for 1-D pointing tasks. 
KTM predicts with lower errors throughout most of the 
movement, although KEP is slightly more accurate when 
movements have traveled approximately 90% of their total 
distance (Figure 9). Again, both approaches predict with 
increasing accuracy throughout and reach their peak 
accuracy at 90%. At this point, KTM on average predicts 
within 55 pixels of the true endpoint and KEP predicts 
within 47 pixels. As for 1-D movement, because of the 
large advantage of KTM in the first half of movement, 
KTM is significantly more accurate than KEP overall (Z=-
2.43, p<.02). Additionally, when we examine KTM at 90% 
of completed movement duration (i.e., percent time), we see 
predictions within 39 pixels of the true endpoint. 

 

Figure 9. The predictive accuracy of KTM compared to KEP 
for 2-D pointing trials. Fraction of movement complete is 

based on percent distance.  

Again, we can examine how often predictions from KTM 
and KEP would actually hit the 32 pixel circular targets 
used as stimuli in data collection. Table 2 below shows the 
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percentage of times 2-D targets would have been hit for 
both KTM and KEP at each movement distance increment. 
The hit-rate for KTM is again significantly higher than KEP 
according to a Wilcoxon signed-rank test (Z=-2.67, p<.01). 
These accuracies are notably lower than those reported by 
Ruiz et al. [19]. We discuss possible reasons for this in our 
discussion, below. 

Percentage of 
Distance Traveled 

Target Hit Rate 
(KTM) 

Target Hit Rate 
(KEP) 

50% 5.6% 3.1% 

60% 6.6% 4.1% 

70% 10.8% 4.2% 

80% 14.6% 4.8% 

90% 21.5% 9.2% 

Table 2. The target accuracy of KTM and KEP for 2-D trials. 

Clearly, these hit rates themselves are not particularly high, 
but it is important to remember that target-agnostic 
endpoint predictions can be useful for pointing facilitation 
even when not directly hitting the target. For example, 
attractive gravity can be put at any screen location while 
pointing, and even if that gravity is outside by nearby the 
intend target, it could still facilitate quicker target 
acquisition, especially if it knew to “turn off” upon seeing a 
submovement correction at odds with its attractive force. 
Also, prior work [16] has shown that predictions even as 
late as 90% through a movement can be beneficial to 
pointing performance.  

DISCUSSION 
Our study shows that kinematic template matching (KTM) 
is an effective technique for predicting the endpoints of 
aimed pointing movements. KTM performs with higher 
accuracy compared to the revised kinematic endpoint 
prediction (KEP) algorithm [19]—the current state of the 
art for target agnostic techniques. Although both 
approaches predict with similar pixel accuracy at many 
percentage intervals for 1-D trials, KTM significantly 
outperforms KEP at nearly all percentage intervals for 2-D 
trials, in terms of both pixel distance and target accuracy. 
Additionally, KTM performs particularly well in 
comparison to KEP during the early stages of pointing 
movements for both 1-D and 2-D trials. Although the target 
accuracies reported are not as impressive as prior 
approaches, we believe this is mainly due to evaluating 
KTM using a set target size of 32 pixels as compared to the 
variable, and larger, target sizes used in other studies.  

As stated above, the target accuracies we report based on 
our implementation of the revised KEP algorithm are lower 
than those reported by Ruiz et al. [19]. We attribute this 
discrepancy to be mainly due to differences in 
methodology. First, Ruiz et al. report percentages of 
movements by dividing the current distance traveled by the 
predicted distance. Second, Ruiz et al. use a range of target 
sizes in their experiment (15-75 pixels in 15 pixel steps) 
and average accuracies across these target sizes. As a test, 

we evaluated KEP using their reported method for 
calculating percent complete and found that target accuracy 
more than doubled for our data. However, we believe that 
our method of evaluation is fairer, as it is based on ground 
truth instead of predicted values, which are sometimes quite 
different from the true distance. 

The backbone of KTM is the library of prior movements it 
compares to as templates. While endpoint prediction 
techniques could be developed that are accurate but 
computationally expensive, the ability to make predictions 
in real-time is crucial for deployment in interactive settings. 
Because KTM exhaustively searches through the library to 
find the best-matched template, increasing the number of 
templates in the library negatively affects the execution 
time. So, when developing the algorithm, we were curious 
to find what library size resulted in the best size/speed 
tradeoff. We expected accuracies to increase as libraries 
grew in size, but it was very interesting to find that after a 
certain number of templates—1000 in this case—accuracies 
did not significantly increase (Figure 2). Again, our chosen 
size of 1000 worked well for the given target amplitude 
range of 100-800 pixels, however we would expect this 
number would have to increase with a larger range of target 
amplitudes. Although past approaches such as KEP are 
potentially advantageous in that no “setup” is required, we 
find that no-setup approaches are either based on theoretical 
laws of human motion, or are too simple; when presented 
with non-normative movements, they perform poorly. 
Using a template library, on the other hand, offers levels of 
personalization that prior target agnostic approaches do not. 

When developing KTM, we originally left movements with 
overshoots unaltered. However, during our initial testing, 
we noticed that KTM over-predicted many of the endpoints. 
While it occurred to us that the submovements made post-
overshoot could potentially be used to improve the accuracy 
of KTM, we settled on filtering out these submovements. 
We felt that adding a special case to the KTM algorithm to 
utilize these submovements would unduly increase the 
complexity of the algorithm and detract from 
implementation ease. Also, based on prior work [16] 
pointing facilitation techniques benefit the user only if less 
than 90% of a pointing movement has been completed, but 
overshoots are usually closer than this. Therefore, we were 
skeptical that such a modification to the KTM algorithm 
would be useful.  

We found developing the scoring function to be a 
particularly challenging issue. Although the scoring 
function’s effect on prediction time was not as significant 
as the size of the template library, it was something to keep 
in mind throughout the process. While our final 
implementation uses velocity values alone, we explored 
using additional movement profiles, such as acceleration 
and jerk to score templates. However, these additional 
profiles did not add to our predictive power, and velocity 
profiles were sufficient in isolation. Although KTM is a 
naïve algorithm, it still performs with sufficient speed for 
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interactive use. While heuristics could be added to optimize 
KTM, doing so would increase the complexity of 
implementing KTM. However, if optimizing KTM was 
ever a necessity, peak velocity could potentially be used as 
a simple heuristic filter, as work by Takagi et al. [21] 
revealed a relationship between peak velocity and final 
distance. Ease of implementation is a cornerstone of our 
approach and, with this in mind, we are impressed by the 
predictive accuracy that can be achieved using the velocity 
profile of movements alone.  

FUTURE WORK 
Kinematic template matching provides an excellent basis 
for further research in the area of predictive pointing. First, 
while the data used for this paper was collected using a 
custom test-bed application in a controlled lab environment, 
we postulate that pointing movements collected “in the 
wild” using a system such as the Input Observer [8] would 
perform comparably well. Integration with such a system 
would ease the burden of collecting a template library, as it 
could be collected from daily computer use instead of from 
a specialized application. Furthermore, the ability to 
evaluate KTM with data extracted from actual pointing 
movements could potentially lead to design insights that we 
are currently unable to perceive using data gathered from 
controlled experiments. Second, KTM could be used in 
conjunction with proposed pointing facilitation techniques, 
such as attractive gravity wells [11] to speed target 
acquisition. While pointing facilitation techniques are 
commonly used as motivations in many prior endpoint 
prediction papers, high prediction accuracy is of high 
importance when it comes to making these techniques 
usable. KTM outperforms prior techniques in terms of 
accuracy, making it an important stepping stone to 
developing an endpoint prediction technique that is 
deployable in a real-world system. Additionally, KTM is 
unique in that it is not based on regression yet remains 
target-agnostic; we see KTM as being particularly well-
suited to situations where targets are out of physical reach 
from the user. For instance Baudisch et al.’s “Drag-and-
Pop” technique [3] for acquiring distant targets on wall-
sized displays could potentially be improved using KTM. 
Finally, because templates are user-specific, we believe 
KTM could provide a more beneficial approach for people 
with non-standard pointing abilities compared to a 
technique such as KEP, which is based on a normative 
model. 

CONCLUSION 
Kinematic template matching treats the velocity profiles of 
pointing movements as 2-D stroke gestures and employs 
template matching to predict movement endpoints. This 
approach is user-specific, target-agnostic, and is both easier 
to implement and more accurate than prior techniques. We 
found that on average, KTM is able to predict within 83 
pixels of the true endpoint when 50% of the movement has 
been completed, 48 pixels at 75%, and within 39 pixels at 
90%, using 1000 templates per participant. To the best of 
our knowledge, our work is the first to conceive of time-

series velocity profiles as stroke gestures in 2-D space, and 
to utilize stroke gesture template matching as a means of 
prediction the endpoints of aimed pointing movements. It is 
our hope that this work will pave the way for the 
development and deployment of real-world pointing 
facilitation techniques based on endpoint prediction. 
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