
LemonAid: Selection-Based Crowdsourced Contextual
Help for Web Applications

Parmit K. Chilana, Amy J. Ko, Jacob O. Wobbrock
The Information School | DUB Group

University of Washington
Seattle, WA 98195 USA

{pchilana, ajko, wobbrock}@uw.edu

ABSTRACT
Web-based technical support such as discussion forums and
social networking sites have been successful at ensuring that
most technical support questions eventually receive helpful
answers. Unfortunately, finding these answers is still quite
difficult, since users’ textual queries are often incomplete,
imprecise, or use different vocabularies to describe the same
problem. We present LemonAid, a new approach to help that
allows users to find help by instead selecting a label, widget,
link, image or other user interface (UI) element that they
believe is relevant to their problem. LemonAid uses this
selection to retrieve previously asked questions and their
corresponding answers. The key insight that makes
LemonAid work is that users tend to make similar
selections in the interface for similar help needs and
different selections for different help needs. Our initial
evaluation shows that across a corpus of dozens of tasks and
thousands of requests, LemonAid retrieved a result for 90%
of help requests based on UI selections and, of those, over
half had relevant matches in the top 2 results.
ACM Classification: H.5.2 [Information interfaces and
presentation]: User Interfaces. Graphical user interfaces.
General terms: Design, Human Factors.
Keywords: contextual help; crowdsourced help; software
support

INTRODUCTION
Millions of users on the web struggle to learn how to use and
configure applications to meet their needs. For example,
customers must decipher cryptic error messages after failed
e-banking transactions, office workers wrestle with adding
attachments to their company wikis, and new users may have
to interpret complex privacy settings on social networking
sites. As today’s web applications become more dynamic,
feature-rich, and customizable, the need for application help
increases, but it is not always feasible or economical for
companies to provide custom one-on-one support [34].

Among the long history of approaches to software help,
perhaps the most powerful approach is crowdsourced help.
With crowdsourced help (e.g., [19,22,29]), users can help
each other answer questions in discussion forums, mailing
lists, or within their online social networks. Such resources
reinforce the social nature of technical support that users tend
to prefer [29,33] and companies also benefit, as they have to
expend fewer resources on support.
While crowdsourced help is powerful at generating answers
to help questions, locating useful answers from past
discussions can be difficult. First, questions and answers are
scattered across different resources: a user may post a
technical help question on her social network, unaware that a
similar question had already been answered on the
application’s forum site. Second, even if a user finds a
discussion that potentially has the answer, the answer may be
buried deep within long conversation threads that span
multiple pages. Even though recent Q&A sites have
incorporated strategies for promoting the best responses to
the top of the list, users often cannot find these threads in the
first place because users’ queries tend to be not only
incomplete and imprecise [3], but also plagued by the classic
vocabulary problem [11], where different users provide
different words to describe the same goal (i.e., “add a photo”
vs. “insert an image”). While search engine algorithms can
be used to mitigate some of the challenges in natural
language retrieval, the onus is still on users to translate their
help needs and problem contexts into keywords that result in
an effective search.
We present LemonAid, a new approach to technical help
retrieval that allows users to ask for help by selecting a label,
widget, link, image or other user interface (UI) element,
rather than choosing keywords. With LemonAid, help is
integrated directly into the UI (as in Figure 1) and users can
ask questions, provide answers, and search for help without
ever leaving their application. The key insight that makes
LemonAid work, one supported by our formative studies, is
that users tend to make similar selections in the interface for
similar help needs and different selections for different help
needs. This tight coupling of user needs to UI elements is
central to LemonAid’s effectiveness, reducing unnecessary
variation in users’ queries. In fact, our initial evaluation of
LemonAid’s retrieval, based on a corpus we created
consisting of over 2,700 UI selections from over 500 users

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

.
Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.
CHI’12 , May 5–10, 2012, Austin, Texas, USA.

Session: Crowdsourcing & Peer Production I CHI 2012, May 5–10, 2012, Austin, Texas, USA

1549

on Mechanical Turk, showed that on average, LemonAid
retrieved a relevant result for 90% of help requests based
on UI selections and, of those, over half had relevant
matches in the top 2 results.
LemonAid works exclusively with standard DOMs, makes
no assumptions about how an application’s back or front end
is implemented, does not require the modification of
application source code, and does not require the use of a
specific UI toolkit. It simply operates as a layer above an
application’s UI. The only work that developers must do to
integrate LemonAid into their site is extract text labels
appearing in the UI from a web application’s code and
include the framework in their client-side deployment. We
have tested the LemonAid framework with a few web
applications and found that the integration work is minimal.
While LemonAid’s approach is influenced by recent work on
helping programmers debug code in-context (e.g., [5,14,18]),
the novelty lies in providing a contextual help framework for
end-users to resolve issues through crowdsourcing. Our
larger vision is that software teams will be able to use this
repository of contextually reported issues for better
understanding potential usability problems and user impact.
In this paper, we contribute:
• A new selection-based querying interface and a question

and answer authoring interface allows users to generate
help content and find help without leaving the application.

• A new help retrieval algorithm that leverages contextual
information and user interface selections to retrieve
relevant help content.

• A framework that allows web developers to easily
integrate LemonAid within a web application.

• An initial evaluation that demonstrates the feasibility of
LemonAid in retrieving relevant matches for a
crowdsourced corpus of selections.

USING LEMONAID TO FIND HELP
LemonAid allows users to find application help in-context
by selecting UI elements, including labels, widgets, links,
and images that they believe are relevant to their help
request, question, or problem. For example, consider Figure
1, which shows an example scenario in which Bob, a
teacher who occasionally does online banking, wants to pay
his electricity bill by setting up a monthly online payment
through his bank. Bob has checked his account balance a
few times using the bank’s online application, but he is not
familiar with all of the other application features. He clicks
on the “Bill Payer” option and it opens up a new page with
more information, but now Bob does not know what to do.
Normally, Bob would call his tech-savvy friend for help,
but since it is late, Bob needs to find a solution on his own.
Bob clicks on the LemonAid “Help” button at the upper
right of the page (Figure 1.1) and the screen dims,
indicating that the application has entered help mode.
LemonAid fades the user interface, indicating to Bob that
the meaning of a “click” has changed. As Bob moves his
mouse cursor over the page, he notices that words and
objects under his cursor are highlighted in yellow,
indicating that they are clickable. Bob selects the “Bill
Payer” label, as he thinks it is most relevant to his problem
(Figure 1.2). LemonAid displays five questions that it
believes are relevant to his selection (Figure 1.3), all which
have been asked by other users who had previously
selected the same or similar labels. Bob immediately
notices the 2nd question, “how to set up recurring
payments,” and sees it has 2 answers (indicated by the
number in brackets). Bob clicks on the question and sees
that the first answer is what he needs (Figure 1.5).
While he is logged in, Bob also wants to update his phone
number in the e-banking system. He again goes into
LemonAid’s help mode and this time, he clicks on a tab

Figure 1. The LemonAid user interface: (1) the help button, which invokes the help mode; (2) a user’s selection; and (3) questions relevant
to the user’s selection (the brackets contain the number of answers available for each question). (4) A search box where users can provide
keywords to filter the results or ask a new question if they do not see a relevant question. (5) Answers linked to the selected question and (6)
a link that allows a user to submit an answer for the selected question.

Session: Crowdsourcing & Peer Production I CHI 2012, May 5–10, 2012, Austin, Texas, USA

1550

labeled “Account Profile.” The help system now shows a
much longer list of relevant questions (not shown), as there
are many features relevant to this label. Bob does not want
to read all of them, so he starts typing into the search box
(Figure 1.4) and notices that the question list updates. Bob
now only sees two questions (not shown), the first of which
is explicitly about adding phone numbers.

LEMONAID DESIGN AND ARCHITECTURE
The main component of LemonAid is a retrieval engine that
produces a ranked list of relevant questions in response to a
user’s selection on a page. Selections are captured as a DOM
element and other context (described next) and then matched
against the existing set of questions stored in LemonAid’s
repository of application-specific questions and answers. In
this section, we (1) describe the contextual data that
LemonAid captures, (2) explain how LemonAid represents
questions, answers, and users’ selections, and (3) explain
LemonAid’s retrieval algorithm.

Capture of Contextual Data
When a user makes a selection, LemonAid captures
information about the target DOM object and underlying
HTML, which we will call contextual data. There was a
variety of contextual information that LemonAid could
gather (as explored in other recent help approaches [9]).
But, we focused on identifying contextual data that would
be useful in discriminating between different help problems
within the UI from the user’s perspective.
We designed a formative study that presented 20
participants with a series of 12 screen shots from popular
web applications. Each screen shot conveyed a problem
scenario consisting of a textual description and a printout of
where a problem was encountered, as shown in Figure 2. All
of the problem scenarios were taken from real questions from
help forums for these web applications. During the study, we

asked participants to pretend that they had a “magic wand”
that they could use to point anywhere on the interface to get
help and to indicate their selection with a physical sticker. An
example scenario and its results are displayed in Figure 2.
There were two major findings from the study. First,
participants tended to select labels in the UI that they believed
were conceptually relevant to the help problem. Most of these
keywords were application-specific labels or headings (e.g.,
15 of 20 participants selected the “Create Album” keywords
in the scenario in Figure 2). Second, when no label appeared
relevant, participants selected UI elements that were similar
in terms of their visual appearance and location on the screen,
with a bias towards the top-left. These findings suggested that
LemonAid could determine similarity between selections
largely based on the text on UI labels, and leverage additional
attributes of the selected DOM object such its layout position
and appearance.
Based on these results, we designed LemonAid to capture
the three contextual details listed in Table 1. When a user
clicks on a region of a page, LemonAid first determines the
topmost DOM node (based on z-order) under the user’s
cursor. From this, it extracts the tag name of the selected
node (nodeType). It also extracts the XPath string
representing the sequence of tag names and child indices that
indicate the path from the root of the DOM tree to the
selected node (nodeXPath). Finally, it extracts all of the text
node descendants of the selected node, concatenated into one
string, using the standard innerText or textContent property
of the selected DOM node, depending on the browser
(nodeText). If the selected node is an image and includes an
alt attribute, this text is also concatenated to nodeText.
While we also considered using HTML ids or classes, since
they are also related to appearance and layout, they are often
dynamically generated between user sessions and thus not
useful for representing questions shared by users.
Since the text labels on DOM elements could potentially be
user-generated and privacy-sensitive, LemonAid only stores
the nodeText if it is a known UI literal. UI literals include
any string that is explicitly defined in the application source
code or any whitespace-delimited string that appears in
application resource files, such as localization files. A UI
literal may represent labels on UI widgets, headings, or error
messages, among other application-specific strings. Every
time a user makes a selection, LemonAid compares the
nodeText of the selected node against a whitelist of known
application UI literals to determine whether or not to store
the captured nodeText. For example, for a heading element
where the text is “Account Settings,” the nodeText would
only be stored as part of the contextual data if “Account
Settings” was found in the list of application UI literals. In
contrast, if the selected text were a container that included a

Scenario. You are trying to add photos from a recent trip to your Facebook
page for the first time. You heard from a friend that it’s easy to upload
multiple photos from your hard drive, but when you arrived at this page, you
did not see any such option. You are wondering if you came to the right
place and what you should be doing next to upload your photos.

Figure 2. Aggregate results from a task in our formative study
and its corresponding scenario.

Attribute Description Example
nodeText Visible text on the selected DOM node “Bill Payer”
nodeXPath The XPath uniquely identifying the selected DOM node in the page /HTML/BODY/TABLE/TBODY/TR[5]/TD
nodeType The HTML tag of the selected DOM node (i.e., DIV, TABLE, BUTTON, etc.) TD

Table 1: Contextual data captured in a user selection with example from the bill payer scenario in Figure 1.

Session: Crowdsourcing & Peer Production I CHI 2012, May 5–10, 2012, Austin, Texas, USA

1551

user’s username, this would likely not be in the whitelist and
would therefore not be included in nodeText. (We describe
LemonAid’s built-in functionality for extracting UI literals in
a later section discussing LemonAid’s integration steps.)

Questions, Answers, and Users! Selections
Once the user makes a selection and LemonAid captures the
data in Table 1 to represent it, the data is used as a query to
LemonAid's repository of questions. To explain this
retrieval, we first define how questions and answers are
stored. Each Question submitted by a user through
LemonAid’s question box (Figure 1.4) includes a unique id
for each question in the set (id); the nodeXPath, nodeType,
and nodeText described in Table 1 (contextualData), and
the optional question text provided by the user in the text
field in Figure 1.4 (questionString). Since the focus of this
paper is on help retrieval, and not help authoring,
LemonAid’s Answers are basic, mimicking the kind of
answers found in discussion forums: each Answer has a
unique id, an answerString, which stores the text provided in
the field in Figure 1.6, and a questionID, linking it to the
question for which the answer was provided. Questions may
have multiple Answers.
A UserSelection in LemonAid consists of the contextual data
captured from the user’s selection (as described in Table 1)
and optional searchTerms, which store the text provided
by the user in the search input field (Figure 1.4). A
UserSelection initially generates a query consisting only of
the contextual data. Each keystroke in the search input field
generates a new UserSelection and updates the retrieved
results using an auto-suggest interaction.

Ranked Retrieval of Matching Questions
To retrieve help, LemonAid utilizes a relevance ranking
approach leveraging contextualData and optional
searchTerms using the process shown in Figure 3. The
retrieval algorithm takes a UserSelection and compares it to
each previously asked Question in the application’s
repository, producing a similarity score between 0 and 1 for
each Question, with 1 being the best match. LemonAid
then presents the matching questions in descending order of
score. The score, which is computed as in Figure 4, is a

combination of factors, including a contextScore based
on a weighted sum of the three scores in Table 2 and a
textSimilarityScore if the user provided searchTerms.
The next two sections describe these scores in detail.

Similarity based on context
As discussed above, our formative study suggested that
similarity between selections could largely be based on the
text on UI literals. Therefore, the primary factor in the
contextScore is the nodeTextScore, which is 1 if the
nodeText of a selection contains (ignoring case) the
nodeText of the Question being compared and 0
otherwise. With this approach, LemonAid is able retrieve a
match related to a specific item in the container (i.e., a
navigation menu item) even if the user’s selection was the
container itself. This factor is given a weight of 0.7, since
it was the most important factor in our formative studies.
The 2nd factor in the contextScore is the XPathScore,
which captures similarity in layout and position identified
in our formative study. Although XPaths can change as UI
layouts evolve over time [2,4], many menus and header items
on a page stay relatively the same or have only slight layout
differences over time. Therefore, this score is a measure of
the percent node overlap between the nodeXPath of the
query and a Question’s nodeXPath. We compute this by
starting from the root and doing a node-by-node string
comparison from root to leaf, incrementing the score by 1
every time there is a match, and stopping when there is no
match or the last node of the shorter path is reached. We
divide the final sum by the length of the longer XPath to get a
percentage. (For example, the overlap between
HTML/BODY/DIV/ and HTML/BODY/DIV/DIV/P/ is 3/5 or
60%). Because location and position were only a factor in a

findMatchingResults(UILiteral, nodeType, nodeXPath, searchTerms)
returnValue: a sorted resultSet containing matching questions from set of existing
questions.

for each question Qi in the set of existing questions Q
 nodeTextScore = Qi .nodeText contains UILiteral ? 1 : 0
 xPathScore = a percentage computed by comparing the overlap in
 Qi.XPath and nodeXPath of the current selection;
 typeScore = Qi .nodeType string equals nodeType ? 1 : 0
 contextScore = .7 nodeTextScore + .2 xPathScore + .1 typeScore
 if contextScore > 0.25
 add Qi to the resultSet
 if searchTerms is non-empty
 compute textSimilarityScore with full text tf–idf weighting
 if textSimilarityScore > 0
 add Qi to resultSet
if searchTerms is non-empty
 sort resultSet by textSimilarityScore, then contextScore
else
 sort resultSet by contextScore
return resultSet

Figure 4. Pseudocode for retrieval algorithm.

Constituent Similarity Score Weight
nodeTextScore string contains (1 or 0) 0.7
XPathScore % node overlap between XPaths [0,1] 0.2
nodeTypeScore string equals (1 or 0) 0.1

Table 2. Weights for contextual data.

Figure 3. The retrieval engine uses contextual data from the
user’s selection and any search terms provided by the user to
produce a ranked list of relevant questions.

Session: Crowdsourcing & Peer Production I CHI 2012, May 5–10, 2012, Austin, Texas, USA

1552

minority of the scenarios in our formative study, the
nodeXpath score has a weight of only 0.2.

The 3rd and final factor in the contextScore compares the
nodeType of the selected node to that of the potentially
matching Question. This factor accounts for both appearance
similarities, while also helping with situations where
multiple UI elements share the same text label, such as a
button and a heading with the same words. The
nodeTypeScore is 1 if the labels of the selection and the
Question are equivalent and 0 if not. Because ties were rare,
and appearance was only rarely a factor in our formative
study, we only give nodeTypeScore a small weight of 0.1.

After contextScore is computed, the algorithm in Figure 4
includes a Question in the results set if its score is above
0.25. This threshold was selected because it implies that
there is no nodeText match, but there is a strong match
between the nodeXPath and nodeType. Even though this
type of match is weaker than one based on nodeText, it is
useful for cases where a question may be attached to a
container or non-UI literal text (e.g., user-generated content).
Since nodeText similarity is not relevant in such cases, the
nodeXPath and nodeType similarity can still be used as
(weak) indicators of relevant questions.

Similarity based on search keywords
If the user provides searchTerms in the field in Figure
1.4, the algorithm in Figure 4 also computes a
textSimilarityScore. It does this by comparing a
query’s searchTerms with the whitespace-delimited
words in each existing Question’s questionString. To
compare the similarity between these keywords, we created
a search index on each questionString and used a standard
full-text search feature based on the vector space model
[27]. The similarity score is computed using the term
frequency–inverse document frequency (tf–idf) weighting
approach in information retrieval. The main idea of tf-idf is
that terms that occur frequently in the target document (in
our case, a question in the repository of previously asked
questions), but less frequently in the whole document
collection are the useful terms. The weight of these terms is
a combination of term frequency within the target
document and its frequency across all documents. Each
Question that matches the user’s searchTerms is included
in the result and sorted in descending order based on the
textSimilarityScore. This result set is then sorted by
contextScore of each question against the UserSelection.

INTEGRATING LEMONAID INTO WEB APPLICATIONS
One of the strengths of LemonAid’s simplicity is that it can
be easily integrated into an existing website with minimal
modification to the site itself.
First, site administrators choose an ID to uniquely identify
their application-specific help information in the third party
server. Next, administrators can either provide a URL to
their main source directory or run a script provided by
LemonAid to extract UI literals from a site’s code and

localization files. From this, LemonAid generates a CSV file
containing the list of literals and stores it alongside the
question repository. LemonAid uses a simple algorithm for
finding string literals in commonly used web programming
languages, looking for sequences of characters delimited by
single (‘’) and double ASCII quotes (“”). While this
approach does not account for UI literals that may be
dynamically generated, it covers a large range of UI literals
defined at design time. While this extraction approach may
generate false positives (extracting strings that do not appear
in the user interface), these non-UI literals are not visible to
the user and hence not selectable anyway. Furthermore, site
administrators have full control in editing the CSV file
containing string literals from their source code.
Finally, site administrators include a few lines of JavaScript
on all of their web application’s pages, just as with analytics
services such as Google Analytics. Doing so links the
LemonAid source code to the web application, and makes
LemonAid functional on that page. The interface shown in
Figure 1 is an example implementation of LemonAid on the
static version of Bank of America’s Bill Payer site. The UI
literals were obtained by manual screen scraping since we
did not have access to Bank of America’s source.
The current implementation of LemonAid sets up a basic
infrastructure through which anyone can anchor questions
and answers on the underlying application’s UI literals. Site
administrators may have different needs in terms of managing
the Q&A and the related community of users. For example,
some web applications are already controlled by user
authentication and it may be just a matter of integrating
LemonAid with the existing user accounts on the site.
Another approach may be the use of social networking
plugins to facilitate communication among users within their
social network. In other cases, administrators may want to
restrict answer authoring to the company’s support personnel
and may want to store the help data locally.

EVALUATION
At the core of LemonAid is a retrieval engine that produces a
ranked list of questions relevant to a user’s selection and
optional search terms. As explained above, although users’
natural language descriptions of the same problem may
differ, users tend to make the same selections in the UI for a
given problem. Thus, to assess the effectiveness of
LemonAid’s retrieval algorithm, we focused our evaluation
on answering the following question: across a corpus of help
problem scenarios, how effective is LemonAid at retrieving a
relevant question asked by another user using only the
current user’s selection? To operationalize this, we measured
the rank of the first retrieved Question that regarded an
identical help problem (described next), using only the
contextual data from the UserSelection.

Developing a Crowdsourced Corpus
To perform this assessment, we first needed a large corpus of
LemonAid help selections. Since we did not have a site with
a large number of users to which LemonAid could be

Session: Crowdsourcing & Peer Production I CHI 2012, May 5–10, 2012, Austin, Texas, USA

1553

deployed (as website owners viewed the adoption of the tool
without evidence of its efficacy as risky), we developed a
corpus using a simulated community of users through
Amazon’s Mechanical Turk (mTurk) platform [36]. mTurk
is an online marketplace where workers receive micro
payments for performing small tasks, termed Human
Intelligence Tasks (HITs). Recently, mTurk has become a
popular way for researchers to recruit a large number of
participants for small tasks [17,25,30]. We used mTurk to
have hundreds of web users read a detailed help scenario and
perform a LemonAid help request by selecting a UI element
and providing a question relevant to the scenario.
To ensure that our corpus of help scenarios was realistic, we
began by selecting the first 100 questions tagged as popular
or recently asked in the How Do I category of Google
Calendar’s help forum [38]. We chose Google Calendar
because it is a popular application used by millions of people
and offers not only basic functionality, but also a range of
advanced functions that people have trouble finding and
using. From our sample of 100 popular or recently asked
questions, we eliminated questions that appeared to be
duplicates and created a random sample of 50 questions that
we could use in our evaluation. Although there were many
more than 50 questions in Google’s help forums, by
analyzing the 10 “related discussions” that Google lists
alongside each thread, we found that many of these
discussions concerned the same issue and believe that 50
questions represented a substantial proportion of the
common problems. This is reinforced by previous studies
that have shown that there often are a large number of
duplicate discussions on forums [28] and other forms of
issue reports [18].
To convert the help discussions into scenarios, we identified
the expected or desired behavior identified by the help
requester and wrote a textual scenario to represent it. We also
included a motivation for the task in the scenario and details
about Google Calendar to help a user unfamiliar with the
application understand the specified goal. Figure 5 shows an
example scenario involving a calendar-sharing question.
In addition to scenario text, we also created a Google
Calendar page representing an application state in which a
user might encounter the problem, as in Figure 5. We created
the HTML pages for each scenario by manually recreating the
chosen Google Calendar state and scraping the application’s
corresponding HTML for that state. We then augmented each
scenario page with LemonAid’s question-asking
functionality. Since LemonAid requires a list of UI literals
corresponding to the application and we did not have access
to Google Calendar’s source code, we manually extracted a
set of UI literals by scraping each visible text label (and ALT
text of images) from all UI elements for each scenario page.
Finally, because the focus of our study was retrieval
performance on users’ first selections and not on expert use of
LemonAid, we disabled LemonAid’s help retrieval and
answer authoring functions for the study, so that after a
participant selected a UI element and wrote a query, their task

was complete. This reduced the possibility that participants
would change the type of selections they made after
completing multiple HITs based on the type of results
returned by LemonAid’s retrieval algorithm.
Of the 50 help problems, 8 were likely to be encountered in
different contexts (for example on the main calendar view, or
in a configuration dialog); for these, we created two
scenarios, each with a different application state, resulting in a
total of 58 scenarios overall.
Our mTurk HIT presented one of these 58 help-seeking
scenarios (example in Figure 5), including the scenario text
and the static HTML page with interactive LemonAid
features. Users were asked to (1) read the scenario, (2)
answer two multiple choice comprehension questions
(described next), (3) enter the help mode, (4) select one of
the highlighted words or elements on the screen that they
felt were most relevant to the problem, and (5) provide a
question in their own words that they would ask to get help
in the given scenario.
The comprehension questions were included in order to gain
some confidence that participants understood the scenario and
were not selecting UI elements randomly (a common problem
in many mTurk studies [8,17]). Each comprehension question
had 5 items; the scenarios and questions were carefully edited
by two of the authors for clarity. If users answered one of the
questions incorrectly, they were given another explanation of
the scenario to help them understand the scenario better.
Each mTurk HIT was launched with 55 assignments per HIT,
with the intent of gathering 50 selections per scenario. We
used 5 of the 58 HITs to pilot the mTurk protocol and our
data collection strategy, resulting in a final data set of 53
unique HITs. We paid users $0.15 per HIT. (Each HIT took
an average of 3.5 minutes to complete.) The study (including
the pilot tests) ran for about 5 weeks. To prevent duplicate
responses and other mischief, we asked mTurk users to

Figure 5: Illustration of mTurk use in developing a corpus

Session: Crowdsourcing & Peer Production I CHI 2012, May 5–10, 2012, Austin, Texas, USA

1554

provide a unique 6-digit passcode that was generated after
they made an on-screen selection for a particular HIT. We
also asked mTurk users had to write a brief explanation for
why they made a particular selection.
After obtaining the data, we computed the time that an
mTurk user spent on the task and compared it to the average
completion time (3.5 minutes). If this time was below the
20% of the average (i.e., less than 45 seconds), we
automatically eliminated the response. For responses that fell
between 45 seconds and 3.5 minutes, we manually checked
the written explanation of why a particular selection was
made. If the explanation was not intelligible, we excluded
that response. Finally, we also checked the passcode that
mTurk users provided against the passcodes generated by
our system and eliminated responses that had incorrect
passcodes. These three data points together allowed us to
detect UI selections that appeared to be hastily selected with
no apparent comprehension of the scenario. We were able to
use between 47-52 selections for each HIT (about 10% of the
data contained invalid selections as per the above criteria).
Our final corpus included 2,748 help selections from 533
different mTurk accounts.

Results
As explained above, LemonAid uses a ranked retrieval
approach where the retrieved results (in the form of
Questions) are presented in an ordered list. Since our study
solicited multiple selections corresponding to each scenario,
multiple relevant Questions could potentially be retrieved for
a given selection. To assess the performance of the retrieval,
we focused on computing the rank of the 1st relevant Question
for a given selection of all retrieved results. We defined
ground truth in the retrieval by denoting, for each captured
selection, which one of the 50 scenarios the selection
corresponded to.
We computed ranks for all 2,748 selections in the corpus,
retrieving relevant results from all other selections in the
corpus using only the contextual data in the selections
(excluding participants’ question text). LemonAid retrieved 1
or more results for 90.3% of the selections. Figure 6 shows
the proportion of queries resulting in median ranks of 1
through 10. The median rank of the results across the whole
corpus was 2, thus the relevant result was likely to be in the
top 2 results for at least half of the queries (about 57.8% in
this case).

To assess performance across the whole corpus more
systematically, we computed the Mean Reciprocal Rank
(MRR). MRR values are
bounded between 0 and 1 and
are sensitive to the rank position
(e.g., from rank 1 to 2, MRR falls from 1.0 to 0.5). The
reciprocal rank of a result is equivalent to the multiplicative
inverse of the rank of the first relevant result. The MRR is
computed as the average of the reciprocal ranks of results
for a set of queries in corpus C where 1/ranki is the inverse
rank of the ith query in C, and |C| is the size of the corpus.
The resulting MRR was 0.5844, meaning that the average
rank of the result across the repository (taking into account all
the best and worst-case ranks) was between 1 and 2.
To understand why LemonAid failed for 9.7% of the queries,
we inspected the selections made by users (based on the
nodeText, nodeXPath,and nodeType) and the
corresponding task scenario. We found that the failed queries
mainly represented idiosyncratic selections; in other words, a
few of the users made selections that did not match any
selection made by other users. When we further looked at the
corresponding question text provided with the selections, we
found that such users (despite meeting our initial filtering
criteria) either misunderstood the scenario description, were
confused about the selection task, or were simply guessing.
While the overall performance of the retrieval algorithm is
important, its performance over time, as users ask more
questions, is also important. To investigate the effect of
corpus size, we randomly selected 5 subsets of queries of
four different corpus sizes (25%, 50%, 75%, and 100 % of the
2,748 queries). Figure 7 displays the MRR for these 20
corpus subsets, showing that while MRR degrades as the
number of selections increase, it degrades quite slowly. A live
deployment of LemonAid would obviously introduce other
factors that would affect these outcomes; for example, there
might be many more help problems. However, these results
show that users would also be more likely to find an existing
question about a problem rather than ask a new one.

Figure 6. Distribution of ranks in the corpus.

Figure 7. MRR for different corpora sizes and orderings.

!"" ! !
!!!
! !

!"#$!
!!!
!!!

Session: Crowdsourcing & Peer Production I CHI 2012, May 5–10, 2012, Austin, Texas, USA

1555

DISCUSSION
While our initial evaluation represented data from a simulated
community of users on mTurk, the main finding is promising:
LemonAid retrieved a relevant match in the top 2 results for
over half of the queries based on the UI selection. Thus, in
most cases, users would only have to make a UI selection that
they think is relevant and they would see a relevant question
(and answer, if available). This is a dramatic improvement
over traditional text-based queries for help on the web, which
require substantially more effort. The key phenomenon that
facilitates the retrieval of high-ranking relevant results is that
users’ queries are restricted to a smaller and more focused set
of UI selections instead of natural language text and that users
tend to select similar labels for similar problems and different
labels for different problems.
These results, and the larger vision underlying LemonAid’s
approach to crowdsourced contextual help, raises some issues
around scope, scalability, robustness, and privacy.
Problem Scope. For a given application, users may have a
range of feature-related or account-specific troubleshooting
help needs. Since LemonAid is integrated within the UI of the
application, its primary strength is likely to be in providing
user interface related help. For other types of issues that reach
beyond the user interface, such as a problem with a blocked
account or an issue with a credit card transaction, LemonAid
would be able to inform a user that it is necessary to contact
support, but it will not be able to help the user address their
problem directly. Help needs that require the intervention of
support personnel are less a limitation of LemonAid and more
a limitation of crowdsourced help approaches in general.
Scalability. As shown in Figure 7, we have some initial
indication that the retrieval algorithm is relatively stable as a
help corpus increases in size. However, another important
question is how LemonAid’s retrieval scales for applications
that vary from a narrow to a wide range of features and
corresponding UI literals. For instance, in our study we
observed was different users consistently made the same
selection in the UI for the same problem, but made different
selections for different types of problems. Thus, for an
application that has a large number of features (and more
possibilities for selections), the spread of questions could be
sparse. For the case of an application with only a few
features, there will likely be similarly few possible selections.
We predict that LemonAid’s performance will still degrade
slowly as there would possibly be fewer questions about
applications that have more limited functionality.
Another case we observed in our evaluation was the same
label being used as an anchor for many different problems.
For example, the “settings” label of Google Calendar was a
particularly common choice when users perceived no better
label in some of the scenarios. The retrieval algorithm was
not able to retrieve a relevant answer in the top few results
based on the selection alone. In this situation, the user would
need to provide keywords to pare down the results. Still, in
the worst case, LemonAid only degrades to the performance
of a full-text search, but within the limited scope of questions

generated through the LemonAid interface, rather than
everything on the web.
Robustness. One concern about the utility of LemonAid in
practice might be that web applications are constantly
changing; anchoring help to rapidly changing labels and
layouts may not be robust to such change. The UI labels that
LemonAid relies on, however, are likely to change less often
than the average website content, since changing functionality
labels often requires costly user re-education. Moreover,
when functionality labels and locations do change, it would
actually make sense for the help associated with those UI
literals to be deprecated. With LemonAid, this would be
automatic, since questions attached to labels that have been
removed would no longer be matched. The only process
required to keep help content current would be to refresh
LemonAid’s list of application-specific UI literals, which is a
simple matter of re-extracting string literals from their source)
Privacy. By using text on web pages, much of which may be
privacy-sensitive, LemonAid also raises some privacy
concerns. However, since we are only extracting UI literals
from source code, and users can only select labels that match
these static labels, user-generated content is never captured as
part of a help request. There is a possibility that there may be
some overlap between a UI literal and user-generated text.
Future versions of LemonAid could allow users to redact
details from their selections before submission.
Bootstrapping. While we have shown LemonAid performs
well on a large corpus of queries, the approach still requires
someone to provide help in order for the system to be useful
and the help must actually be helpful. These challenges are
not unique to LemonAid, however; they are more general
challenges with crowdsourced help, and evidence has shown
that they are they are easily surmountable with the right types
of incentives and community features [34]. In future work,
we will explore these community aspects further.
Evaluation Limitations. Our evaluation has some limitations
that that should be considered when interpreting our results.
For example, our results might only hold for the type of users
represented by mTurk workers [17]. Although we tried to
filter out invalid selections in our mTurk data (based on our
criteria discussed above), it could be that a few users
genuinely misunderstood scenario descriptions or the purpose
of the task and ended up selecting something not relevant to
the scenario. Moreover, our evaluation did not explore the
effect of LemonAid users interactively exploring LemonAid
search results, which may also affect LemonAid’s utility. We
hope to explore these issues further in a live deployment
where users would be driven by their actual help needs.

RELATED WORK
Although LemonAid’s approach to retrieving help is novel, it
builds upon a variety of prior work in help systems research.
Context-Sensitive Help. Context-sensitive help to date has
largely been about attaching help to specific UI controls.
Researchers have explored a variety of ways to invoke this
help, including tooltips, special modes as in the “?” icon in

Session: Crowdsourcing & Peer Production I CHI 2012, May 5–10, 2012, Austin, Texas, USA

1556

some Windows dialog boxes, Balloon Help [10] in early
Apple systems, pressing F1 over UI elements, and even
choosing a command to see animated steps [32] or videos
[12]. Other recent approaches have explored the use of
screenshots and visual search in creating contextual help
[35]. Despite the utility of these forms of context-sensitive
help, one drawback is that designers must anticipate where
users might seek help, so that they can author it at design-time
and attach it to UI controls. Also, the help presented is static
and often limited to explaining the functionality of a widget.
LemonAid addresses this issue by letting users decide where
help should be embedded, authoring that help at run-time.
Adaptive Help. Adaptive help attempts to overcome context-
insensitivity by monitoring user behavior for opportunities to
help [7,24]. These systems make an explicit effort to model
users’ tasks, often employing AI techniques to predict and
classify user behavior, some even using speech recognition
[15]. Perhaps the most well known is “clippy” in Microsoft
Word (which was a simplified version of a more successful
intelligent agent [16]). Although powerful, these systems are
limited by their ability to model and infer users’ intent,
meaning that the static help that they provide can often be
irrelevant. Moreover, these systems may interrupt at
inappropriate times and are often perceived as being intrusive.
In contrast, an ambient and unobtrusive approach is feature
recommendation based on monitoring of application usage
[21]. Still, in all of these cases, help is tied to functionality
rather than user’s intentions and application use.
Automatic Help. Another class of help tools manifest as
automatic help tools. Rather than inferring users’ intent, such
tools enable users to explicitly state their problems to obtain
customized help. For example, SmartAidè [26] allows users
to choose particular application task, and AI planning
algorithms generate step-by-step instructions based on the
current application state. The Crystal system [23] allows users
to ask “why?” questions about unexpected output by simply
clicking on the output itself. While such help techniques are
powerful in generating customized solutions to users’ help
requests, they can only answer a limited class of questions
amenable to automatic analysis. They also often require
significant adaptations to an applications’ code to provide
useful answers.
Crowdsourced Help. Crowdsourced help is the most recent
approach to software help. The essential idea is that the user
community can generate solutions to help requests more
quickly than any tool or in-house support team [13]. Early
research examples of this approach, such as AnswerGarden
[1], focused on organizational support and exchange of
expertise; similar ideas emerged in the open source
community in technical support forums [28]. Some research
has explored the role of contextual help in content authoring.
For example, the CHIC framework [31] for the Eclipse IDE
adds links from each Eclipse UI control to a wiki where users
can author help. Similar approaches that try to link
community discussions in the interface have appeared
recently in the IP-QAT system [20] and in commercial

contexts [37] as well. LemonAid goes further by letting users
decide which aspect of the interface matters for particular
problems and allows users to author and discover help there.
Furthermore, LemonAid is not specifically tied to any
application structure and can be applied to any site
implemented with web standards.

FUTURE WORK AND CONCLUSION
In this paper, we have introduced LemonAid, a new
framework for integrating crowdsourced contextual help in
web applications. We have shown that LemonAid’s approach
to selection-based query and retrieval is effective, providing a
relevant answer in the top 2 results for over half of the queries
in a corpus developed by a simulated community. We also
have initial evidence that as a LemonAid help corpus grows
in size, its ability to retrieve relevant results degrades slowly.
In our future work, we will explore a number of
enhancements. For example, we will incorporate community
feedback features for improving the ranking of search results
and indicating which questions require useful answers,
enabling users to vote on relevant questions and solutions that
are tied to specific selections. We will include multimedia
options, such as screen shots and videos, for enhancing
solution authoring and diagnosis of reported issues [6].
In addition to helping users find help content, LemonAid may
also provide other benefits. For example, a user could browse
the goals of other users who have used the site by simply
clicking on different labels in the UI. Other users’ goals
expressed in the context of the application could lead to the
serendipitous discovery of new application features, shortcuts,
and customizations. Software teams could also use their
product’s LemonAid help repository as a dataset of user
expectations and potential usability issues. This would be a
significant improvement over the status quo, where feedback
about an application is scattered in discussion forums and
social networking sites all over the web, with no simple way
to monitor them. With LemonAid, user selections and queries
can be easily aggregated and placed in the exact context in
which users experienced a problem. Ultimately, software
teams can use this information to better understand users and
provide a more seamless user experience.

ACKNOWLEDGEMENTS
We thank Tovi Grossman, Jeff Huang, and Michael Lee. This
work was funded in part by fellowships awarded to the first
author from Facebook Inc., and Canada’s Social Sciences and
Humanities Research Council (SSHRC).

REFERENCES
1. Ackerman, M.S. and Malone, T.W. Answer Garden: a

tool for growing organizational memory. Proc ACM
SIGOIS (1990), 31-39.

2. Adar, E., Dontcheva, M., Fogarty, J., and Weld, D.S.
Zoetrope: interacting with the ephemeral web. Proc
ACM UIST (2008), 239-248.

3. Belkin, N.J. Helping people find what they don’t know.
Commun. ACM 43, 8 (2000), 58-61.

Session: Crowdsourcing & Peer Production I CHI 2012, May 5–10, 2012, Austin, Texas, USA

1557

4. Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller,
R.C. Automation and customization of rendered web
pages. Proc ACM UIST (2005), 163-172.

5. Brandt, J., Dontcheva, M., Weskamp, M., and Klemmer,
S.R. Example-centric programming: integrating web
search into the development environment. Proc ACM
CHI (2010), 513-522.

6. Chilana, P.K., Grossman, T., and Fitzmaurice, G. Mod-
ern software product support processes and the usage of
multimedia formats. Proc ACM CHI (2011), 3093-3102.

7. Delisle, S. and Moulin, B. User interfaces and help sys-
tems: from helplessness to intelligent assistance. Artifi-
cial Intelligence Review 18, 2 (2002), 117-157.

8. Downs, J.S., Holbrook, M.B., Sheng, S., and Cranor,
L.F. Are your participants gaming the system?: screen-
ing mechanical turk workers. Proc ACM CHI, (2010),
2399-2402.

9. Ekstrand, M., Li, W., Grossman, T., Matejka, J., and
Fitzmaurice, G. Searching for software learning re-
sources using application context. Proc ACM UIST
(2011), 195-204.

10. Farkas, D.K. The role of balloon help. ACM SIGDOC
17, 2 (1993), 3-19.

11. Furnas, G.W., Landauer, T.K., Gomez, L.M., and Du-
mais, S.T. The vocabulary problem in human-system
communication. Commun. ACM 30, 11 (1987), 964-971.

12. Grossman, T. and Fitzmaurice, G. Toolclips: An investi-
gation of contextual video assistance for functionality
understanding. Proc ACM CHI (2010), 1515-1524.

13. Harper, F.M., Raban, D., Rafaeli, S., and Konstan, J.A.
Predictors of answer quality in online Q&A sites. Proc
ACM CHI (2008), 865-874.

14. Hartmann, B., MacDougall, D., Brandt, J., and Klem-
mer, S.R. What would other programmers do: suggesting
solutions to error messages. Proc ACM CHI (2010),
1019-1028.

15. Hastie, H.W., Johnston, M., and Ehlen, P. Context-
Sensitive Help for Multimodal Dialogue. Proc IEEE
ICMI (2002), 93.

16. Horvitz, E. Principles of mixed-initiative user interfaces.
Proc ACM CHI (1999), 159-166.

17. Kittur, A., Chi, H., and Suh, B. Crowdsourcing user
studies with Mechanical Turk. Proc ACM CHI (2008),
453-456.

18. Ko, A.J. and Myers, B.A. Designing the whyline: a de-
bugging interface for asking questions about program
behavior. Proc ACM CHI (2004), 151-158.

19. Lakhani, K.R. and Von Hippel, E. How open source
software works:“free” user-to-user assistance. Research
policy 32, 6 (2003), 923-943.

20. Matejka, J., Grossman, T., and Fitzmaurice, G. IP-QAT:
In-Product Questions, Answers & Tips. Proc ACM UIST
(2011), 175-184.

21. Matejka, J., Li, W., Grossman, T., and Fitzmaurice, G.
CommunityCommands: command recommendations for
software applications. Proc ACM UIST (2009), 193-202.

22. Morris, M.R., Teevan, J., and Panovich, K. What do
people ask their social networks, and why?: a survey
study of status message q&a behavior. Proc ACM CHI
(2010), 1739-1748.

23. Myers, B.A., Weitzman, D.A., Ko, A.J., and Chau, D.H.
Answering why and why not questions in user interfac-
es. Proc ACM CHI (2006), 397-406.

24. Pangoli, S. and Paternó, F. Automatic generation of task-
oriented help. Proc ACM UIST (1995), 181-187.

25. Paolacci, G., Chandler, J., and Ipeirotis, P.G. Running
experiments on amazon mechanical turk. Judgment and
Decision Making 5, 5 (2010), 411-419.

26. Ramachandran, A. and Young, R.M. Providing intelli-
gent help across applications in dynamic user and envi-
ronment contexts. Proc ACM IUI (2005), 269-271.

27. Salton, G., Wong, A., and Yang, C.S. A vector space
model for automatic indexing. Commun. ACM 18, 11
(1975), 613-620.

28. Singh, V., Twidale, M.B., and Nichols, D.M. Users of
Open Source Software - How Do They Get Help? Proc
HICSS (2009), 1-10.

29. Singh, V., Twidale, M.B., and Rathi, D. Open Source
Technical Support: A Look at Peer Help-Giving. Proc
HICSS (2006), 118.3.

30. Snow, R., O’Connor, B., Jurafsky, D., and Ng, A.Y.
Cheap and fast---but is it good?: evaluating non-expert
annotations for natural language tasks. Proc Empirical
Methods in NLP (2008), 254-263.

31. Stevens, G. and Wiedenhöfer, T. CHIC - a pluggable
solution for community help in context. Proc ACM Nor-
diCHI (2006), 212-221.

32. Sukaviriya, P. and Foley, J.D. Coupling a UI framework
with automatic generation of context-sensitive animated
help. Proc ACM SIGGRAPH (1990), 152-166.

33. Twidale, M.B. Over the shoulder learning: supporting
brief informal learning. J CSCW 14, 6 (2005), 505-547.

34. Tynan-Wood, C. The (Better) Future of Tech Support.
InfoWorld, 2010.

35. Yeh, T., Chang, T.H., Xie, B., Walsh, G., Watkins, I.,
Wongsuphasawat, K., Huang, M., Davis, L., and Beder-
son, B. Creating contextual help for GUIs using screen-
shots. Proc UIST (2011), 145-154.

36. Amazon Mechanical Turk. http://www.mturk.com/.
37. TurboTax Support. http://turbotax.intuit.com/support/.

Session: Crowdsourcing & Peer Production I CHI 2012, May 5–10, 2012, Austin, Texas, USA

1558

