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ABSTRACT 
Web-based technical support such as discussion forums and 
social networking sites have been successful at ensuring that 
most technical support questions eventually receive helpful 
answers. Unfortunately, finding these answers is still quite 
difficult, since users’ textual queries are often incomplete, 
imprecise, or use different vocabularies to describe the same 
problem. We present LemonAid, a new approach to help that 
allows users to find help by instead selecting a label, widget, 
link, image or other user interface (UI) element that they 
believe is relevant to their problem. LemonAid uses this 
selection to retrieve previously asked questions and their 
corresponding answers. The key insight that makes 
LemonAid work is that users tend to make similar 
selections in the interface for similar help needs and 
different selections for different help needs. Our initial 
evaluation shows that across a corpus of dozens of tasks and 
thousands of requests, LemonAid retrieved a result for 90% 
of help requests based on UI selections and, of those, over 
half had relevant matches in the top 2 results. 
ACM Classification: H.5.2 [Information interfaces and 
presentation]: User Interfaces. Graphical user interfaces. 
General terms: Design, Human Factors. 
Keywords: contextual help; crowdsourced help; software 
support 

INTRODUCTION 
Millions of users on the web struggle to learn how to use and 
configure applications to meet their needs. For example, 
customers must decipher cryptic error messages after failed 
e-banking transactions, office workers wrestle with adding
attachments to their company wikis, and new users may have
to interpret complex privacy settings on social networking
sites. As today’s web applications become more dynamic,
feature-rich, and customizable, the need for application help
increases, but it is not always feasible or economical for
companies to provide custom one-on-one support [34].

Among the long history of approaches to software help, 
perhaps the most powerful approach is crowdsourced help. 
With crowdsourced help (e.g., [19,22,29]), users can help 
each other answer questions in discussion forums, mailing 
lists, or within their online social networks. Such resources 
reinforce the social nature of technical support that users tend 
to prefer [29,33] and companies also benefit, as they have to 
expend fewer resources on support. 
While crowdsourced help is powerful at generating answers 
to help questions, locating useful answers from past 
discussions can be difficult. First, questions and answers are 
scattered across different resources: a user may post a 
technical help question on her social network, unaware that a 
similar question had already been answered on the 
application’s forum site. Second, even if a user finds a 
discussion that potentially has the answer, the answer may be 
buried deep within long conversation threads that span 
multiple pages. Even though recent Q&A sites have 
incorporated strategies for promoting the best responses to 
the top of the list, users often cannot find these threads in the 
first place because users’ queries tend to be not only 
incomplete and imprecise [3], but also plagued by the classic 
vocabulary problem [11], where different users provide 
different words to describe the same goal (i.e., “add a photo” 
vs. “insert an image”). While search engine algorithms can 
be used to mitigate some of the challenges in natural 
language retrieval, the onus is still on users to translate their 
help needs and problem contexts into keywords that result in 
an effective search. 
We present LemonAid, a new approach to technical help 
retrieval that allows users to ask for help by selecting a label, 
widget, link, image or other user interface (UI) element, 
rather than choosing keywords. With LemonAid, help is 
integrated directly into the UI (as in Figure 1) and users can 
ask questions, provide answers, and search for help without 
ever leaving their application. The key insight that makes 
LemonAid work, one supported by our formative studies, is 
that users tend to make similar selections in the interface for 
similar help needs and different selections for different help 
needs. This tight coupling of user needs to UI elements is 
central to LemonAid’s effectiveness, reducing unnecessary 
variation in users’ queries. In fact, our initial evaluation of 
LemonAid’s retrieval, based on a corpus we created 
consisting of over 2,700 UI selections from over 500 users 
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on Mechanical Turk, showed that on average, LemonAid 
retrieved a relevant result for 90% of help requests based 
on UI selections and, of those, over half had relevant 
matches in the top 2 results. 
LemonAid works exclusively with standard DOMs, makes 
no assumptions about how an application’s back or front end 
is implemented, does not require the modification of 
application source code, and does not require the use of a 
specific UI toolkit. It simply operates as a layer above an 
application’s UI. The only work that developers must do to 
integrate LemonAid into their site is extract text labels 
appearing in the UI from a web application’s code and 
include the framework in their client-side deployment. We 
have tested the LemonAid framework with a few web 
applications and found that the integration work is minimal. 
While LemonAid’s approach is influenced by recent work on 
helping programmers debug code in-context (e.g., [5,14,18]), 
the novelty lies in providing a contextual help framework for 
end-users to resolve issues through crowdsourcing. Our 
larger vision is that software teams will be able to use this 
repository of contextually reported issues for better 
understanding potential usability problems and user impact. 
In this paper, we contribute: 
• A new selection-based querying interface and a question 

and answer authoring interface allows users to generate 
help content and find help without leaving the application. 

• A new help retrieval algorithm that leverages contextual 
information and user interface selections to retrieve 
relevant help content. 

• A framework that allows web developers to easily 
integrate LemonAid within a web application.  

• An initial evaluation that demonstrates the feasibility of 
LemonAid in retrieving relevant matches for a 
crowdsourced corpus of selections. 

USING LEMONAID TO FIND HELP 
LemonAid allows users to find application help in-context 
by selecting UI elements, including labels, widgets, links, 
and images that they believe are relevant to their help 
request, question, or problem. For example, consider Figure 
1, which shows an example scenario in which Bob, a 
teacher who occasionally does online banking, wants to pay 
his electricity bill by setting up a monthly online payment 
through his bank. Bob has checked his account balance a 
few times using the bank’s online application, but he is not 
familiar with all of the other application features. He clicks 
on the “Bill Payer” option and it opens up a new page with 
more information, but now Bob does not know what to do. 
Normally, Bob would call his tech-savvy friend for help, 
but since it is late, Bob needs to find a solution on his own.  
Bob clicks on the LemonAid “Help” button at the upper 
right of the page (Figure 1.1) and the screen dims, 
indicating that the application has entered help mode. 
LemonAid fades the user interface, indicating to Bob that 
the meaning of a “click” has changed. As Bob moves his 
mouse cursor over the page, he notices that words and 
objects under his cursor are highlighted in yellow, 
indicating that they are clickable. Bob selects the “Bill 
Payer” label, as he thinks it is most relevant to his problem 
(Figure 1.2). LemonAid displays five questions that it 
believes are relevant to his selection (Figure 1.3), all which 
have been asked by other users who had previously 
selected the same or similar labels. Bob immediately 
notices the 2nd question, “how to set up recurring 
payments,” and sees it has 2 answers (indicated by the 
number in brackets). Bob clicks on the question and sees 
that the first answer is what he needs (Figure 1.5). 
While he is logged in, Bob also wants to update his phone 
number in the e-banking system. He again goes into 
LemonAid’s help mode and this time, he clicks on a tab 

 
Figure 1. The LemonAid user interface: (1) the help button, which invokes the help mode; (2) a user’s selection; and (3) questions relevant 
to the user’s selection (the brackets contain the number of answers available for each question). (4) A search box where users can provide 
keywords to filter the results or ask a new question if they do not see a relevant question. (5) Answers linked to the selected question and (6) 
a link that allows a user to submit an answer for the selected question.  
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labeled “Account Profile.” The help system now shows a 
much longer list of relevant questions (not shown), as there 
are many features relevant to this label. Bob does not want 
to read all of them, so he starts typing into the search box 
(Figure 1.4) and notices that the question list updates. Bob 
now only sees two questions (not shown), the first of which 
is explicitly about adding phone numbers. 

LEMONAID DESIGN AND ARCHITECTURE 
The main component of LemonAid is a retrieval engine that 
produces a ranked list of relevant questions in response to a 
user’s selection on a page. Selections are captured as a DOM 
element and other context (described next) and then matched 
against the existing set of questions stored in LemonAid’s 
repository of application-specific questions and answers. In 
this section, we (1) describe the contextual data that 
LemonAid captures, (2) explain how LemonAid represents 
questions, answers, and users’ selections, and (3) explain 
LemonAid’s retrieval algorithm. 

Capture of Contextual Data 
When a user makes a selection, LemonAid captures 
information about the target DOM object and underlying 
HTML, which we will call contextual data. There was a 
variety of contextual information that LemonAid could 
gather (as explored in other recent help approaches [9]). 
But, we focused on identifying contextual data that would 
be useful in discriminating between different help problems 
within the UI from the user’s perspective. 
We designed a formative study that presented 20 
participants with a series of 12 screen shots from popular 
web applications. Each screen shot conveyed a problem 
scenario consisting of a textual description and a printout of 
where a problem was encountered, as shown in Figure 2. All 
of the problem scenarios were taken from real questions from 
help forums for these web applications. During the study, we 

asked participants to pretend that they had a “magic wand” 
that they could use to point anywhere on the interface to get 
help and to indicate their selection with a physical sticker. An 
example scenario and its results are displayed in Figure 2.  
There were two major findings from the study. First, 
participants tended to select labels in the UI that they believed 
were conceptually relevant to the help problem. Most of these 
keywords were application-specific labels or headings (e.g., 
15 of 20 participants selected the “Create Album” keywords 
in the scenario in Figure 2). Second, when no label appeared 
relevant, participants selected UI elements that were similar 
in terms of their visual appearance and location on the screen, 
with a bias towards the top-left. These findings suggested that 
LemonAid could determine similarity between selections 
largely based on the text on UI labels, and leverage additional 
attributes of the selected DOM object such its layout position 
and appearance.  
Based on these results, we designed LemonAid to capture 
the three contextual details listed in Table 1. When a user 
clicks on a region of a page, LemonAid first determines the 
topmost DOM node (based on z-order) under the user’s 
cursor. From this, it extracts the tag name of the selected 
node (nodeType). It also extracts the XPath string 
representing the sequence of tag names and child indices that 
indicate the path from the root of the DOM tree to the 
selected node (nodeXPath). Finally, it extracts all of the text 
node descendants of the selected node, concatenated into one 
string, using the standard innerText or textContent property 
of the selected DOM node, depending on the browser 
(nodeText). If the selected node is an image and includes an 
alt attribute, this text is also concatenated to nodeText. 
While we also considered using HTML ids or classes, since 
they are also related to appearance and layout, they are often 
dynamically generated between user sessions and thus not 
useful for representing questions shared by users. 
Since the text labels on DOM elements could potentially be 
user-generated and privacy-sensitive, LemonAid only stores 
the nodeText if it is a known UI literal. UI literals include 
any string that is explicitly defined in the application source 
code or any whitespace-delimited string that appears in 
application resource files, such as localization files. A UI 
literal may represent labels on UI widgets, headings, or error 
messages, among other application-specific strings. Every 
time a user makes a selection, LemonAid compares the 
nodeText of the selected node against a whitelist of known 
application UI literals to determine whether or not to store 
the captured nodeText. For example, for a heading element 
where the text is “Account Settings,” the nodeText would 
only be stored as part of the contextual data if “Account 
Settings” was found in the list of application UI literals. In 
contrast, if the selected text were a container that included a 

 
Scenario. You are trying to add photos from a recent trip to your Facebook 
page for the first time. You heard from a friend that it’s easy to upload 
multiple photos from your hard drive, but when you arrived at this page, you 
did not see any such option. You are wondering if you came to the right 
place and what you should be doing next to upload your photos.  

Figure 2. Aggregate results from a task in our formative study 
and its corresponding scenario. 

Attribute Description Example  
nodeText Visible text on the selected DOM node “Bill Payer” 
nodeXPath The XPath uniquely identifying the selected DOM node in the page /HTML/BODY/TABLE/TBODY/TR[5]/TD 
nodeType The HTML tag of the selected DOM node (i.e., DIV, TABLE, BUTTON, etc.)  TD 

Table 1: Contextual data captured in a user selection with example from the bill payer scenario in Figure 1. 
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user’s username, this would likely not be in the whitelist and 
would therefore not be included in nodeText. (We describe 
LemonAid’s built-in functionality for extracting UI literals in 
a later section discussing LemonAid’s integration steps.) 

Questions, Answers, and Users! Selections 
Once the user makes a selection and LemonAid captures the 
data in Table 1 to represent it, the data is used as a query to 
LemonAid's repository of questions. To explain this 
retrieval, we first define how questions and answers are 
stored. Each Question submitted by a user through 
LemonAid’s question box (Figure 1.4) includes a unique id 
for each question in the set (id); the nodeXPath, nodeType, 
and nodeText described in Table 1 (contextualData), and 
the optional question text provided by the user in the text 
field in Figure 1.4 (questionString). Since the focus of this 
paper is on help retrieval, and not help authoring, 
LemonAid’s Answers are basic, mimicking the kind of 
answers found in discussion forums: each Answer has a 
unique id, an answerString, which stores the text provided in 
the field in Figure 1.6, and a questionID, linking it to the 
question for which the answer was provided. Questions may 
have multiple Answers. 
A UserSelection in LemonAid consists of the contextual data 
captured from the user’s selection (as described in Table 1) 
and optional searchTerms, which store the text provided 
by the user in the search input field (Figure 1.4). A 
UserSelection initially generates a query consisting only of 
the contextual data. Each keystroke in the search input field 
generates a new UserSelection and updates the retrieved 
results using an auto-suggest interaction. 

Ranked Retrieval of Matching Questions 
To retrieve help, LemonAid utilizes a relevance ranking 
approach leveraging contextualData and optional 
searchTerms using the process shown in Figure 3. The 
retrieval algorithm takes a UserSelection and compares it to 
each previously asked Question in the application’s 
repository, producing a similarity score between 0 and 1 for 
each Question, with 1 being the best match. LemonAid 
then presents the matching questions in descending order of 
score. The score, which is computed as in Figure 4, is a 

combination of factors, including a contextScore based 
on a weighted sum of the three scores in Table 2 and a 
textSimilarityScore if the user provided searchTerms. 
The next two sections describe these scores in detail. 

Similarity based on context  
As discussed above, our formative study suggested that 
similarity between selections could largely be based on the 
text on UI literals. Therefore, the primary factor in the 
contextScore is the nodeTextScore, which is 1 if the 
nodeText of a selection contains (ignoring case) the 
nodeText of the Question being compared and 0 
otherwise. With this approach, LemonAid is able retrieve a 
match related to a specific item in the container (i.e., a 
navigation menu item) even if the user’s selection was the 
container itself.  This factor is given a weight of 0.7, since 
it was the most important factor in our formative studies. 
The 2nd factor in the contextScore is the XPathScore, 
which captures similarity in layout and position identified 
in our formative study. Although XPaths can change as UI 
layouts evolve over time [2,4], many menus and header items 
on a page stay relatively the same or have only slight layout 
differences over time. Therefore, this score is a measure of 
the percent node overlap between the nodeXPath of the 
query and a Question’s nodeXPath. We compute this by 
starting from the root and doing a node-by-node string 
comparison from root to leaf, incrementing the score by 1 
every time there is a match, and stopping when there is no 
match or the last node of the shorter path is reached. We 
divide the final sum by the length of the longer XPath to get a 
percentage. (For example, the overlap between 
HTML/BODY/DIV/ and HTML/BODY/DIV/DIV/P/ is 3/5 or 
60%). Because location and position were only a factor in a 

findMatchingResults(UILiteral, nodeType, nodeXPath, searchTerms) 
returnValue: a sorted resultSet containing matching questions from set of existing 
questions. 

for each question Qi in the set of existing questions Q 
     nodeTextScore = Qi .nodeText contains UILiteral ? 1 : 0 
     xPathScore = a percentage computed by comparing the overlap in   
     Qi.XPath and nodeXPath of the current selection; 
     typeScore = Qi .nodeType string equals nodeType ? 1 : 0 
     contextScore = .7 nodeTextScore + .2 xPathScore + .1 typeScore 
     if contextScore > 0.25 
         add Qi to the resultSet 
     if searchTerms is non-empty  
          compute textSimilarityScore with full text tf–idf weighting 
          if textSimilarityScore > 0 
               add Qi to resultSet 
if searchTerms is non-empty 
    sort resultSet by textSimilarityScore, then contextScore 
else 
    sort resultSet by contextScore 
return resultSet 

Figure 4. Pseudocode for retrieval algorithm. 

Constituent Similarity Score  Weight  
nodeTextScore string contains (1 or 0) 0.7 
XPathScore % node overlap between XPaths [0,1] 0.2 
nodeTypeScore string equals (1 or 0) 0.1 

Table 2. Weights for contextual data. 
 

 
Figure 3. The retrieval engine uses contextual data from the 
user’s selection and any search terms provided by the user to 
produce a ranked list of relevant questions. 
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minority of the scenarios in our formative study, the 
nodeXpath score has a weight of only 0.2. 

The 3rd and final factor in the contextScore compares the 
nodeType of the selected node to that of the potentially 
matching Question. This factor accounts for both appearance 
similarities, while also helping with situations where 
multiple UI elements share the same text label, such as a 
button and a heading with the same words. The 
nodeTypeScore is 1 if the labels of the selection and the 
Question are equivalent and 0 if not. Because ties were rare, 
and appearance was only rarely a factor in our formative 
study, we only give nodeTypeScore a small weight of 0.1. 

After contextScore is computed, the algorithm in Figure 4 
includes a Question in the results set if its score is above 
0.25. This threshold was selected because it implies that 
there is no nodeText match, but there is a strong match 
between the nodeXPath and nodeType. Even though this 
type of match is weaker than one based on nodeText, it is 
useful for cases where a question may be attached to a 
container or non-UI literal text (e.g., user-generated content). 
Since nodeText similarity is not relevant in such cases, the 
nodeXPath and nodeType similarity can still be used as 
(weak) indicators of relevant questions. 

Similarity based on search keywords  
If the user provides searchTerms in the field in Figure 
1.4, the algorithm in Figure 4 also computes a 
textSimilarityScore. It does this by comparing a 
query’s searchTerms with the whitespace-delimited 
words in each existing Question’s questionString. To 
compare the similarity between these keywords, we created 
a search index on each questionString and used a standard 
full-text search feature based on the vector space model 
[27]. The similarity score is computed using the term 
frequency–inverse document frequency (tf–idf) weighting 
approach in information retrieval. The main idea of tf-idf is 
that terms that occur frequently in the target document (in 
our case, a question in the repository of previously asked 
questions), but less frequently in the whole document 
collection are the useful terms. The weight of these terms is 
a combination of term frequency within the target 
document and its frequency across all documents. Each 
Question that matches the user’s searchTerms is included 
in the result and sorted in descending order based on the 
textSimilarityScore. This result set is then sorted by 
contextScore of each question against the UserSelection. 

INTEGRATING LEMONAID INTO WEB APPLICATIONS 
One of the strengths of LemonAid’s simplicity is that it can 
be easily integrated into an existing website with minimal 
modification to the site itself. 
First, site administrators choose an ID to uniquely identify 
their application-specific help information in the third party 
server. Next, administrators can either provide a URL to 
their main source directory or run a script provided by 
LemonAid to extract UI literals from a site’s code and 

localization files. From this, LemonAid generates a CSV file 
containing the list of literals and stores it alongside the 
question repository. LemonAid uses a simple algorithm for 
finding string literals in commonly used web programming 
languages, looking for sequences of characters delimited by 
single (‘’) and double ASCII quotes (“”). While this 
approach does not account for UI literals that may be 
dynamically generated, it covers a large range of UI literals 
defined at design time. While this extraction approach may 
generate false positives (extracting strings that do not appear 
in the user interface), these non-UI literals are not visible to 
the user and hence not selectable anyway. Furthermore, site 
administrators have full control in editing the CSV file 
containing string literals from their source code.  
Finally, site administrators include a few lines of JavaScript 
on all of their web application’s pages, just as with analytics 
services such as Google Analytics. Doing so links the 
LemonAid source code to the web application, and makes 
LemonAid functional on that page. The interface shown in 
Figure 1 is an example implementation of LemonAid on the 
static version of Bank of America’s Bill Payer site. The UI 
literals were obtained by manual screen scraping since we 
did not have access to Bank of America’s source.  
The current implementation of LemonAid sets up a basic 
infrastructure through which anyone can anchor questions 
and answers on the underlying application’s UI literals. Site 
administrators may have different needs in terms of managing 
the Q&A and the related community of users. For example, 
some web applications are already controlled by user 
authentication and it may be just a matter of integrating 
LemonAid with the existing user accounts on the site. 
Another approach may be the use of social networking 
plugins to facilitate communication among users within their 
social network. In other cases, administrators may want to 
restrict answer authoring to the company’s support personnel 
and may want to store the help data locally. 

EVALUATION 
At the core of LemonAid is a retrieval engine that produces a 
ranked list of questions relevant to a user’s selection and 
optional search terms. As explained above, although users’ 
natural language descriptions of the same problem may 
differ, users tend to make the same selections in the UI for a 
given problem. Thus, to assess the effectiveness of 
LemonAid’s retrieval algorithm, we focused our evaluation 
on answering the following question: across a corpus of help 
problem scenarios, how effective is LemonAid at retrieving a 
relevant question asked by another user using only the 
current user’s selection? To operationalize this, we measured 
the rank of the first retrieved Question that regarded an 
identical help problem (described next), using only the 
contextual data from the UserSelection.  

Developing a Crowdsourced Corpus 
To perform this assessment, we first needed a large corpus of 
LemonAid help selections. Since we did not have a site with 
a large number of users to which LemonAid could be 
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deployed (as website owners viewed the adoption of the tool 
without evidence of its efficacy as risky), we developed a 
corpus using a simulated community of users through 
Amazon’s Mechanical Turk (mTurk) platform [36]. mTurk 
is an online marketplace where workers receive micro 
payments for performing small tasks, termed Human 
Intelligence Tasks (HITs). Recently, mTurk has become a 
popular way for researchers to recruit a large number of 
participants for small tasks [17,25,30]. We used mTurk to 
have hundreds of web users read a detailed help scenario and 
perform a LemonAid help request by selecting a UI element 
and providing a question relevant to the scenario. 
To ensure that our corpus of help scenarios was realistic, we 
began by selecting the first 100 questions tagged as popular 
or recently asked in the How Do I category of Google 
Calendar’s help forum [38]. We chose Google Calendar 
because it is a popular application used by millions of people 
and offers not only basic functionality, but also a range of 
advanced functions that people have trouble finding and 
using. From our sample of 100 popular or recently asked 
questions, we eliminated questions that appeared to be 
duplicates and created a random sample of 50 questions that 
we could use in our evaluation. Although there were many 
more than 50 questions in Google’s help forums, by 
analyzing the 10 “related discussions” that Google lists 
alongside each thread, we found that many of these 
discussions concerned the same issue and believe that 50 
questions represented a substantial proportion of the 
common problems. This is reinforced by previous studies 
that have shown that there often are a large number of 
duplicate discussions on forums [28] and other forms of 
issue reports [18]. 
To convert the help discussions into scenarios, we identified 
the expected or desired behavior identified by the help 
requester and wrote a textual scenario to represent it. We also 
included a motivation for the task in the scenario and details 
about Google Calendar to help a user unfamiliar with the 
application understand the specified goal. Figure 5 shows an 
example scenario involving a calendar-sharing question. 
In addition to scenario text, we also created a Google 
Calendar page representing an application state in which a 
user might encounter the problem, as in Figure 5. We created 
the HTML pages for each scenario by manually recreating the 
chosen Google Calendar state and scraping the application’s 
corresponding HTML for that state. We then augmented each 
scenario page with LemonAid’s question-asking 
functionality. Since LemonAid requires a list of UI literals 
corresponding to the application and we did not have access 
to Google Calendar’s source code, we manually extracted a 
set of UI literals by scraping each visible text label (and ALT 
text of images) from all UI elements for each scenario page. 
Finally, because the focus of our study was retrieval 
performance on users’ first selections and not on expert use of 
LemonAid, we disabled LemonAid’s help retrieval and 
answer authoring functions for the study, so that after a 
participant selected a UI element and wrote a query, their task 

was complete. This reduced the possibility that participants 
would change the type of selections they made after 
completing multiple HITs based on the type of results 
returned by LemonAid’s retrieval algorithm. 
Of the 50 help problems, 8 were likely to be encountered in 
different contexts (for example on the main calendar view, or 
in a configuration dialog); for these, we created two 
scenarios, each with a different application state, resulting in a 
total of 58 scenarios overall. 
Our mTurk HIT presented one of these 58 help-seeking 
scenarios (example in Figure 5), including the scenario text 
and the static HTML page with interactive LemonAid 
features. Users were asked to (1) read the scenario, (2) 
answer two multiple choice comprehension questions 
(described next), (3) enter the help mode, (4) select one of 
the highlighted words or elements on the screen that they 
felt were most relevant to the problem, and (5) provide a 
question in their own words that they would ask to get help 
in the given scenario.  
The comprehension questions were included in order to gain 
some confidence that participants understood the scenario and 
were not selecting UI elements randomly (a common problem 
in many mTurk studies [8,17]). Each comprehension question 
had 5 items; the scenarios and questions were carefully edited 
by two of the authors for clarity. If users answered one of the 
questions incorrectly, they were given another explanation of 
the scenario to help them understand the scenario better.  
Each mTurk HIT was launched with 55 assignments per HIT, 
with the intent of gathering 50 selections per scenario. We 
used 5 of the 58 HITs to pilot the mTurk protocol and our 
data collection strategy, resulting in a final data set of 53 
unique HITs. We paid users $0.15 per HIT. (Each HIT took 
an average of 3.5 minutes to complete.) The study (including 
the pilot tests) ran for about 5 weeks. To prevent duplicate 
responses and other mischief, we asked mTurk users to 

 
Figure 5: Illustration of mTurk use in developing a corpus 

Session: Crowdsourcing & Peer Production I CHI 2012, May 5–10, 2012, Austin, Texas, USA

1554



 

 

provide a unique 6-digit passcode that was generated after 
they made an on-screen selection for a particular HIT. We 
also asked mTurk users had to write a brief explanation for 
why they made a particular selection. 
After obtaining the data, we computed the time that an 
mTurk user spent on the task and compared it to the average 
completion time (3.5 minutes). If this time was below the 
20% of the average (i.e., less than 45 seconds), we 
automatically eliminated the response. For responses that fell 
between 45 seconds and 3.5 minutes, we manually checked 
the written explanation of why a particular selection was 
made. If the explanation was not intelligible, we excluded 
that response. Finally, we also checked the passcode that 
mTurk users provided against the passcodes generated by 
our system and eliminated responses that had incorrect 
passcodes. These three data points together allowed us to 
detect UI selections that appeared to be hastily selected with 
no apparent comprehension of the scenario. We were able to 
use between 47-52 selections for each HIT (about 10% of the 
data contained invalid selections as per the above criteria). 
Our final corpus included 2,748 help selections from 533 
different mTurk accounts. 

Results 
As explained above, LemonAid uses a ranked retrieval 
approach where the retrieved results (in the form of 
Questions) are presented in an ordered list. Since our study 
solicited multiple selections corresponding to each scenario, 
multiple relevant Questions could potentially be retrieved for 
a given selection. To assess the performance of the retrieval, 
we focused on computing the rank of the 1st relevant Question 
for a given selection of all retrieved results. We defined 
ground truth in the retrieval by denoting, for each captured 
selection, which one of the 50 scenarios the selection 
corresponded to. 
We computed ranks for all 2,748 selections in the corpus, 
retrieving relevant results from all other selections in the 
corpus using only the contextual data in the selections 
(excluding participants’ question text). LemonAid retrieved 1 
or more results for 90.3% of the selections. Figure 6 shows 
the proportion of queries resulting in median ranks of 1 
through 10. The median rank of the results across the whole 
corpus was 2, thus the relevant result was likely to be in the 
top 2 results for at least half of the queries (about 57.8% in 
this case).  

To assess performance across the whole corpus more 
systematically, we computed the Mean Reciprocal Rank 
(MRR). MRR values are 
bounded between 0 and 1 and 
are sensitive to the rank position 
(e.g., from rank 1 to 2, MRR falls from 1.0 to 0.5). The 
reciprocal rank of a result is equivalent to the multiplicative 
inverse of the rank of the first relevant result. The MRR is 
computed as the average of the reciprocal ranks of results 
for a set of queries in corpus C where 1/ranki is the inverse 
rank of the ith query in C, and |C| is the size of the corpus. 
The resulting MRR was 0.5844, meaning that the average 
rank of the result across the repository (taking into account all 
the best and worst-case ranks) was between 1 and 2. 
To understand why LemonAid failed for 9.7% of the queries, 
we inspected the selections made by users (based on the 
nodeText, nodeXPath,and nodeType) and the 
corresponding task scenario. We found that the failed queries 
mainly represented idiosyncratic selections; in other words, a 
few of the users made selections that did not match any 
selection made by other users. When we further looked at the 
corresponding question text provided with the selections, we 
found that such users (despite meeting our initial filtering 
criteria) either misunderstood the scenario description, were 
confused about the selection task, or were simply guessing. 
While the overall performance of the retrieval algorithm is 
important, its performance over time, as users ask more 
questions, is also important. To investigate the effect of 
corpus size, we randomly selected 5 subsets of queries of 
four different corpus sizes (25%, 50%, 75%, and 100 % of the 
2,748 queries). Figure 7 displays the MRR for these 20 
corpus subsets, showing that while MRR degrades as the 
number of selections increase, it degrades quite slowly. A live 
deployment of LemonAid would obviously introduce other 
factors that would affect these outcomes; for example, there 
might be many more help problems. However, these results 
show that users would also be more likely to find an existing 
question about a problem rather than ask a new one. 

 

 
Figure 6. Distribution of ranks in the corpus. 

 
Figure 7. MRR for different corpora sizes and orderings.  
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DISCUSSION 
While our initial evaluation represented data from a simulated 
community of users on mTurk, the main finding is promising: 
LemonAid retrieved a relevant match in the top 2 results for 
over half of the queries based on the UI selection. Thus, in 
most cases, users would only have to make a UI selection that 
they think is relevant and they would see a relevant question 
(and answer, if available). This is a dramatic improvement 
over traditional text-based queries for help on the web, which 
require substantially more effort. The key phenomenon that 
facilitates the retrieval of high-ranking relevant results is that 
users’ queries are restricted to a smaller and more focused set 
of UI selections instead of natural language text and that users 
tend to select similar labels for similar problems and different 
labels for different problems. 
These results, and the larger vision underlying LemonAid’s 
approach to crowdsourced contextual help, raises some issues 
around scope, scalability, robustness, and privacy.  
Problem Scope. For a given application, users may have a 
range of feature-related or account-specific troubleshooting 
help needs. Since LemonAid is integrated within the UI of the 
application, its primary strength is likely to be in providing 
user interface related help. For other types of issues that reach 
beyond the user interface, such as a problem with a blocked 
account or an issue with a credit card transaction, LemonAid 
would be able to inform a user that it is necessary to contact 
support, but it will not be able to help the user address their 
problem directly. Help needs that require the intervention of 
support personnel are less a limitation of LemonAid and more 
a limitation of crowdsourced help approaches in general. 
Scalability. As shown in Figure 7, we have some initial 
indication that the retrieval algorithm is relatively stable as a 
help corpus increases in size. However, another important 
question is how LemonAid’s retrieval scales for applications 
that vary from a narrow to a wide range of features and 
corresponding UI literals. For instance, in our study we 
observed was different users consistently made the same 
selection in the UI for the same problem, but made different 
selections for different types of problems. Thus, for an 
application that has a large number of features (and more 
possibilities for selections), the spread of questions could be 
sparse. For the case of an application with only a few 
features, there will likely be similarly few possible selections. 
We predict that LemonAid’s performance will still degrade 
slowly as there would possibly be fewer questions about 
applications that have more limited functionality. 
Another case we observed in our evaluation was the same 
label being used as an anchor for many different problems. 
For example, the “settings” label of Google Calendar was a 
particularly common choice when users perceived no better 
label in some of the scenarios. The retrieval algorithm was 
not able to retrieve a relevant answer in the top few results 
based on the selection alone. In this situation, the user would 
need to provide keywords to pare down the results. Still, in 
the worst case, LemonAid only degrades to the performance 
of a full-text search, but within the limited scope of questions 

generated through the LemonAid interface, rather than 
everything on the web. 
Robustness. One concern about the utility of LemonAid in 
practice might be that web applications are constantly 
changing; anchoring help to rapidly changing labels and 
layouts may not be robust to such change. The UI labels that 
LemonAid relies on, however, are likely to change less often 
than the average website content, since changing functionality 
labels often requires costly user re-education. Moreover, 
when functionality labels and locations do change, it would 
actually make sense for the help associated with those UI 
literals to be deprecated. With LemonAid, this would be 
automatic, since questions attached to labels that have been 
removed would no longer be matched. The only process 
required to keep help content current would be to refresh 
LemonAid’s list of application-specific UI literals, which is a 
simple matter of re-extracting string literals from their source)  
Privacy. By using text on web pages, much of which may be 
privacy-sensitive, LemonAid also raises some privacy 
concerns. However, since we are only extracting UI literals 
from source code, and users can only select labels that match 
these static labels, user-generated content is never captured as 
part of a help request. There is a possibility that there may be 
some overlap between a UI literal and user-generated text. 
Future versions of LemonAid could allow users to redact 
details from their selections before submission. 
Bootstrapping. While we have shown LemonAid performs 
well on a large corpus of queries, the approach still requires 
someone to provide help in order for the system to be useful 
and the help must actually be helpful. These challenges are 
not unique to LemonAid, however; they are more general 
challenges with crowdsourced help, and evidence has shown 
that they are they are easily surmountable with the right types 
of incentives and community features [34]. In future work, 
we will explore these community aspects further. 
Evaluation Limitations. Our evaluation has some limitations 
that that should be considered when interpreting our results. 
For example, our results might only hold for the type of users 
represented by mTurk workers [17]. Although we tried to 
filter out invalid selections in our mTurk data (based on our 
criteria discussed above), it could be that a few users 
genuinely misunderstood scenario descriptions or the purpose 
of the task and ended up selecting something not relevant to 
the scenario. Moreover, our evaluation did not explore the 
effect of LemonAid users interactively exploring LemonAid 
search results, which may also affect LemonAid’s utility. We 
hope to explore these issues further in a live deployment 
where users would be driven by their actual help needs. 

RELATED WORK 
Although LemonAid’s approach to retrieving help is novel, it 
builds upon a variety of prior work in help systems research. 
Context-Sensitive Help. Context-sensitive help to date has 
largely been about attaching help to specific UI controls. 
Researchers have explored a variety of ways to invoke this 
help, including tooltips, special modes as in the “?” icon in 
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some Windows dialog boxes, Balloon Help [10] in early 
Apple systems, pressing F1 over UI elements, and even 
choosing a command to see animated steps [32] or videos 
[12]. Other recent approaches have explored the use of 
screenshots and visual search in creating contextual help 
[35]. Despite the utility of these forms of context-sensitive 
help, one drawback is that designers must anticipate where 
users might seek help, so that they can author it at design-time 
and attach it to UI controls. Also, the help presented is static 
and often limited to explaining the functionality of a widget. 
LemonAid addresses this issue by letting users decide where 
help should be embedded, authoring that help at run-time.  
Adaptive Help. Adaptive help attempts to overcome context-
insensitivity by monitoring user behavior for opportunities to 
help [7,24]. These systems make an explicit effort to model 
users’ tasks, often employing AI techniques to predict and 
classify user behavior, some even using speech recognition 
[15]. Perhaps the most well known is “clippy” in Microsoft 
Word (which was a simplified version of a more successful 
intelligent agent [16]). Although powerful, these systems are 
limited by their ability to model and infer users’ intent, 
meaning that the static help that they provide can often be 
irrelevant. Moreover, these systems may interrupt at 
inappropriate times and are often perceived as being intrusive. 
In contrast, an ambient and unobtrusive approach is feature 
recommendation based on monitoring of application usage 
[21]. Still, in all of these cases, help is tied to functionality 
rather than user’s intentions and application use. 
Automatic Help. Another class of help tools manifest as 
automatic help tools. Rather than inferring users’ intent, such 
tools enable users to explicitly state their problems to obtain 
customized help. For example, SmartAidè [26] allows users 
to choose particular application task, and AI planning 
algorithms generate step-by-step instructions based on the 
current application state. The Crystal system [23] allows users 
to ask “why?” questions about unexpected output by simply 
clicking on the output itself. While such help techniques are 
powerful in generating customized solutions to users’ help 
requests, they can only answer a limited class of questions 
amenable to automatic analysis. They also often require 
significant adaptations to an applications’ code to provide 
useful answers.  
Crowdsourced Help. Crowdsourced help is the most recent 
approach to software help. The essential idea is that the user 
community can generate solutions to help requests more 
quickly than any tool or in-house support team [13]. Early 
research examples of this approach, such as AnswerGarden 
[1], focused on organizational support and exchange of 
expertise; similar ideas emerged in the open source 
community in technical support forums [28]. Some research 
has explored the role of contextual help in content authoring. 
For example, the CHIC framework [31] for the Eclipse IDE 
adds links from each Eclipse UI control to a wiki where users 
can author help. Similar approaches that try to link 
community discussions in the interface have appeared 
recently in the IP-QAT system [20] and in commercial 

contexts [37] as well. LemonAid goes further by letting users 
decide which aspect of the interface matters for particular 
problems and allows users to author and discover help there. 
Furthermore, LemonAid is not specifically tied to any 
application structure and can be applied to any site 
implemented with web standards. 

FUTURE WORK AND CONCLUSION 
In this paper, we have introduced LemonAid, a new 
framework for integrating crowdsourced contextual help in 
web applications. We have shown that LemonAid’s approach 
to selection-based query and retrieval is effective, providing a 
relevant answer in the top 2 results for over half of the queries 
in a corpus developed by a simulated community. We also 
have initial evidence that as a LemonAid help corpus grows 
in size, its ability to retrieve relevant results degrades slowly. 
In our future work, we will explore a number of 
enhancements. For example, we will incorporate community 
feedback features for improving the ranking of search results 
and indicating which questions require useful answers, 
enabling users to vote on relevant questions and solutions that 
are tied to specific selections. We will include multimedia 
options, such as screen shots and videos, for enhancing 
solution authoring and diagnosis of reported issues [6]. 
In addition to helping users find help content, LemonAid may 
also provide other benefits. For example, a user could browse 
the goals of other users who have used the site by simply 
clicking on different labels in the UI. Other users’ goals 
expressed in the context of the application could lead to the 
serendipitous discovery of new application features, shortcuts, 
and customizations. Software teams could also use their 
product’s LemonAid help repository as a dataset of user 
expectations and potential usability issues. This would be a 
significant improvement over the status quo, where feedback 
about an application is scattered in discussion forums and 
social networking sites all over the web, with no simple way 
to monitor them. With LemonAid, user selections and queries 
can be easily aggregated and placed in the exact context in 
which users experienced a problem. Ultimately, software 
teams can use this information to better understand users and 
provide a more seamless user experience.   
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