

ContextType: Using Hand Posture Information to Improve
Mobile Touch Screen Text Entry

Mayank Goel1, Alex Jansen2, Travis Mandel1, Shwetak N. Patel1, Jacob O. Wobbrock2
1Computer Science & Engineering | DUB Group

University of Washington
Seattle, WA 98195 USA

{mayank, tmandel, shwetak}@cs.washington.edu

2The Information School | DUB Group
University of Washington
Seattle, WA 98195 USA

{ajansen7, wobbrock}@uw.edu

ABSTRACT
The challenge of mobile text entry is exacerbated as mobile
devices are used in a number of situations and with a
number of hand postures. We introduce ContextType, an
adaptive text entry system that leverages information about
a user’s hand posture (using two thumbs, the left thumb, the
right thumb, or the index finger) to improve mobile touch
screen text entry. ContextType switches between various
keyboard models based on hand posture inference while
typing. ContextType combines the user’s posture-specific
touch pattern information with a language model to classify
the user’s touch events as pressed keys. To create our
models, we collected usage patterns from 16 participants in
each of the four postures. In a subsequent study with the
same 16 participants comparing ContextType to a control
condition, ContextType reduced total text entry error rate
by 20.6%.

Author Keywords
Touch screen; situational impairments; mobile devices;
hand posture; grip; text entry; virtual keyboard.

ACM Classification Keywords
H.5.2. Information interfaces and presentation: User
Interfaces – input devices and strategies.

INTRODUCTION
In comparison to traditional desktop keyboards, text entry
on touchscreen mobile devices is more challenging. These
devices are as small as the palm of a hand and are used in a
number of dynamic environments. These factors can lead to
situational impairments [8], which can pose significant
challenges to effective interaction because our current
mobile devices do not have much awareness of our
environments, and thus cannot adapt to them.

Mobile devices may be used in a number of different hand
postures. Azenkot and Zhai [1] found that majority of users
at least “sometimes” used their phones with either the
thumb of their dominant hand, their dominant index finger,
or both thumbs. In addition, due to variety of contexts in
which mobile devices are used, there are situations where

the user’s dominant hand is occupied (e.g., supporting
oneself with a grab-handle while standing on a moving bus)
and the device is operated with the non-dominant hand’s
thumb. Research has shown that mobile device hand
postures can significantly affect finger and thumb pointing
performance [11], but such information has not been used
for improving text entry, which requires numerous rapid,
accurate strikes and is a relatively high-intensity, if familiar,
task.

In this paper, we present ContextType, a system that infers
users’ hand postures to improve text entry on mobile touch
screen devices. ContextType supports typing with four hand
postures: two thumbs, just the left thumb, just the right
thumb, and either index finger. ContextType switches
between underlying touch-models based on inference about
how the user is holding the device while typing, without
changing the visual layout of the keyboard. ContextType
leverages our previous work on GripSense [4], which infers
hand posture as left thumb, right thumb, or index finger
without any additional sensors. ContextType also detects
two-thumbed hand postures without adding any external
sensors to the device. Once posture is inferred,
ContextType combines a user’s posture-specific touch-
pattern information with a language model to classify the
user’s touch event as a pressed key, ultimately making text
entry more accurate.

To design and build ContextType, we first collected touch
screen typing data from 16 participants in all four hand-
postures. Based on this data we built touch-based key-press
classification models, one for each hand posture,
personalized for each participant. The final ContextType
prototype is a composite of these personalized touch models
and a 5-gram language model. These models will be
discussed in more detail below.

We evaluated the final ContextType system, with and
without the language model, in a study with the same 16
participants. The control keyboard, to which ContextType
was compared, also used personalized keyboards for each
participant, but did not take hand posture into account. Our
findings show that ContextType decreases total text entry
error rate by 20.6%. We also found that inclusion of a
language model does not have a significant improvement
over the control condition.

The main contribution of this paper is a demonstration that
knowledge of a user’s hand posture can be used to improve

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2013, April 27–May 2, 2013, Paris, France.
Copyright © 2013 ACM 978-1-4503-1899-0/13/04...$15.00.

Session: Mobile Text Entry CHI 2013: Changing Perspectives, Paris, France

2795

typing performance on mobile devices. This contribution
comes in two parts: (1) ContextType itself, which detects a
user’s hand posture in real time and selects a personalized,
posture-specific keyboard model; and (2) empirical
evidence for the benefit of adding hand posture information
to a personalized keyboard.

DESIGN OF CONTEXTTYPE
ContextType combines three types of information to
classify users’ touch events as key presses. It is informed by
data about a user’s hand posture, by a user’s touch pattern,
and also by letter probabilities from a language model. The
algorithm develops different models for different postures.
The inference of the hand posture uses techniques from
GripSense [4], which can infer the left thumb, right thumb,
or either index finger. ContextType extends this
functionality by also inferring two-thumbed postures.

Two-Thumbed Posture Detection
The functionality to detect a two-thumbed posture uses tap
sizes and time elapsed between taps. GripSense
differentiates between left and right thumb usage by
observing tap sizes. Tap sizes increase as the user touches
the far side of the screen, i.e., when operated with the left
thumb, the areas touched on the right side of the screen will
be bigger than those on the left side and vice versa.
ContextType observes this phenomenon and applies it to
two thumbs, inferring a two-handed two-thumb posture if
the tap sizes in the center of the screen are 25% larger than
those on either side. Another heuristic that is combined with
tap sizes is the relative difference in time elapsed between
taps on either side of the screen. When using one hand to
operate the phone, it takes longer to go from one side of the
screen to the other. Hence, if a tap on one side of the screen
is followed by another tap on the opposite side, the time
difference will be larger than the average time difference
because the thumb/finger needs to travel farther. In contrast,
when operated with two thumbs, the time difference
between taps on opposite sides of the screen will be
significantly less. Hence, the system inferred two-thumbed
interaction if the difference in time interval between taps on
opposite sides and the mean time interval between taps was
greater than 30%.

The implementation details for the detection of other hand
postures can be found in our prior work on GripSense [4].
Our offline analysis showed that ContextType was able to
detect hand posture with an average accuracy of 89.7% and
the decision was made within 4.9 taps, on average.

Touch Pattern Model
ContextType personalizes the underlying keyboard layout
by modifying the motor-space location of the keys
according to the user’s typing behavior (i.e., the visual
layout of the keyboard remains static). ContextType
employs a constant, diagonal covariance structure by
computing a bivariate Gaussian distribution [3] for each key
and centers each key at the centroids of predicted key-
presses that are personalized for each user. Considering that

touch behavior varies not only across participants but also
across hand postures for the same participant [1], we
generate separate models for different hand postures for
each participant. Figure 1 shows a sample of the variance in
touch behavior for a participant. In the case of single
thumbs, it is clear that the user tended to bias towards the
side of the thumb because of its limited reach.

Figure 1. Tap pattern for different postures. (A) Left Thumb,
(B) Right Thumb, (C) Index Finger, (D) Two Thumbs. The yellow
spot is the touch centroid for each key and the line shows drift from
the visual key center.
Language Model
We implemented a 5-gram letter model following the work
of [5]. We trained the model on the Brown corpus [6],
consisting of American English from a variety of sources.
We employ the Modified Kneser-Ney method for
probability smoothening, which has been successfully used
by Chen et al. [2] in language modeling for soft keyboards.
The validity and effectiveness of the language model was
confirmed in a small study (6 participants), similar in
apparatus and design to the ContextType evaluation
described in next section. In this study, the participants
were only required to complete 40 phrases in any one of
their preferred hand postures. This study compared a static,
non-adaptive keyboard to a language model-powered
keyboard. There was a significant increase in words per
minute for the language model (F1,315=57.14, p<.0001). The
language model also resulted in decreased error rates
(Wilcoxon signed-rank test: Z=-2717.5, p<.0001).

Combining Touch and Language Models
ContextType combines touch and language models by
calculating probabilities for each key. The most likely
intended key, ki

*, is given by:

 !!∗ = !argmax!!!! !! ℎ . !!(!!|!)
where !! is the language model probability, !! is the touch
model probability, !! is the probability for each key, h is the
language model history (last 4 entered characters in case of
5-gram letter model), and l ∈ R2 is an x and y coordinate pair
denoting the last touch location on the screen

Data Collection
The touch models were built based on typing data collected
from 16 participants (9 males, 7 females) who each
volunteered for a 45-minute study session. All participants
self-rated as expert computer users and intermediate to

Session: Mobile Text Entry CHI 2013: Changing Perspectives, Paris, France

2796

expert touch screen mobile device users. Participants were
between 22 and 33 years of age (M = 27.38, SD = 2.7).

Figure 2. (Left) Data collection interface. (Right) Test interface with
current posture and keystroke feedback.

We built a custom data collection application for the
Android OS (Figure 2) using a Samsung Galaxy Nexus
phone. The interface was designed in a way to capture the
user’s natural typing pattern. Thus, it did not inform users
of their mistakes and the correct letter was always displayed
for each key press. The interface also allowed a swipe from
right-to-left to remove the last character typed. Participants
were instructed to swipe when they felt that they had made
an error. Noisy data was removed by filtering out taps that
landed outside the Euclidean bounds of the intended key or
its immediate neighbors. Once comfortable with the
interface, the participants were asked to enter 30 phrases in
each of the 4 hand postures. The order of postures was
counterbalanced. Short phrases of English text from
MacKenzie and Soukoreff’s phrase set were used [7]. Apart
from these phrases, every fifth phrase was a randomly
selected pangram from a list of 35 pangrams to ensure
sufficient representation of all letters of English alphabet.

EVALUATION
We sought to see whether the knowledge of a user’s hand
posture could be used to improve text entry performance. In
addition, we also wanted to investigate the effect of the
language model on the overall performance of
ContextType.

Participants. The same 16 participants who participated in
the data collection phase were used for a second session,
lasting approximately 1 hour, to evaluate ContextType.

Apparatus. Participants used a similar interface to the one
used during the data collection phase. This time, the entered
text contained the actual key classification and visual
keystroke feedback (Figure 2, left).

Procedure. The session began with an introduction to the
modified interface and explanation of the task. For each
condition, participants completed 40 phrases. The
application instructed the user to change hand posture after
every five phrases. In the bottom-left corner of the text area,
the current phrase number and current expected hand
posture were displayed. The hand postures were
counterbalanced and selected randomly (Figure 2, right).

Design & Analysis. The study was a within-subjects 2×2×4
factorial design. The factors and levels were:

• Interface: ContextType, Control.
• Language Model: Yes, No.
• Posture: Left Thumb, Right Thumb, Index Finger,

Two-Thumbs.

When ContextType was running, the keyboard was
personalized by leveraging touch data collected for each
user and each of his or her hand postures. In the Control
condition, the touch data was not partitioned for each hand
posture. Hence, the control condition, though not adaptive
to hand posture, had a personalized keyboard. Presentation
of conditions was counterbalanced. With 40 phrases in each
condition, participants entered 2×2×40 = 160 phrases each.

The main measures were speed, calculated as words per
minute (WPM), and total error rate [9]. Total error rate is
decomposed into corrected and uncorrected error rates.
Corrected errors are the errors that are subsequently
corrected by the user before moving on to the next phrase.
Uncorrected errors are those that are left in the transcribed
phrase at the end of each trial. Also, the participants were
asked to rate which of the conditions they preferred and
why. The participants were not aware which condition was
the current one to prevent bias.

For WPM, we present results from a mixed-effects model
analysis of variance. For error rates, we used the
nonparametric Aligned Rank Transform procedure [10].
We used a nonparametric analysis for error rates because
error rates skew towards zero and violate normality. All
pairwise comparisons were protected against Type I error
using Holm’s sequential Bonferroni procedure.

RESULTS
Speed. There was no detectable difference in speed owing
to ContextType (27.5 WPM, SD=6.6 vs. 26.0 WPM,
SD=6.2; F1,2496=1.27, n.s.). However, Posture had a
significant effect on WPM (F1,2496=92.06, p<.0001). This
was expected because participants generally preferred some
posture to another. Post hoc pairwise comparisons showed
that all postures were significantly different and that two
thumbs were fastest, followed by right thumb, index finger,
and left thumb. Left thumb’s lower performance was
expected because it was the non-dominant thumb for all
participants. There was no significant ContextType×Posture
interaction. Finally, there was no detectable increase in
speed due to the language model (26.5 WPM, SD=6.3 vs.
27.0 WPM, SD=6.6; F1,2496=2.20, n.s.).

Error Rate. Corrected error rates are subsumed in typing
speed because correcting errors slows users down.
Considering there was no detectable effect of ContextType
on speed, we analyzed corrected error rates to investigate
ContextType’s performance further. Participants exhibited a
marked and significant improvement in corrected error rate
while using ContextType (4.86%, SD=2.4 vs. 6.49%,
SD=4.4; F1,2496=9.79, p<.002). Language Model also

Session: Mobile Text Entry CHI 2013: Changing Perspectives, Paris, France

2797

resulted in a trend toward reduced corrected error rates
(F1,2496=3.09, p=.08).

There was no detectable difference in uncorrected error rate
due to ContextType (2.38%, SD=1.58 vs. 2.63%, SD=2.35;
F1,2496=0.06, n.s.). No other factors had a significant effect
on uncorrected error rate.

Figure 3. ContextType resulted in lower total error rate than the
control condition for all the four hand postures. Error bars are
standard errors.
We also evaluated ContextType’s effect on total error rate,
which is the sum of corrected and uncorrected error rates.
We observed a significant effect of ContextType on total
error rate (F1,2496=10.87, p<.002). Compared to the control
condition, total error rates decreased by 20.6% (Figure 3).

In contrast to corrected error rate, the Language Model did
not significantly affect total error rate. However, there was
a significant ContextType×Language Model interaction
(F1,2496=3.94, p<.05). However, no post hoc pairwise
comparisons were significant. As we would expect, there
was a significant effect of Posture on total error rate
(F3,2496=4.97, p<.002). Post hoc pairwise comparisons
showed that the left thumb was significantly less accurate
than both the index finger (F1,2496=12.12, p<.001) and the
right thumb (F1,2496=6.31, p<.02). This result was expected
because left thumb was the non-dominant thumb for all 16
participants. The performance with two thumbs was also
found to be significantly less accurate than that of the index
finger (F1,2496=6.82, p<.01). Considering two thumbs had
significantly higher WPM than the index finger, it suggests
a speed and accuracy trade-off between the two postures.

Preference. We asked participants which of the two
interfaces they preferred. Nine out of 16 participants chose
ContextType. The remaining 7 participants did not perceive
any performance difference. P7 said, “[ContextType] was
awesome! I did not have to look at the keyboard and the ‘P’
key felt much closer and accessible with my left hand”.

DISCUSSION
ContextType decreased corrected error rate significantly,
but no significant effect on WPM was observed. Corrected
error rate is generally correlated with WPM, which suggests
that with more data, ContextType’s improvement in typing
speed might be detectable. Also, the decreased accuracy of
ContextType for detecting posture (89.7%) might not be an
impediment to its performance. Anecdotally, we analyzed
results for one participant and found that ContextType
primarily confused her index finger and right thumb. Upon

further analysis we found that her typing pattern for index
finger and right thumb were similar, thereby producing
similar touch models. Our posture detection system does
not require any calibration; hence posture-specific keyboard
touch-models can be refined over continued usage without
any user intervention. Although different language model
implementations could produce significant improvements,
and our language model did improve performance over a
static keyboard, our language model did not result in an
improvement in performance over a keyboard using
personalized touch models. It seems that the language
model’s benefit is largely negated in the presence of a
personalized touch model.

CONCLUSION
ContextType detects a user’s hand posture (two thumbs, the
left thumb, the right thumb, or the index finger) and
combines posture-specific touch pattern information with a
language model to inform an adaptive keyboard. We
conducted a study to collect usage patterns from 16
participants in each of the four postures. In an evaluation
with the same 16 participants, ContextType reduced total
error rate by 20.6%. Hence, ContextType shows that
making our mobile devices more aware of their users can
improve both those devices and the experience of the users
who use them.

ACKNOWLEDGEMENTS
This work was supported in part by the National Science
Foundation under grant IIS-1217627.

REFERENCES
1. Azenkot, S. and Zhai, S. (2012). Touch behavior with different

postures on soft smartphone keyboards. Proc.. MobileHCI’12. New
York: ACM Press, pp. 251-260.

2. Chen, S.F. and Goodman, J. (1996). An empirical study of smoothing
techniques for language modeling. Proc. Assoc. Comp. Ling.,1996.
Stroudsberg, pp. 310-318.

3. Findlater, L. and Wobbrock, J. (2012). Personalized input: Improving
ten-finger touchscreen typing through automatic adaptation. Proc.
CHI'12. New York: ACM Press, pp. 815-824.

4. Goel, M., Wobbrock, J.O., and Patel, S.N. (2012). GripSense: Using
built-in sensors to detect hand posture and pressure on commodity
mobile phones. Proc. UIST'12. New York: ACM Press, pp. 545-554.

5. Goodman, J., Venolia, G., Steury, K., and Parker, C. (2002).
Language modeling for soft keyboards. Proc. IUI'02. New York:
ACM Press, pp. 194-195.

6. Kucera, H. and Francis, W. (1967). Computational Analysis of
Present-Day American English.

7. MacKenzie, I.S. and Soukoreff, R.W. (2003). Phrase sets for
evaluating text entry techniques. Proc. CHI’03 EA. ACM Press.

8. Sears, A., Lin, M., Jacko, J., and Xiao, Y. (2003). When computers
fade pervasive computing and situationally-induced impairments and
disabilities. HCI International 2'03, pp. 1298-1302.

9. Soukoreff, R.W. and MacKenzie, I.S. (2003). Metrics for text entry
research: an evaluation of MSD and KSPC, and a new unified error
metric. Proc. CHI'03. New York: ACM Press, pp. 113-120.

10. Wobbrock, J.O., Findlater, L., Gergle, D., and Higgins, J.J. (2011).
The aligned rank transform for nonparametric factorial analyses using
only anova procedures. Proc. CHI'11. New York: ACM Press, pp.
143-146.

11. Wobbrock, J.O., Myers, B.A., and Aung, H.H. (2008). The
performance of hand postures in front- and back-of-device interaction
for mobile computing. International Journal of Human-Computer
Studies 66,12. Duluth, MN: Academic Press, pp. 857-875.

0"

5"

10"

15"

Two$thumbs+ Le.+ Index+ Right+ Total+

Mean Total Error Rate (%)
Control" ContextType"

Session: Mobile Text Entry CHI 2013: Changing Perspectives, Paris, France

2798

