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ABSTRACT 
The challenge of mobile text entry is exacerbated as mobile 
devices are used in a number of situations and with a 
number of hand postures. We introduce ContextType, an 
adaptive text entry system that leverages information about 
a user’s hand posture (using two thumbs, the left thumb, the 
right thumb, or the index finger) to improve mobile touch 
screen text entry. ContextType switches between various 
keyboard models based on hand posture inference while 
typing. ContextType combines the user’s posture-specific 
touch pattern information with a language model to classify 
the user’s touch events as pressed keys. To create our 
models, we collected usage patterns from 16 participants in 
each of the four postures. In a subsequent study with the 
same 16 participants comparing ContextType to a control 
condition, ContextType reduced total text entry error rate 
by 20.6%.  
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INTRODUCTION 
In comparison to traditional desktop keyboards, text entry 
on touchscreen mobile devices is more challenging. These 
devices are as small as the palm of a hand and are used in a 
number of dynamic environments. These factors can lead to 
situational impairments [8], which can pose significant 
challenges to effective interaction because our current 
mobile devices do not have much awareness of our 
environments, and thus cannot adapt to them.  

Mobile devices may be used in a number of different hand 
postures. Azenkot and Zhai [1] found that majority of users 
at least “sometimes” used their phones with either the 
thumb of their dominant hand, their dominant index finger, 
or both thumbs. In addition, due to variety of contexts in 
which mobile devices are used, there are situations where 

the user’s dominant hand is occupied (e.g., supporting 
oneself with a grab-handle while standing on a moving bus) 
and the device is operated with the non-dominant hand’s 
thumb. Research has shown that mobile device hand 
postures can significantly affect finger and thumb pointing 
performance [11], but such information has not been used 
for improving text entry, which requires numerous rapid, 
accurate strikes and is a relatively high-intensity, if familiar, 
task.  

In this paper, we present ContextType, a system that infers 
users’ hand postures to improve text entry on mobile touch 
screen devices. ContextType supports typing with four hand 
postures: two thumbs, just the left thumb, just the right 
thumb, and either index finger. ContextType switches 
between underlying touch-models based on inference about 
how the user is holding the device while typing, without 
changing the visual layout of the keyboard. ContextType 
leverages our previous work on GripSense [4], which infers 
hand posture as left thumb, right thumb, or index finger 
without any additional sensors. ContextType also detects 
two-thumbed hand postures without adding any external 
sensors to the device. Once posture is inferred, 
ContextType combines a user’s posture-specific touch-
pattern information with a language model to classify the 
user’s touch event as a pressed key, ultimately making text 
entry more accurate. 

To design and build ContextType, we first collected touch 
screen typing data from 16 participants in all four hand-
postures. Based on this data we built touch-based key-press 
classification models, one for each hand posture, 
personalized for each participant. The final ContextType 
prototype is a composite of these personalized touch models 
and a 5-gram language model. These models will be 
discussed in more detail below.  

We evaluated the final ContextType system, with and 
without the language model, in a study with the same 16 
participants. The control keyboard, to which ContextType 
was compared, also used personalized keyboards for each 
participant, but did not take hand posture into account. Our 
findings show that ContextType decreases total text entry 
error rate by 20.6%. We also found that inclusion of a 
language model does not have a significant improvement 
over the control condition.  

The main contribution of this paper is a demonstration that 
knowledge of a user’s hand posture can be used to improve 
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typing performance on mobile devices. This contribution 
comes in two parts: (1) ContextType itself, which detects a 
user’s hand posture in real time and selects a personalized, 
posture-specific keyboard model; and (2) empirical 
evidence for the benefit of adding hand posture information 
to a personalized keyboard.  

DESIGN OF CONTEXTTYPE 
ContextType combines three types of information to 
classify users’ touch events as key presses. It is informed by 
data about a user’s hand posture, by a user’s touch pattern, 
and also by letter probabilities from a language model. The 
algorithm develops different models for different postures. 
The inference of the hand posture uses techniques from 
GripSense [4], which can infer the left thumb, right thumb, 
or either index finger. ContextType extends this 
functionality by also inferring two-thumbed postures.  

Two-Thumbed Posture Detection 
The functionality to detect a two-thumbed posture uses tap 
sizes and time elapsed between taps. GripSense 
differentiates between left and right thumb usage by 
observing tap sizes. Tap sizes increase as the user touches 
the far side of the screen, i.e., when operated with the left 
thumb, the areas touched on the right side of the screen will 
be bigger than those on the left side and vice versa. 
ContextType observes this phenomenon and applies it to 
two thumbs, inferring a two-handed two-thumb posture if 
the tap sizes in the center of the screen are 25% larger than 
those on either side. Another heuristic that is combined with 
tap sizes is the relative difference in time elapsed between 
taps on either side of the screen. When using one hand to 
operate the phone, it takes longer to go from one side of the 
screen to the other. Hence, if a tap on one side of the screen 
is followed by another tap on the opposite side, the time 
difference will be larger than the average time difference 
because the thumb/finger needs to travel farther. In contrast, 
when operated with two thumbs, the time difference 
between taps on opposite sides of the screen will be 
significantly less. Hence, the system inferred two-thumbed 
interaction if the difference in time interval between taps on 
opposite sides and the mean time interval between taps was 
greater than 30%.  

The implementation details for the detection of other hand 
postures can be found in our prior work on GripSense [4]. 
Our offline analysis showed that ContextType was able to 
detect hand posture with an average accuracy of 89.7% and 
the decision was made within 4.9 taps, on average.  

Touch Pattern Model 
ContextType personalizes the underlying keyboard layout 
by modifying the motor-space location of the keys 
according to the user’s typing behavior (i.e., the visual 
layout of the keyboard remains static). ContextType 
employs a constant, diagonal covariance structure by 
computing a bivariate Gaussian distribution [3] for each key 
and centers each key at the centroids of predicted key-
presses that are personalized for each user. Considering that 

touch behavior varies not only across participants but also 
across hand postures for the same participant [1], we 
generate separate models for different hand postures for 
each participant. Figure 1 shows a sample of the variance in 
touch behavior for a participant. In the case of single 
thumbs, it is clear that the user tended to bias towards the 
side of the thumb because of its limited reach.  

Figure 1. Tap pattern for different postures. (A) Left Thumb,  
(B) Right Thumb, (C) Index Finger, (D) Two Thumbs. The yellow 
spot is the touch centroid for each key and the line shows drift from 
the visual key center. 
Language Model 
We implemented a 5-gram letter model following the work 
of [5]. We trained the model on the Brown corpus [6], 
consisting of American English from a variety of sources. 
We employ the Modified Kneser-Ney method for 
probability smoothening, which has been successfully used 
by Chen et al. [2] in language modeling for soft keyboards. 
The validity and effectiveness of the language model was 
confirmed in a small study (6 participants), similar in 
apparatus and design to the ContextType evaluation 
described in next section. In this study, the participants 
were only required to complete 40 phrases in any one of 
their preferred hand postures. This study compared a static, 
non-adaptive keyboard to a language model-powered 
keyboard. There was a significant increase in words per 
minute for the language model (F1,315=57.14, p<.0001). The 
language model also resulted in decreased error rates 
(Wilcoxon signed-rank test: Z=-2717.5, p<.0001). 

Combining Touch and Language Models 
ContextType combines touch and language models by 
calculating probabilities for each key. The most likely 
intended key, ki

*,  is given by: 

 !!∗ = !argmax!!!! !! ℎ . !!(!!|!)  
where !!  is the language model probability, !! is the touch 
model probability, !! is the probability for each key, h is the 
language model history (last 4 entered characters in case of 
5-gram letter model), and l ∈ R2 is an x and y coordinate pair 
denoting the last touch location on the screen 

Data Collection 
The touch models were built based on typing data collected 
from 16 participants (9 males, 7 females) who each 
volunteered for a 45-minute study session. All participants 
self-rated as expert computer users and intermediate to 
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expert touch screen mobile device users. Participants were 
between 22 and 33 years of age (M = 27.38, SD = 2.7). 

      
Figure 2. (Left) Data collection interface. (Right) Test interface with 
current posture and keystroke feedback. 

We built a custom data collection application for the 
Android OS (Figure 2) using a Samsung Galaxy Nexus 
phone. The interface was designed in a way to capture the 
user’s natural typing pattern. Thus, it did not inform users 
of their mistakes and the correct letter was always displayed 
for each key press. The interface also allowed a swipe from 
right-to-left to remove the last character typed. Participants 
were instructed to swipe when they felt that they had made 
an error. Noisy data was removed by filtering out taps that 
landed outside the Euclidean bounds of the intended key or 
its immediate neighbors. Once comfortable with the 
interface, the participants were asked to enter 30 phrases in 
each of the 4 hand postures. The order of postures was 
counterbalanced. Short phrases of English text from 
MacKenzie and Soukoreff’s phrase set were used [7]. Apart 
from these phrases, every fifth phrase was a randomly 
selected pangram from a list of 35 pangrams to ensure 
sufficient representation of all letters of English alphabet.  

EVALUATION 
We sought to see whether the knowledge of a user’s hand 
posture could be used to improve text entry performance. In 
addition, we also wanted to investigate the effect of the 
language model on the overall performance of 
ContextType. 

Participants. The same 16 participants who participated in 
the data collection phase were used for a second session, 
lasting approximately 1 hour, to evaluate ContextType.  

Apparatus. Participants used a similar interface to the one 
used during the data collection phase. This time, the entered 
text contained the actual key classification and visual 
keystroke feedback (Figure 2, left).  

Procedure. The session began with an introduction to the 
modified interface and explanation of the task. For each 
condition, participants completed 40 phrases. The 
application instructed the user to change hand posture after 
every five phrases. In the bottom-left corner of the text area, 
the current phrase number and current expected hand 
posture were displayed. The hand postures were 
counterbalanced and selected randomly (Figure 2, right). 

Design & Analysis. The study was a within-subjects 2×2×4 
factorial design. The factors and levels were: 

• Interface: ContextType, Control.  
• Language Model: Yes, No. 
• Posture: Left Thumb, Right Thumb, Index Finger, 

Two-Thumbs. 

When ContextType was running, the keyboard was 
personalized by leveraging touch data collected for each 
user and each of his or her hand postures. In the Control 
condition, the touch data was not partitioned for each hand 
posture. Hence, the control condition, though not adaptive 
to hand posture, had a personalized keyboard. Presentation 
of conditions was counterbalanced. With 40 phrases in each 
condition, participants entered 2×2×40 = 160 phrases each.  

The main measures were speed, calculated as words per 
minute (WPM), and total error rate [9]. Total error rate is 
decomposed into corrected and uncorrected error rates. 
Corrected errors are the errors that are subsequently 
corrected by the user before moving on to the next phrase. 
Uncorrected errors are those that are left in the transcribed 
phrase at the end of each trial. Also, the participants were 
asked to rate which of the conditions they preferred and 
why. The participants were not aware which condition was 
the current one to prevent bias.  

For WPM, we present results from a mixed-effects model 
analysis of variance. For error rates, we used the 
nonparametric Aligned Rank Transform procedure [10]. 
We used a nonparametric analysis for error rates because 
error rates skew towards zero and violate normality. All 
pairwise comparisons were protected against Type I error 
using Holm’s sequential Bonferroni procedure.  

RESULTS 
Speed. There was no detectable difference in speed owing 
to ContextType (27.5 WPM, SD=6.6 vs. 26.0 WPM, 
SD=6.2; F1,2496=1.27, n.s.). However, Posture had a 
significant effect on WPM (F1,2496=92.06, p<.0001). This 
was expected because participants generally preferred some 
posture to another. Post hoc pairwise comparisons showed 
that all postures were significantly different and that two 
thumbs were fastest, followed by right thumb, index finger, 
and left thumb. Left thumb’s lower performance was 
expected because it was the non-dominant thumb for all 
participants. There was no significant ContextType×Posture 
interaction. Finally, there was no detectable increase in 
speed due to the language model (26.5 WPM, SD=6.3 vs. 
27.0 WPM, SD=6.6; F1,2496=2.20, n.s.). 

Error Rate. Corrected error rates are subsumed in typing 
speed because correcting errors slows users down. 
Considering there was no detectable effect of ContextType 
on speed, we analyzed corrected error rates to investigate 
ContextType’s performance further. Participants exhibited a 
marked and significant improvement in corrected error rate 
while using ContextType (4.86%, SD=2.4 vs. 6.49%, 
SD=4.4; F1,2496=9.79, p<.002). Language Model also 
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resulted in a trend toward reduced corrected error rates 
(F1,2496=3.09, p=.08). 

There was no detectable difference in uncorrected error rate 
due to ContextType (2.38%, SD=1.58 vs. 2.63%, SD=2.35; 
F1,2496=0.06, n.s.). No other factors had a significant effect 
on uncorrected error rate.  

Figure 3. ContextType resulted in lower total error rate than the 
control condition for all the four hand postures. Error bars are 
standard errors. 
We also evaluated ContextType’s effect on total error rate, 
which is the sum of corrected and uncorrected error rates. 
We observed a significant effect of ContextType on total 
error rate (F1,2496=10.87, p<.002). Compared to the control 
condition, total error rates decreased by 20.6% (Figure 3).  

In contrast to corrected error rate, the Language Model did 
not significantly affect total error rate. However, there was 
a significant ContextType×Language Model interaction 
(F1,2496=3.94, p<.05). However, no post hoc pairwise 
comparisons were significant. As we would expect, there 
was a significant effect of Posture on total error rate 
(F3,2496=4.97, p<.002). Post hoc pairwise comparisons 
showed that the left thumb was significantly less accurate 
than both the index finger (F1,2496=12.12, p<.001) and the 
right thumb (F1,2496=6.31, p<.02). This result was expected 
because left thumb was the non-dominant thumb for all 16 
participants. The performance with two thumbs was also 
found to be significantly less accurate than that of the index 
finger (F1,2496=6.82, p<.01). Considering two thumbs had 
significantly higher WPM than the index finger, it suggests 
a speed and accuracy trade-off between the two postures. 

Preference. We asked participants which of the two 
interfaces they preferred. Nine out of 16 participants chose 
ContextType. The remaining 7 participants did not perceive 
any performance difference. P7 said, “[ContextType] was 
awesome! I did not have to look at the keyboard and the ‘P’ 
key felt much closer and accessible with my left hand”.  

DISCUSSION 
ContextType decreased corrected error rate significantly, 
but no significant effect on WPM was observed. Corrected 
error rate is generally correlated with WPM, which suggests 
that with more data, ContextType’s improvement in typing 
speed might be detectable. Also, the decreased accuracy of 
ContextType for detecting posture (89.7%) might not be an 
impediment to its performance. Anecdotally, we analyzed 
results for one participant and found that ContextType 
primarily confused her index finger and right thumb. Upon 

further analysis we found that her typing pattern for index 
finger and right thumb were similar, thereby producing 
similar touch models. Our posture detection system does 
not require any calibration; hence posture-specific keyboard 
touch-models can be refined over continued usage without 
any user intervention. Although different language model 
implementations could produce significant improvements, 
and our language model did improve performance over a 
static keyboard, our language model did not result in an 
improvement in performance over a keyboard using 
personalized touch models. It seems that the language 
model’s benefit is largely negated in the presence of a 
personalized touch model. 

CONCLUSION 
ContextType detects a user’s hand posture (two thumbs, the 
left thumb, the right thumb, or the index finger) and 
combines posture-specific touch pattern information with a 
language model to inform an adaptive keyboard. We 
conducted a study to collect usage patterns from 16 
participants in each of the four postures. In an evaluation 
with the same 16 participants, ContextType reduced total 
error rate by 20.6%. Hence, ContextType shows that 
making our mobile devices more aware of their users can 
improve both those devices and the experience of the users 
who use them. 

ACKNOWLEDGEMENTS 
This work was supported in part by the National Science 
Foundation under grant IIS-1217627. 

REFERENCES 
1. Azenkot, S. and Zhai, S. (2012). Touch behavior with different 

postures on soft smartphone keyboards. Proc.. MobileHCI’12. New 
York: ACM Press, pp. 251-260. 

2. Chen, S.F. and Goodman, J. (1996). An empirical study of smoothing 
techniques for language modeling. Proc. Assoc. Comp. Ling.,1996. 
Stroudsberg, pp. 310-318. 

3. Findlater, L. and Wobbrock, J. (2012). Personalized input: Improving 
ten-finger touchscreen typing through automatic adaptation. Proc. 
CHI'12. New York: ACM Press, pp. 815-824. 

4. Goel, M., Wobbrock, J.O., and Patel, S.N. (2012). GripSense: Using 
built-in sensors to detect hand posture and pressure on commodity 
mobile phones. Proc. UIST'12. New York: ACM Press, pp. 545-554. 

5. Goodman, J., Venolia, G., Steury, K., and Parker, C. (2002). 
Language modeling for soft keyboards. Proc. IUI'02. New York: 
ACM Press, pp. 194-195. 

6. Kucera, H. and Francis, W. (1967). Computational Analysis of 
Present-Day American English. 

7. MacKenzie, I.S. and Soukoreff, R.W. (2003). Phrase sets for 
evaluating text entry techniques. Proc. CHI’03 EA. ACM Press. 

8. Sears, A., Lin, M., Jacko, J., and Xiao, Y. (2003). When computers 
fade pervasive computing and situationally-induced impairments and 
disabilities. HCI International 2'03, pp. 1298-1302. 

9. Soukoreff, R.W. and MacKenzie, I.S. (2003). Metrics for text entry 
research: an evaluation of MSD and KSPC, and a new unified error 
metric. Proc. CHI'03. New York: ACM Press, pp. 113-120. 

10. Wobbrock, J.O., Findlater, L., Gergle, D., and Higgins, J.J. (2011). 
The aligned rank transform for nonparametric factorial analyses using 
only anova procedures. Proc. CHI'11. New York: ACM Press, pp. 
143-146. 

11. Wobbrock, J.O., Myers, B.A., and Aung, H.H. (2008). The 
performance of hand postures in front- and back-of-device interaction 
for mobile computing. International Journal of Human-Computer 
Studies 66,12. Duluth, MN: Academic Press, pp. 857-875. 

0"

5"

10"

15"

Two$thumbs+ Le.+ Index+ Right+ Total+

Mean Total Error Rate (%) 
Control" ContextType"

Session: Mobile Text Entry CHI 2013: Changing Perspectives, Paris, France

2798




