
Taming Wild Behavior: The Input Observer for Obtaining
Text Entry and Mouse Pointing Measures from

Everyday Computer Use
Abigail C. Evans and Jacob O. Wobbrock

The Information School | DUB Group
University of Washington
Seattle, WA 98195 USA

{abievans, wobbrock}@uw.edu
ABSTRACT
We present the Input Observer, a tool that can run quietly in
the background of users’ computers and measure their text
entry and mouse pointing performance from everyday use.
In lab studies, participants are presented with prescribed
tasks, enabling easy identification of speeds and errors. In
everyday use, no such prescriptions exist. We devised novel
algorithms to segment text entry and mouse pointing input
streams into “trials.” We are the first to measure errors for
unprescribed text entry and mouse pointing. To measure
errors, we utilize web search engines, adaptive offline
dictionaries, an Automation API, and crowdsourcing.
Capturing errors allows us to employ Crossman’s (1957)
speed-accuracy normalization when calculating Fitts’ law
throughputs. To validate the Input Observer, we compared
its measures from 12 participants over a week of computer
use to the same participants’ results from a lab study.
Overall, in the lab and field, average text entry speeds were
74.47 WPM and 80.59 WPM, respectively. Average
uncorrected error rates were near zero, at 0.12% and 0.28%.
For mouse pointing, average movement times were 971 ms
and 870 ms. Average pointing error rates were 4.42% and
4.66%. Average throughputs were 3.48 bits/s and 3.45
bits/s. Device makers, researchers, and assistive technology
specialists may benefit from measures of everyday use.
Author Keywords: Text entry, mouse pointing, everyday,
“in the wild,” field studies, human performance, Fitts’ law.
ACM Classification Keywords: H.5.2 [Information
Interfaces and Presentation]: User interfaces—
evaluation / methodology.

INTRODUCTION
There is a growing desire in human-computer interaction
(HCI) to “break from the lab,” i.e., to understand users’
behavior, performance, attitudes, emotions, etc. in everyday
computer use [5,6,25,36,37]. Methods like ethnography and
diary studies have supported this trend, as have novel tools
for experience sampling (e.g., [17]) and behavior sensing
and recognition (e.g., [8]). However, while these methods

and tools are well-suited to understanding some aspects of
human behavior, they do not suffice for understanding
human performance with input techniques, which, for our
purposes, are text entry and mouse pointing techniques.
Understanding human performance with input techniques
has traditionally required controlled lab studies for accurate
and rigorous quantification of speeds and errors (e.g.,
[42,43]). Hence, “breaking from the lab” has not occurred
for input research as it has for other areas of HCI.
While input-oriented field studies are seen occasionally
(e.g., [7,22]), basic logging can only produce counts,
proportions, and durations-of-use. In the wild, calculating
text entry speeds in words per minute, or pointing speeds in
milliseconds, requires parsing out portions of data input
streams. Calculating error rates requires knowing what
users intended to do. Such a requirement can feel
frighteningly close to a need for mind-reading.
Unsurprisingly, prior studies of pointing “in the wild”
[7,22] ignored error rates.
To obtain human performance measures commonly used in
the lab from everyday computer use, we created the Input
Observer (cf. [13]). The Input Observer runs on Windows
and measures text entry and mouse pointing by: (1)
observing keyboard and mouse input streams using low-
level hooks; (2) extracting “trials” where input behavior is
directed, contiguous, and similar to behavior in the lab; (3)
measuring speeds from “trial”-starts to “trial”-ends; (4)
measuring errors by, (i) in the case of text, consulting
adaptive offline dictionaries and the Bing search engine,
and (ii) in the case of mouse pointing, consulting the
Windows Automation API and crowdsourced results with
Mechanical Turk in which Turkers are asked to identify
intended targets; and (5) measuring Fitts’ law throughput
[15,27,32,43,50]. Crucially, our ability to measure pointing
errors enables us to employ Crossman’s [9] speed-accuracy
correction based on the spread of hits around targets at the
same distance (A) and of the same size (W). As pointing in
the wild occurs without any notion of A×W conditions, we
employ the G-means [19] and k-means++ [2] clustering
algorithms to extract post hoc A×W “conditions,” similar to
those used lab experiments [43]. Without the use of
Crossman’s correction, throughputs cannot be normalized
to make comparable, e.g., fast-but-sloppy users and slow-
and-careful users [16,32,43,49,51].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI’12, May 5–10, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

Session: Old Mouse, New Tricks: Desktop Interfaces CHI 2012, May 5–10, 2012, Austin, Texas, USA

1947

We envision at least three types of potential users of the
Input Observer: (i) assistive technology specialists seeking
to gain quantitative insights into clients’ performance with
devices in home settings, as such specialists have little time
to match clients to the best possible devices [12]; (ii) device
manufacturers seeking to understand, through extended
field testing, whether new prototypes outperform existing
devices; and (iii) researchers seeking to add an in situ
component to their understanding of new input techniques
and devices. Researchers may also seek quantitative models
for parameterizing an automatic user interface generator
such as SUPPLE [18] to create “ability-based user interfaces”
tailored to users’ motor skills without requiring a controlled
test. In general, the Input Observer can be a tool for
supporting various aspects of ability-based design [48].
To validate the Input Observer, we compared its
measurements of 12 participants over a week of everyday
computer use to the performance by the same participants
in controlled lab studies. Overall, in the lab and field,
average text entry speeds were 74.47 WPM and 80.59
WPM, respectively. Average uncorrected error rates [42]
were near zero, at 0.12% and 0.28%. For mouse pointing,
average movement times were 971 ms and 870 ms. Average
pointing error rates were 4.42% and 4.66%. Average
throughputs were 3.48 bits/s and 3.45 bits/s.
The primary contribution of this paper is the development
of a new tool for measuring text entry and mouse pointing
performance from everyday computer use based on two
novel algorithms for extracting lab-like “trials” from
undifferentiated text entry and mouse pointing input
streams. Secondary contributions are: (1) an approach to
measuring text entry errors using the web; (2) an approach
to measuring pointing errors using crowdsourcing; and, (3)
a method for applying Crossman’s [9] speed-accuracy
normalization to “wild” pointing data without prescribed
target distances (A) or target sizes (W).

RELATED WORK
Chapuis et al. [7] conducted a study of Fitts’ law “in the
wild,” demonstrating that Fitts’ law holds in the field as
long as steps are taken to reduce the “noise” present in field
data. Chapuis et al. segmented pointing movements using
pauses, treated all movements as accurate, used the
Accessibility API to extract 22% of possible target bounds,
and averaged over many individual pointing trials using an
arbitrary number of quantiles based on index-of-difficulty
values. Hurst et al. [22] conducted a similar study, although
with people of varying pointing abilities. Both studies
found that pointing “in the wild” differs from pointing in
the lab in important ways. Unlike the current work,
however, these studies did not measure errors, extract post
hoc A×W “conditions,” apply Crossman’s correction [9] in
Fitts’ law, or produce a reusable tool for others to employ.
They also did not consider text entry at all.
In other work, Hurst et al. [21] were able to distinguish
between novice and skilled users by applying learned

statistical models to mouse data from a specially
instrumented application. Although Hurst et al.’s
participants had no task model and the data was gathered
“in the wild,” data was only gathered from one application
built by the researchers. In contrast, the Input Observer
collects mouse and text entry data directly from the
operating system and is therefore application-agnostic.
We are not the first to attempt to identify real-world targets.
Hurst et al. [23] used a combination of the Accessibility
API, machine learning, and computer vision to get target
information. The Accessibility API alone enabled the
researchers to find 74% of on-screen targets, but when it
was combined with machine learning and computer vision,
84% of targets were discovered. For a different approach,
Dixon and Fogarty [11] used pixel-based matching methods
to identify targets. We use yet another approach, namely a
combination of the Windows Automation API1 and
crowdsourcing on Mechanical Turk to identify targets. An
advantage of using crowdsourcing is that it enables us to
identify pointing errors for the first time.

MEASURING “WILD” TEXT ENTRY
The review above makes it clear that although pointing
performance outside the lab has been touched on by prior
work, everyday text entry has been largely ignored. In this
section, we describe the Input Observer’s approach to
measuring text entry performance beyond the lab.

Collecting Data beyond the Laboratory
In controlled studies of text entry performance, users
transcribe presented phrases as “quickly and accurately as
possible” [47]. Each phrase is considered a single trial.
Transcribing presented phrases ensures that participants
only need to copy text, not compose it, which would ruin
experimental control, error measurement, and
reproducibility [29]. Further, controlled text entry studies
disallow the use of the mouse cursor or text cursor keys
during entry, permitting backspace as the only mechanism
for correction [47]. Doing so enables error rate calculation
[42], but limits the ecological validity of lab studies.
Key performance measures calculated in controlled text
entry studies are words per minute (WPM) and uncorrected
error rates [42,47]. Uncorrected errors are those remaining
in the final transcribed string. There are also corrected
errors, which are any characters backspaced during entry,
but these are of less interest because error correction takes
time and is therefore subsumed in WPM [47] (see p. 56).
The Input Observer is produces all of these measures, but
without presenting phrases for transcription. Instead, the
tool examines the text input stream and extracts phrases, or
“trials,” in which text entry is continuous.

Segmenting Text Entry “Trials” from the Input Stream
While the Input Observer runs on a participant’s computer,
it collects text entry data. However, the software does not

1 The Automation API supersedes the Accessibility API. See
http://msdn.microsoft.com/en-us/library/dd561918(v=vs.85).aspx.

Session: Old Mouse, New Tricks: Desktop Interfaces CHI 2012, May 5–10, 2012, Austin, Texas, USA

1948

log the text input stream in its entirety. Instead, the stream
is segmented into “trials” as the participant types. Each
“trial” has a start point—the first key-press—and an end
point—the last key-press—before an identified segmenting
event. In everyday text entry, finding the start and end
points analogous to those from a controlled trial can be
tricky. For segmenting events, we use the entry of end-of-
sentence punctuation (e.g., periods, exclamation points, and
question marks), the ENTER key, and characters not
appearing in the MacKenzie and Soukoreff text entry
phrase set [30]. Successive capital letters and numbers are
also segmenting events, as is any mouse movement.
Pauses are also used for segmentation. However, a single
pause value is not sufficient to properly segment everyday
text input streams into “trials” similar to those from lab
studies. Users pause for different lengths of time while
typing depending on whether they are typing letters or
backspaces, or transitioning between the two. Empirically,
we observed from 9 participants that two successive non-
backspaces or backspaces were fastest (156 ms); a non-
backspace following a backspace was next (247 ms); and a
backspace following a non-backspace was slowest (465
ms). Adding 3 SD to each of these means gives us our three
pause segmentation times: 1270 ms, 2085 ms, and 3215 ms.
With the criteria above, some segmented phrases can be
very short, even a few characters. Such phrases result in
unreliable and inaccurate measures; therefore, to be logged
as “trials,” segmented phrases must contain at least 24
characters. This length is 1 SD less than the mean length of
phrases in the MacKenzie and Soukoreff phrase set [30].
Measuring text entry speed is straightforward once a “trial”
is properly segmented [47]. However, text entry error rates
are much more complicated. A source of complication is
distinguishing text entry errors from edits, described next.

Distinguishing Errors from Edits
In a lab study, all backspaces can be regarded as error
corrections because participants are attempting to match
presented strings. Outside the lab, however, backspaces
may correct errors, or they may indicate “changes of mind.”
We therefore must distinguish errors from edits, an issue
that affects both corrected and uncorrected error rates.
While backspaces from error corrections must remain in a
“trial” to measure corrected error rates, backspaces from
editing should not be included, as they do not reflect errors.
To distinguish errors from edits, backspaced text is
compared to the text entered in its place, word by word. If
users stop backspacing partway through a word, as in
Figures 1a & 1c, the partial word is extended up to the
nearest space to make a complete word. If the backspaced
word is not the same as the word that replaced it, the Bing
API’s spell query2 is used to identify errors in the
backspaced word. If the spell query returns a suggested
spelling for the backspaced word, the suggested word is

2 http://msdn.microsoft.com/en-us/library/dd251056.aspx

compared to the word re-entered by the user. If the two
words are the same, the original edits are considered errors
(Figures 1a-b). If Bing has no suggestion, or the suggested
word and the re-entered word are different, then the
backspaces and subsequent entries are edits, and the phrase
is segmented just before the first backspace (Figures 2c-d).
(a) (c)

(b) (d)

Figure 1. (a) A text entry input stream showing the correction of
mistyped “freind” to “friend”. (b) The mistyped “freind” is
deemed “friend” by Bing, which matches the user’s final word,
so “freind” has two errors. (c) A text entry input stream showing
a change of mind from “black” to “brown”. (d) The backspaced
“black” gives no spelling results from Bing, indicating it was not
misspelled. As it does not equal “brown”, the changes are called
edits and no errors are counted.

Corrected Error Rate Calculation
Corrected errors are characters that are backspaced during
entry and therefore do not remain in the transcribed string
[42]. As described in the previous subsection, backspaces
used to correct errors are distinguished from backspaces
used to edit text. Therefore, when a user’s log file is
analyzed, the corrected error rate can be calculated simply
from the backspaces recorded in the log.

Uncorrected Error Rate Calculation
In controlled text entry studies, uncorrected errors are
calculated using the minimum string distance between the
presented and transcribed strings [41,42]. The Input
Observer has no presented strings, so uncorrected errors
must be calculated from transcribed strings another way.
To measure uncorrected errors, each “trial” is broken into
words by looking for spaces and between-word
punctuation. Each word is checked against an offline
lexicon containing ~80,000 words from the freely available
Washington University in St. Louis English Lexicon Project
[3]. If the word is found, it is considered correct.
If the word is not found, the Input Observer calls the Bing
API’s spell query. If the word contains an error recognized
by the API, the query returns a suggested word (Figure 1b).
In such cases, the word entered by the user is marked as
containing one or more errors, and the suggested word from
Bing is taken to be the intended word. The minimum string
distance [41] between the entered word and the suggested
word is calculated for the uncorrected error rate [42]. To
reduce repeat queries to the Bing API, suggested words
returned by Bing are added to the offline lexicon.

Session: Old Mouse, New Tricks: Desktop Interfaces CHI 2012, May 5–10, 2012, Austin, Texas, USA

1949

When no suggested word is returned from a spell query to
the Bing API, the word entered by the user is either error-
free, or it contains an unrecognized error for which Bing
cannot find an alternative. To distinguish between the two
cases, an additional query is sent to the Bing API to define
the word using the syntax define:<word>. If the query
returns any results, then the word has a definition and is
taken to be correct and added to the lexicon. If no definition
is found, then the word is marked as containing an
unknown error and cached for later. At the end of text entry
data collection, the average minimum string distance from
words containing known errors is applied to all cached
words containing unknown errors.
Segmenting pauses frequently occur in the middle of words.
Mid-word pauses can lead to partial words at the start and
end of “trials,” falsely inflating the uncorrected error rate.
To address this issue, the initially-segmented phrase is
maintained for the speed calculation but may be adjusted to
complete partial words for the purpose of error-checking. If
the last character before the pause is a letter or hyphen, it is
assumed that the word was split by the pause and the first
word of the next “trial” is adjusted to include the part of the
word entered before the pause. Any errors that are found
are only counted as part of the second “trial” to prevent
errors from being counted twice.
Other segmenting events, such as mouse movements and
cursor key-presses, can also occur in the middle of words.
In these cases, the position of the text entry cursor may
have changed since the last entered text so it is not possible
to complete partial words. Instead, if an error is found in the
first word of a “trial” following such a segmenting event,
that word is omitted from the uncorrected error calculation.
As noted above, in lab studies, participants may only use
backspace to correct errors [47]. In everyday use, however,
users can employ several methods, including the mouse and
cursor keys, to position the text cursor for error correction.
To date, no theoretical breakthroughs have enabled the
handling of the mouse or cursor keys in text entry error
measurement. As a result, errors corrected using the mouse
or cursor keys remain in segmented “trials” and falsely
appear as uncorrected errors. To address this for cursor
keys, phrases segmented by them are not included in the
calculation of uncorrected or corrected error rates. We do
not address this issue for mouse-based error correction.
Text Entry and Privacy
Clearly, the Input Observer’s text entry measurement
features introduce privacy concerns, as every extracted text
“trial” is recorded in a log file. The Input Observer’s
minimum trial length of 24 characters ensures that
usernames and passwords are not logged. However, longer
phrases of text from personal communications still raise
privacy concerns. We added an obfuscation feature that
causes the Input Observer to log the letter “m” in place of
actual text. In this case, the Input Observer still performs
the above measurements on entered text, stores the results,

and then logs only “m” characters. In addition, participants
can turn off text entry logging at any time.

MEASURING “WILD” MOUSE POINTING
The pointing performance measures calculated by the Input
Observer are time (ms), error rate (%), and throughput
(bits/s), an important combined speed-accuracy measure of
efficiency [15,27,32,43,50]. The Input Observer also
generates MacKenzie et al.’s path analyses [28], although
they are not reported here due to space constraints.
Unlike in controlled pointing studies, in everyday computer
use, there are no defined trials or conditions. An important
feature of the Input Observer is its ability to extract pointing
“trials” that resemble pointing behavior in the lab and build
post hoc “conditions” from myriad unsorted pointing
events. The Input Observer is also the first to measure error
rates for unprescribed pointing.

Segmenting Pointing “Trials” from the Input Stream
Rosenbaum [38] argues that the leading explanatory theory
of Fitts’ law is Meyer et al.’s [33] optimized initial impulse
model. In this model, an aimed pointing attempt comprises
a ballistic movement to the target vicinity and one or two
optional corrective submovements for acquisition. The
Input Observer examines mouse movements using this
model to extract aimed pointing “trials.” When the user
signals the end of a pointing attempt with a click (Figure 2,
F), the Input Observer moves through the movement
backwards in time to find the “trial” start. This may be the
first movement after a previous click, or it may be the first
movement after the mouse velocity last fell to zero (Figure
2, A), whichever occurred closer in time to the current
click. Prior to this scan, the mouse velocity is temporally
resampled at 100 Hz and then smoothed using a Gaussian
kernel filter with standard deviation parameter of 3 [14].

Figure 2. An actual velocity profile, recorded by the Input
Observer, of a mouse movement that meets Meyer et al.’s [33]
criteria for an aimed pointing movement.

With start and end points now identified, the smoothed
velocity profile is scanned to find all local maxima and
minima. The highest peak (Figure 2, B), representing the
ballistic phase of the movement, should also be the first
maximum. When the highest peak is not the first peak in the
movement, the start point for the “trial” is moved
temporally forward to begin at the minimum immediately

1000

2.0

2.5

1.0

1.5

800600400200
Time (ms)

Ve
lo

ci
ty

 (p
x/

m
s)

A

B

C D
E

F

Session: Old Mouse, New Tricks: Desktop Interfaces CHI 2012, May 5–10, 2012, Austin, Texas, USA

1950

preceding the greatest maximum. Figure 3 shows a velocity
profile for a movement where the start point of the “trial” is
adjusted in this way.

Figure 3. An aimed pointing movement whose start point is at
the dashed line in accordance with Meyer et al.’s model [33].

The submovement maxima are smaller than the ballistic
maximum and occur later in time (Figure 2, C-E). The
number of submovements can be set in the Input Observer’s
configuration dialog. If the number of submovements is less
than or equal to the maximum set by the researcher, the
movement data is retained as a “trial.” Movements that
exceed the allowable number of submovements are
discarded. The maximum allowed in our study was three,
one extra than prescribed by Meyer et al.’s model [33].
Admittedly, uses of the Input Observer for alternative input
devices (e.g., eye-trackers) or users with motor challenges
(e.g., older users [45]) would need to adjust this parameter.

Identifying Targets
Pointing time (ms) can be calculated easily after extracting
the velocity profile, but pointing error rate (%) and Fitts’
throughput (bits/s) calculations require knowing target
locations and dimensions. When a user clicks, the clicked
target’s coordinates can sometimes be obtained through the
Windows Automation API. However, a number of common
targets, such as buttons in web pages, are not accessible
through the Automation API. Also, the Automation API can
only provide information on targets that the user
successfully acquired—it cannot discern whether a user
may have missed in the first place.
To identify targets invisible to the Automation API and to
identify pointing errors, we utilize Amazon’s Mechanical
Turk.3 For each extracted “trial,” a thumbnail screenshot
300 × 300 pixels in size is captured at the click point.
(Hurst et al. [23] reported that 92% of on-screen targets are
smaller than 300 × 300 pixels.) A dotted line representing
the path of the mouse cursor up to the click-point and a
picture of an arrow cursor are superimposed on the
thumbnails (Figure 4). Even if the Automation API gives
information about the widget the user clicked upon, the
screenshots are sent to Mechanical Turk as the Automation
results are not always reliable. For example, if the user

3 https://www.mturk.com/mturk/welcome

misses the button she was aiming for and accidentally
clicks in the empty space beside the button, the Automation
API will return the coordinates and dimensions of the
container or window in which the button resides.
(a) (b)

Figure 4. (a) Thumbnail showing the mouse trail, mouse cursor,
and target. (b) Thumbnail showing a Turker (black cursor)
dragging a bounding box over a web “Login” button, indicating a
miss because the box fails to contain the white cursor.

Turkers communicate target locations, dimensions, and
pointing errors in one swift step by dragging a bounding
box around the target for which they think the user was
aiming (Figure 4b). Turkers can also indicate with a
checkbox that the intended target is not identifiable within
the thumbnail image. In such cases, the “trial” is excluded
from error rate and throughput calculations, regardless of
whether the Automation API provided target dimensions.
Each image is sent to three Turkers to ensure the accuracy
of responses. Targets’ left (x), top (y), width, and height
from each Turker for each “trial” are compared. When two
or more sets of results have all four values within 10 pixels
of each other, the results are considered “in agreement,”
and the mean values are calculated and kept. Mechanical
Turk results are also compared to results from the
Automation API. In the case of agreement between
Mechanical Turk and the Automation API, the Automation
results are used. If there is agreement among Mechanical
Turk results but the Automation API returns different target
dimensions, the Automation results are ignored—such
results can be misleading for missed targets and targets to
which the API has no access, such as buttons on web pages.
In our study, the Automation API was incorrect for 33% of
the targets identified correctly by Turkers.
Pointing errors are identified based on the target boundary
results obtained. If the click-point is outside the identified
target dimensions, the “trial” is marked as a pointing error.
Of the 20,380 “trials” sent to Mechanical Turk by the Input
Observer during our study, Turkers’ bounding boxes agreed
on target locations for 39.7% (8086) of the thumbnails.
Those “trials” in the other 60.3% either had results failing
to agree or Turkers agreed that no target could be identified.
Based on a stratified random sample of 20 images from
each of the 10 mousing participants (cf. Table 1), manual
inspection showed that of the 12,296 thumbnails on which
Turkers’ bounding boxes did not agree, an estimated 94.5%
contained targets that were genuinely ambiguous (e.g.,
characters in a text editor).

Time (ms)

Ve
lo

ci
ty

 (p
x/

m
s)

12001000800600400

0.5

2000

1.0

2.0

1.5

Session: Old Mouse, New Tricks: Desktop Interfaces CHI 2012, May 5–10, 2012, Austin, Texas, USA

1951

Creating A×W “Conditions” from Pointing Field Data
Once the Mechanical Turk results have been compiled and
“trials” with inconclusive target boundaries have been
discarded, remaining “trials” are grouped into “conditions”
by target distance (A) and target size (W) to produce Fitts’
law models for each user. To understand the need for A×W
“conditions,” we must review Fitts’ law lab studies.
In lab studies, participants are presented with conditions
defined by target distance (A) and target size (W), within
which they perform numerous individual pointing trials
[43]. Subsequently, when fitting Fitts’ law to a participant,
each nominal A×W condition provides one data point to the
set of points on which Fitts’ linear relationship between
index of difficulty and movement time is established. The
data point for a single A×W condition is plotted as
()MTIDe , , where MT is the average movement time of
trials in the A×W condition and IDe is the effective index of
difficulty, which utilizes Crossman’s [9] post hoc speed-
accuracy normalization. IDe is calculated as
log2(Ae / We + 1), where Ae is the average movement
distance of trials in the given A×W condition and We
reflects the spread of hits; in two dimensions, it is equal to
4.133×SDx,y, where SDx,y is the bivariate deviation of
endpoints from their centroid [49].
The above procedure depends on having well-defined A×W
conditions within which Ae and We can be calculated. These
calculations are important for normalizing speed-accuracy
tradeoffs and avoiding inflated throughputs that result from
using nominal ID = log2(A / W + 1) [31]. A×W conditions
also enable us to retain error trials, rather than discarding
errors, which must be done when using nominal ID. But for
pointing “in the wild,” there are no inherent A×W
conditions, resulting in prior work only using nominal IDs
and disregarding errors [7,22].
In seeking to utilize Crossman’s [9] speed-accuracy
correction and retain error trials, we enabled the Input
Observer to cluster trials in our field data such that A×W
“conditions” could naturally arise from the data itself.
Given all pointing “trials” for a participant, the Input
Observer clusters them into “conditions” using the nominal
A and W parameters. (Prior work [35] recommends using

WH for nominal W in two dimensions, so that is what we
do.) After the A×W “conditions” are established, IDe can be
calculated as usual.
To find the groups of “trials” to serve as A×W “conditions”
for a given user, that user’s “trials,” plotted as (A, WH)
ordered pairs, are clustered. The popular k-means algorithm
[26] is not adequate because of the requirement that k, the
number of clusters, be specified. Therefore, the G-means
algorithm [19], which requires no specification of k, is used
to cluster “trials.” We augmented the G-means algorithm to
use k-means++ [2], which provides better initial cluster
centers to G-means as G-means iteratively searches. G-
means uses the Anderson-Darling test for normality [1], the
statistic from which, called A2, we adjust with Stephens’

correction [44] for unknown means and variances, and
D’Agostino’s correction [10] for small samples in cases of
n ≤ 25. In using the Anderson-Darling test, G-means
requires a significance value (α) to be specified, which we
set based on the number of data points. For 400 or fewer
data points, we use α = .10. For more than 400 points, we
use α = .05. Corresponding critical values from D’Agostino
[10] are 0.631 and 0.752, respectively. Therefore, non-
normality is asserted if A2, the outcome of the Anderson-
Darling test, is greater than the critical value.

Within each cluster, outliers in (A, WH)-space are
defined as being more than 1.5×SDx,y from the centroid of
the cluster. These outliers are removed. Similarly, temporal
outlier “trials” with movement times longer than 1.5×SDMT
from the cluster’s mean movement time are also removed.
Twelve percent of all “trials” were identified as spatial or
temporal outliers. To ensure that the “conditions” used to
produce Fitts’ law models still contain sufficient points
after outlier removal, only clusters with 10+ surviving data
points are retained. Fifty-seven percent of “trials” contained
fewer than 10 data points after outlier removal.
“Conditions” where the IDe is very small are also removed,
as previous work has shown that Fitts’ law is questionable
in such cases [26]. We chose an IDe of ≥1 as the threshold
for inclusion in the throughput calculation. Eight percent of
“trials” were removed because IDe was less than 1.
In our study, the Input Observer formed, on average, 14.1
(SD = 7.7) clusters, or A×W “conditions,” per participant.
This number turned out to be close to the 18 conditions
used in our lab study of 3 levels of A × 6 levels of W. On
average, there were 12.7 “trials” in each cluster (SD = 1.3)
and the IDe ranged from 1.01 to 5.80.

Mouse Pointing and Privacy
At 300 × 300 pixels, the thumbnails extracted around click-
points are large enough that a user’s privacy could be
compromised when the images are uploaded to Mechanical
Turk. For example, when a user clicks in a mail program to
read email, or clicks on a link in an online banking site,
readable areas of potentially sensitive text may be visible.
We have taken several steps to protect users’ privacy. First,
Tessnet2,4 a .NET wrapper for the Tesseract OCR library
[40], is used to identify areas of text in each thumbnail.
Those areas are then blacked out (Figure 5a). In addition,
the Emgu wrapper5 for OpenCV’s [4] face detection library
is used to find and black out faces (Figure 5b). Although the
text and face detection processes go a long way towards
protecting privacy, they are not perfect. Therefore, a narrow
“filmstrip” showing thumbnails queued for Mechanical
Turk remains docked at the right side of the desktop for
users to observe while the Input Observer is running
(Figure 5c). Users can see full-size images by hovering
their mouse over thumbnails. Users can choose to remove

4 http://www.pixel-technology.com/freeware/tessnet2/
5 http://www.emgu.com/wiki/index.php/Main_Page

Session: Old Mouse, New Tricks: Desktop Interfaces CHI 2012, May 5–10, 2012, Austin, Texas, USA

1952

any thumbnail (and its associated “trial” data) by right-
clicking on the thumbnail. Thumbnails are shown in the
“filmstrip” for at least 2 minutes before uploading.

Figure 5. The Input Observer blacks out (a) text and (b) faces
in thumbnails prepared for Mechanical Turk. (c) It also shows a
“filmstrip” of thumbnails before uploading, enabling users to
remove any thumbnails they wish.

INPUT OBSERVER EVALUATION
Our evaluation of the Input Observer comprised a weeklong
field deployment and lab tests of participants’ text entry and
pointing performance. The lab results provided a baseline to
which we compared the Input Observer data. It is important
to note that human behavior differs between the lab and the
field, and so there is no a priori reason to expect results
from the Input Observer to exactly match those from the
lab. Rather, our comparison is for gaining confidence that
the Input Observer’s measurements are not horribly awry.
Twelve participants ran the Input Observer on their own
computers for the equivalent of one work-week. Five
participants provided both text and mouse data, 5 provided
only mouse data, and 2 provided only text data. All
participants providing pointing data used an optical mouse.
Table 1 summarizes participant demographics and the
amount of field data collected.
P Sex Age Observed No. of Text

“Trials”
No. of Mouse

“Trials”
Recorded Used

1 f 25 mouse n/a 1436 254
2 m 23 both 48 3686 261
3 f 28 mouse n/a 2595 265
4 f 34 mouse n/a 935 67
5 f 29 both 68 608 47
6 m 53 mouse n/a 743 34
7 f 22 both 108 3378 313
8 f 26 both 149 2609 243
9 f 34 both 145 762 273
10 f 24 mouse n/a 1124 119
11 m 32 text 60 n/a n/a
12 f 31 text 83 n/a n/a
Mean 30.3 94.43 1787.60 187.60
SD 8.7 40.60 1168.35 107.75
Table 1. Participants and types and amounts of data collected.

Participants also completed lab tests of their text entry and
pointing performance. The text entry data was collected
using TextTest [46]. Each participant was presented with 55
phrases, including 5 practice phrases, from the MacKenzie
and Soukoreff phrase set [30], which they were asked to

type as quickly and accurately as possible. The text entry
results were analyzed using StreamAnalyzer [46].
FittsStudy [49] was used for the pointing lab sessions.
There were 3 levels of target distance (A = 256, 384, and
512 pixels) and 6 levels of target width (W = 8, 16, 32, 64,
96, and 128 pixels) resulting in 13 unique nominal IDs
ranging from 1.59 to 6.02 bits. In each A×W condition,
participants performed 23 trials, the first 3 of which were
practice. Circular two-dimensional targets were used. The
lab studies were conducted and analyzed based on prior
work [43,49].

RESULTS
Text Entry Results
Table 2 shows text entry results per participant:
 WPM Unc. Errors (%) Cor. Errors (%)
Participant Lab Field Lab Field Lab Field
2 97.22 101.26 0.00 0.07 2.39 0.22
5 80.02 92.54 0.14 0.08 0.84 0.44
7 72.46 80.60 0.06 0.93 3.90 0.55
8 73.24 70.62 0.34 0.18 2.79 1.14
9 79.52 84.64 0.15 0.30 3.53 2.24
11 54.81 57.73 0.17 0.00 3.44 0.92
12 63.70 76.76 0.00 0.38 0.80 0.81
Mean 74.47 80.59 0.12 0.28 2.53 0.90
SD 13.39 14.28 0.12 0.32 1.27 0.67
Table 2. Text entry results from TextTest and StreamAnalyzer
[46], and field results from the Input Observer.

As Table 2 shows, the average text entry speed in the lab
was 74.47 WPM (SD = 13.39). The Input Observer’s
average from the field was 80.59 WPM (SD = 14.28). The
average uncorrected error rate in the lab tests was 0.12%
(SD = 0.12). In the field it was 0.28% (SD = 0.32).
Although of lesser importance [47] (see p. 56), corrected
errors were also measured. The average corrected error rate
in the lab tests was 2.53% (SD = 1.27). In the field it was
0.90% (SD = 0.67). Recall that due to theoretical
limitations, backspaces are the only error correction
mechanism allowed in lab studies. In the field, however,
error correction may also employ the mouse or cursor keys.
Unfortunately, until theoretical breakthroughs incorporating
such mechanisms are made, these error correction activities
will remain elusive to tools like the Input Observer.

Mouse Pointing Results
As shown in Table 3 (next page), the average movement
time in the lab was 971.34 ms (SD = 88.96). In the field, it
was 870.07 ms (SD = 114.84). Note that movement times
are dependent upon the A and W task parameters. A benefit
of Fitts’ law, of course, is that it is independent of A and W
and only considers their ratio. That movement time is
longer in the lab than the field indicates that lab targets may
have been further away or smaller than those encountered
in the field.
The average pointing error rate in the lab was 4.42%
(SD = 3.56), which is near the ~4% rate prescribed for Fitts’
law studies [27,43]. It was similar in the field, at 4.66%
(SD = 1.76).

Session: Old Mouse, New Tricks: Desktop Interfaces CHI 2012, May 5–10, 2012, Austin, Texas, USA

1953

 Time (ms) Error Rate (%) Throughput
Participant Lab Field Lab Field Lab Field
1 989.67 749.31 2.78 2.22 3.47 3.84
2 990.22 891.98 0.56 1.91 3.63 3.12
3 1024.11 779.17 1.39 5.51 3.32 3.60
4 948.56 1022.88 11.94 4.73 3.35 3.25
5 1097.61 889.19 1.11 7.64 3.19 3.12
6 1079.67 1099.43 4.17 3.24 3.03 2.94
7 986.44 800.09 2.50 5.85 3.45 3.80
8 926.22 854.66 7.78 5.44 3.49 3.70
9 821.83 861.54 5.83 4.61 3.99 3.47
10 849.11 752.41 6.11 5.42 3.87 3.63
Mean 971.34 870.06 4.42 4.66 3.48 3.45
SD 88.96 114.84 3.56 1.76 0.29 0.32
Table 3. Pointing results from FittsStudy [49] and field results
from the Input Observer. Throughputs are measured in bits/s.

Recall that throughput is a combined speed-accuracy
measure of pointing efficiency. The average throughput in
the lab was 3.48 bits/s (SD = 0.29). In the field it was very
similar, at 3.45 bits/s (SD = 0.32).
Table 4 gives the Fitts’ law models for each participant’s
lab and field data. Figure 6 shows an example plot of MT
(ms) by IDe (bits) for one participant’s extracted field data.
 Lab Field
Participant a b R2 a b R2
1 27.75 253.50 0.95 275.29 157.49 0.78
2 27.63 267.82 0.97 210.21 224.65 0.71
3 153.69 224.36 0.95 381.54 137.04 0.77
4 -32.04 279.78 0.96 559.30 140.02 0.64
5 -61.57 335.11 0.95 548.70 124.12 0.66
6 106.55 294.37 0.98 899.23 59.72 0.51
7 -130.34 335.97 0.98 528.16 89.11 0.68
8 15.45 283.21 0.96 591.27 80.14 0.72
9 -13.60 255.30 0.97 394.59 154.42 0.90
10 5.78 258.92 0.94 450.39 122.72 0.95
Table 4. Fitts’ law models from FittsStudy [49] and from the
Input Observer.

Figure 6. A plot of P9’s extracted pointing data. Each blue dot
represents one extracted A×W “condition.” The red line
represents the Fitts’ law model.

DISCUSSION
Several measures produced by the Input Observer were
very similar to the lab results, namely text entry uncorrected
error rates, pointing error rates, and Fitts’ throughputs.
Also, the magnitudes of text entry speeds were within
8.42% on average across participants.

For text entry uncorrected error rates, both lab and field
rates were nearly zero, but the field results were higher.
Manual review of our log files showed that the differences
were largely due to actual human behavior differences
between lab and field, with more errors occurring in the
field. One reason for this could be differences in the need
for accurate spelling. In controlled studies, participants are
told to be both fast and accurate. This resembles formal
writing situations where accuracy is important. However, in
informal writing, such as instant messaging, accuracy is less
important and may even be undesirable, as error correction
slows typed conversations.
We also manually crosschecked the Bing API to see how
reliably it detected text entry errors. In most cases, the Bing
API was good at catching errors. However, it occasionally
marked error-free proper nouns, such as event names, as
containing unknown errors. Although the Input Observer
follows up on words not found by the Bing spell query with
a web search to define the unknown word, Bing does not
always return definition results for proper nouns. Google,
on the other hand, does return definitions for proper nouns.
Initially, the Input Observer used Google for text errors.
However, Google changed its API during our project,
necessitating the switch to Bing. Fortunately, proper nouns
comprised only about 2% of words per participant.
Corrected error rates were different between the lab and
field. Concern over corrected errors is mitigated by two
points: (1) although corrected error rates give insight into
the text entry process, they do not say much about the
ultimate speed or accuracy of a method, as they are
subsumed in WPM and, for methods with efficient error
correction, do not imply that inaccurate text will be
ultimately produced; and (2) forms of text entry error
correction available in the field, such as using the mouse or
text cursor keys, are not allowed in lab settings due to a
theoretical inability to accommodate such behaviors in error
rate analyses. Our manual review of field log files reveals
that our participants frequently used the text cursor keys.
Although we can see that a cursor key was used, we cannot
see whether it was used to correct an error, make an edit, or
even to scroll a web page or Adobe PDF file.
We are pleased with the Input Observer’s ability to
calculate pointing errors using crowdsourcing. Error
calculation enabled the use of Crossman’s [9] speed-
accuracy normalization in calculating Fitts’ throughputs.
Although calculating pointing errors, Crossman’s
correction, and Fitts’ throughputs required substantial
infrastructure involving Automation APIs, crowdsourcing
on Mechanical Turk, and data clustering with G-means [19]
and k-means++ [2], we were able to extract “trials” from
field data and obtain performance measures that were
similar to lab results. This was despite target layouts in the
field being quite unlike the ISO 9241-9 circular layout of
targets used in the lab [43] (cf. Figure 2, p. 754).

M
T

(m
s)

IDe (bits)

200

600

1000

1400

1.0 2.0 3.0 4.0 5.0

Session: Old Mouse, New Tricks: Desktop Interfaces CHI 2012, May 5–10, 2012, Austin, Texas, USA

1954

FUTURE WORK
A better understanding of application and environmental
context and how it affects text entry and mouse pointing
would be useful to this work. Supporting pointing devices
other than conventional mice such as touchpads, trackballs,
or isometric joysticks is also important, as these devices
produce different submovement profiles [34]. An Input
Observer for mobile devices would be useful for the study
of “situational impairments” [39]. Similarly, enabling the
Input Observer to segment text entry and mouse pointing
for users with different abilities, such as older users [45],
children [20], or people with motor impairments [24], is an
important future step. The Input Observer already exposes
parameters for the number of allowable submovements, and
additional “knobs” are foreseeable. Finally, a challenging
future topic is the extension of text entry error correction
measurement to include not just the backspace key, but also
the mouse and cursor keys.

CONCLUSION
The Input Observer is a potentially useful tool enabling
field data to be gathered and analyzed unobtrusively and
with sensitivity to privacy. We have shown that it is
possible to extract lab-like “trials” and associated measures
from everyday text entry and mouse pointing. Doing so
entails inferring users’ intentions with online resources such
as web search and crowdsourcing. Our work may benefit
researchers, device makers, and assistive technology
specialists interested in evaluating and measuring
performance during extended periods of “wild behavior.”

ACKNOWLEDGEMENTS
This work was supported in part by the National Science
Foundation under grant IIS-0952786. Any opinions,
findings, conclusions or recommendations expressed in this
work are those of the authors and do not necessarily reflect
those of the National Science Foundation.

REFERENCES
[1] Anderson, T.W. and Darling, D.A. (1954). A test of

goodness of fit. J. American Statistical Association 49
(268), 765-769.

[2] Arthur, D. and Vassilvitskii, S. (2007). k-means++: The
advantages of careful seeding. Proc. SODA '07.
Philadelphia: Society for Industrial and Applied
Mathematics, 1027-1035.

[3] Balota, D.A., Yap, M.J., Cortese, M.J., Hutchison, K.A.,
Kessler, B., Loftis, B., Neely, J.H., Nelson, D.L.,
Simpson, G.B. and Treiman, R. (2007). The English
Lexicon Project. Behavior Research Methods 39 (3), 445-
459.

[4] Bradski, G.R. and Pisarevsky, V. (2000). Intel’s Computer
Vision Library: Applications in calibration, stereo,
segmentation, tracking, gesture, face and object
recognition. Proc. CVPR '00. Washington, D.C.: IEEE
Computer Society, 796-797.

[5] Brown, B., Reeves, S. and Sherwood, S. (2011). Into the
wild: Challenges and opportunities for field trial methods.
Proc. CHI '11. New York: ACM Press, 1657-1666.

[6] Carter, S., Mankoff, J., Klemmer, S.R. and Matthews, T.
(2008). Exiting the cleanroom: On ecological validity and
ubiquitous computing. Human-Computer Interaction 23
(1), 47-99.

[7] Chapuis, O., Blanch, R. and Beaudouin-Lafon, M. (2007).
Fitts' law in the wild: A field study of aimed movements.
LRI Technical Report Number 1480. Laboratorie de
Recherche en Informatique. Orsay, France: Universite de
Paris Sud.

[8] Choudhury, T., Borriello, G., Consolvo, S., Haehnel, D.,
Harrison, B., Hemingway, B., Hightower, J., Klasnja, P.,
Koscher, K., LaMarca, A., Landay, J.A., LeGrand, L.,
Lester, J., Rahimi, A., Rea, A. and Wyatt, D. (2008). The
Mobile Sensing Platform: An embedded activity
recognition system. IEEE Pervasive Computing 7 (2), 32-
41.

[9] Crossman, E.R.F.W. (1957). The speed and accuracy of
simple hand movements. In The Nature and Acquisition of
Industrial Skills, Crossman and Seymour (eds.).
University of Birmingham: Final Report to the
M.R.C./D.S.I.R. Joint Committee on Individual Efficiency
in Industry.

[10] D'Agostino, R.B. (1986). Tests for the normal
distribution. In Goodness-of-Fit Techniques, D'Agostino
and Stephens (eds.). New York: Marcel Dekker, 367-420.

[11] Dixon, M. and Fogarty, J.A. (2010). Prefab: Implementing
advanced behaviors using pixel-based reverse engineering
of interface structure. Proc. CHI '10. New York: ACM
Press, 1525-1534.

[12] Dumont, C., Vincent, C. and Mazer, B. (2002).
Development of a standardized instrument to assess
computer task performance. American J. Occupational
Therapy 56 (1), 60-68.

[13] Evans, A. and Wobbrock, J.O. (2011). Input Observer:
Measuring text entry and pointing performance from
naturalistic everyday computer use. Extended Abstracts
CHI '11. New York: ACM Press, 1879-1884.

[14] Fisher, R., Perkins, S., Walker, A. and Wolfart, E. (2003).
Gaussian smoothing. Hypermedia Image Processing
Reference. Available at
http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm

[15] Fitts, P.M. (1954). The information capacity of the human
motor system in controlling the amplitude of movement.
J. Experimental Psychology 47 (6), 381-391.

[16] Fitts, P.M. and Radford, B.K. (1966). Information
capacity of discrete motor responses under different
cognitive sets. J. Experimental Psychology 71 (4), 475-
482.

[17] Froehlich, J., Chen, M.Y., Consolvo, S., Harrison, B. and
Landay, J.A. (2007). MyExperience: A system for in situ
tracing and capturing of user feedback on mobile phones.
Proc. MobiSYS '07. New York: ACM Press, 57-70.

[18] Gajos, K.Z., Weld, D.S. and Wobbrock, J.O. (2010).
Automatically generating personalized user interfaces
with SUPPLE. Artificial Intelligence 174 (12-13), 910-
950.

[19] Hamerly, G. and Elkan, C. (2004). Learning the k in k-
means. In Advances in Neural Information Processing
Systems 16, Thrun, Saul and Schölkopf (eds.). Cambridge,
MA: The M.I.T. Press, 281-288.

Session: Old Mouse, New Tricks: Desktop Interfaces CHI 2012, May 5–10, 2012, Austin, Texas, USA

1955

[20] Hourcade, J.P. (2006). Learning from preschool children's
pointing sub-movements. Proc. IDC '06. New York:
ACM Press, 65-72.

[21] Hurst, A., Hudson, S.E. and Mankoff, J. (2007). Dynamic
detection of novice vs. skilled use without a task model.
Proc. CHI '07. New York: ACM Press, 271-280.

[22] Hurst, A., Mankoff, J. and Hudson, S.E. (2008).
Understanding pointing problems in real world computing
environments. Proc. ASSETS '08. New York: ACM Press,
43-50.

[23] Hurst, A., Hudson, S.E. and Mankoff, J. (2010).
Automatically identifying targets users interact with
during real world tasks. Proc. IUI '10. New York: ACM
Press, 11-20.

[24] Hwang, F., Keates, S., Langdon, P. and Clarkson, P.J.
(2004). Mouse movements of motion-impaired users: A
submovement analysis. Proc. ASSETS '04. New York:
ACM Press, 102-109.

[25] Jansen, A., Findlater, L. and Wobbrock, J.O. (2011). From
the lab to the world: Lessons from extending a pointing
technique for real-world use. Extended Abstracts CHI '11.
New York: ACM Press, 1867-1872.

[26] Lloyd, S.P. (1982). Least squares quantization in PCM.
IEEE Trans. Information Theory 28 (2), 129-137.

[27] MacKenzie, I.S. (1992). Fitts' law as a research and design
tool in human-computer interaction. Human-Computer
Interaction 7 (1), 91-139.

[28] MacKenzie, I.S., Kauppinen, T. and Silfverberg, M.
(2001). Accuracy measures for evaluating computer
pointing devices. Proc. CHI '01. New York: ACM Press,
9-16.

[29] MacKenzie, I.S. and Soukoreff, R.W. (2002). Text entry
for mobile computing: Models and methods, theory and
practice. Human-Computer Interaction 17 (2), 147-198.

[30] MacKenzie, I.S. and Soukoreff, R.W. (2003). Phrase sets
for evaluating text entry techniques. Extended Abstracts
CHI '03. New York: ACM Press, 754-755.

[31] MacKenzie, I.S. and Soukoreff, R.W. (2003). Card,
English, and Burr (1978)—25 years later. Extended
Abstracts CHI '03. New York: ACM Press, 760-761.

[32] MacKenzie, I.S. and Isokoski, P. (2008). Fitts' throughput
and the speed-accuracy tradeoff. Proc. CHI '08. New
York: ACM Press, 1633-1636.

[33] Meyer, D.E., Abrams, R.A., Kornblum, S., Wright, C.E.
and Smith, J.E.K. (1988). Optimality in human motor
performance: Ideal control of rapid aimed movements.
Psychological Review 95 (3), 340-370.

[34] Mithal, A.K. and Douglas, S.A. (1996). Differences in
movement microstructure of the mouse and the finger-
controlled isometric joystick. Proc. CHI '96. New York:
ACM Press, 300-307.

[35] Murata, A. (1996). Empirical evaluation of performance
models of pointing accuracy and speed with a PC mouse.
Int'l J. Human-Computer Interaction 8 (4), 457-469.

[36] Palen, L. and Salzman, M. (2002). Voice-mail diary
studies for naturalistic data capture under mobile
conditions. Proc. CSCW '02. New York: ACM Press, 87-
95.

[37] Rogers, Y. (2011). Interaction design gone wild: Striving
for wild theory. interactions 18 (4), 58-62.

[38] Rosenbaum, D.A. (1991). Aiming. In Human Motor
Control. San Diego, CA: Academic Press, 205-216.

[39] Sears, A., Lin, M., Jacko, J. and Xiao, Y. (2003). When
computers fade... Pervasive computing and situationally-
induced impairments and disabilities. Proc. HCI Int'l '03.
Mahwah, NJ: Lawrence Erlbaum, 1298-1302.

[40] Smith, R. (2007). An overview of the Tesseract OCR
engine. Proc. ICDAR '07. Washington, D.C.: IEEE
Computer Society, 629-633.

[41] Soukoreff, R.W. and MacKenzie, I.S. (2001). Measuring
errors in text entry tasks: An application of the
Levenshtein string distance statistic. Extended Abstracts
CHI '01. New York: ACM Press, 319-320.

[42] Soukoreff, R.W. and MacKenzie, I.S. (2003). Metrics for
text entry research: An evaluation of MSD and KSPC, and
a new unified error metric. Proc. CHI '03. New York:
ACM Press, 113-120.

[43] Soukoreff, R.W. and MacKenzie, I.S. (2004). Towards a
standard for pointing device evaluation, perspectives on
27 years of Fitts' law research in HCI. Int'l J. Human-
Computer Studies 61 (6), 751-789.

[44] Stephens, M.A. (1972). EDF statistics for goodness of fit
and some comparisons. J. American Statistical
Association 69 (347), 730-737.

[45] Walker, N., Philbin, D.A. and Fisk, A.D. (1997). Age-
related differences in movement control: Adjusting
submovement structure to optimize performance. J.
Gerontology: Psychological Sciences 52B (1), 40-52.

[46] Wobbrock, J.O. and Myers, B.A. (2006). Analyzing the
input stream for character-level errors in unconstrained
text entry evaluations. ACM Trans. Computer-Human
Interaction 13 (4), 458-489.

[47] Wobbrock, J.O. (2007). Measures of text entry
performance. In Text Entry Systems, MacKenzie and
Tanaka-Ishii (eds.). San Francisco: Morgan Kaufmann,
47-74.

[48] Wobbrock, J.O., Kane, S.K., Gajos, K.Z., Harada, S. and
Froehlich, J. (2011). Ability-based design: Concept,
principles, and examples. ACM Trans. Accessible
Computing 3 (3), 9:1-27.

[49] Wobbrock, J.O., Shinohara, K. and Jansen, A. (2011). The
effects of task dimensionality, endpoint deviation,
throughput calculation, and experiment design on pointing
measures and models. Proc. CHI '11. New York: ACM
Press, 1639-1648.

[50] Zhai, S. (2004). Characterizing computer input with Fitts'
law parameters—the information and non-information
aspects of pointing. Int'l J. Human-Computer Studies 61
(6), 791-809.

[51] Zhai, S., Kong, J. and Ren, X. (2004). Speed-accuracy
tradeoff in Fitts' law tasks—on the equivalency of actual
and nominal pointing precision. Int'l J. Human-Computer
Studies 61 (6), 823-856.

Session: Old Mouse, New Tricks: Desktop Interfaces CHI 2012, May 5–10, 2012, Austin, Texas, USA

1956

	ABSTRACT
	Author Keywords: Text entry, mouse pointing, everyday, “in the wild,” field studies, human performance, Fitts’ law.
	ACM Classification Keywords: H.5.2 [Information Interfaces and Presentation]: User interfaces—evaluation / methodology.

	INTRODUCTION
	RELATED WORK
	MEASURING “WILD” TEXT ENTRY
	Collecting Data beyond the Laboratory
	Segmenting Text Entry “Trials” from the Input Stream
	Distinguishing Errors from Edits
	Corrected Error Rate Calculation
	Uncorrected Error Rate Calculation
	Text Entry and Privacy

	MEASURING “WILD” MOUSE POINTING
	Segmenting Pointing “Trials” from the Input Stream
	Identifying Targets
	Creating A×W “Conditions” from Pointing Field Data
	Mouse Pointing and Privacy

	INPUT OBSERVER EVALUATION
	RESULTS
	Text Entry Results
	Mouse Pointing Results

	DISCUSSION
	FUTURE WORK
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

