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ABSTRACT 
We present the Input Observer, a tool that can run quietly in 
the background of users’ computers and measure their text 
entry and mouse pointing performance from everyday use. 
In lab studies, participants are presented with prescribed 
tasks, enabling easy identification of speeds and errors. In 
everyday use, no such prescriptions exist. We devised novel 
algorithms to segment text entry and mouse pointing input 
streams into “trials.” We are the first to measure errors for 
unprescribed text entry and mouse pointing. To measure 
errors, we utilize web search engines, adaptive offline 
dictionaries, an Automation API, and crowdsourcing. 
Capturing errors allows us to employ Crossman’s (1957) 
speed-accuracy normalization when calculating Fitts’ law 
throughputs. To validate the Input Observer, we compared 
its measures from 12 participants over a week of computer 
use to the same participants’ results from a lab study. 
Overall, in the lab and field, average text entry speeds were 
74.47 WPM and 80.59 WPM, respectively. Average 
uncorrected error rates were near zero, at 0.12% and 0.28%. 
For mouse pointing, average movement times were 971 ms 
and 870 ms. Average pointing error rates were 4.42% and 
4.66%. Average throughputs were 3.48 bits/s and 3.45 
bits/s. Device makers, researchers, and assistive technology 
specialists may benefit from measures of everyday use. 
Author Keywords: Text entry, mouse pointing, everyday, 
“in the wild,” field studies, human performance, Fitts’ law. 
ACM Classification Keywords: H.5.2 [Information 
Interfaces and Presentation]: User interfaces—
evaluation / methodology. 

INTRODUCTION 
There is a growing desire in human-computer interaction 
(HCI) to “break from the lab,” i.e., to understand users’ 
behavior, performance, attitudes, emotions, etc. in everyday 
computer use [5,6,25,36,37]. Methods like ethnography and 
diary studies have supported this trend, as have novel tools 
for experience sampling (e.g., [17]) and behavior sensing 
and recognition (e.g., [8]). However, while these methods 

and tools are well-suited to understanding some aspects of 
human behavior, they do not suffice for understanding 
human performance with input techniques, which, for our 
purposes, are text entry and mouse pointing techniques. 
Understanding human performance with input techniques 
has traditionally required controlled lab studies for accurate 
and rigorous quantification of speeds and errors (e.g., 
[42,43]). Hence, “breaking from the lab” has not occurred 
for input research as it has for other areas of HCI.  
While input-oriented field studies are seen occasionally 
(e.g., [7,22]), basic logging can only produce counts, 
proportions, and durations-of-use. In the wild, calculating 
text entry speeds in words per minute, or pointing speeds in 
milliseconds, requires parsing out portions of data input 
streams. Calculating error rates requires knowing what 
users intended to do. Such a requirement can feel 
frighteningly close to a need for mind-reading. 
Unsurprisingly, prior studies of pointing “in the wild” 
[7,22] ignored error rates. 
To obtain human performance measures commonly used in 
the lab from everyday computer use, we created the Input 
Observer (cf. [13]). The Input Observer runs on Windows 
and measures text entry and mouse pointing by: (1) 
observing keyboard and mouse input streams using low-
level hooks; (2) extracting “trials” where input behavior is 
directed, contiguous, and similar to behavior in the lab; (3) 
measuring speeds from “trial”-starts to “trial”-ends; (4) 
measuring errors by, (i) in the case of text, consulting 
adaptive offline dictionaries and the Bing search engine, 
and (ii) in the case of mouse pointing, consulting the 
Windows Automation API and crowdsourced results with 
Mechanical Turk in which Turkers are asked to identify 
intended targets; and (5) measuring Fitts’ law throughput 
[15,27,32,43,50]. Crucially, our ability to measure pointing 
errors enables us to employ Crossman’s [9] speed-accuracy 
correction based on the spread of hits around targets at the 
same distance (A) and of the same size (W). As pointing in 
the wild occurs without any notion of A×W conditions, we 
employ the G-means [19] and k-means++ [2] clustering 
algorithms to extract post hoc A×W “conditions,” similar to 
those used lab experiments [43]. Without the use of 
Crossman’s correction, throughputs cannot be normalized 
to make comparable, e.g., fast-but-sloppy users and slow-
and-careful users [16,32,43,49,51]. 
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We envision at least three types of potential users of the 
Input Observer: (i) assistive technology specialists seeking 
to gain quantitative insights into clients’ performance with 
devices in home settings, as such specialists have little time 
to match clients to the best possible devices [12]; (ii) device 
manufacturers seeking to understand, through extended 
field testing, whether new prototypes outperform existing 
devices; and (iii) researchers seeking to add an in situ 
component to their understanding of new input techniques 
and devices. Researchers may also seek quantitative models 
for parameterizing an automatic user interface generator 
such as SUPPLE [18] to create “ability-based user interfaces” 
tailored to users’ motor skills without requiring a controlled 
test. In general, the Input Observer can be a tool for 
supporting various aspects of ability-based design [48]. 
To validate the Input Observer, we compared its 
measurements of 12 participants over a week of everyday 
computer use to the performance by the same participants 
in controlled lab studies. Overall, in the lab and field, 
average text entry speeds were 74.47 WPM and 80.59 
WPM, respectively. Average uncorrected error rates [42] 
were near zero, at 0.12% and 0.28%. For mouse pointing, 
average movement times were 971 ms and 870 ms. Average 
pointing error rates were 4.42% and 4.66%. Average 
throughputs were 3.48 bits/s and 3.45 bits/s. 
The primary contribution of this paper is the development 
of a new tool for measuring text entry and mouse pointing 
performance from everyday computer use based on two 
novel algorithms for extracting lab-like “trials” from 
undifferentiated text entry and mouse pointing input 
streams. Secondary contributions are: (1) an approach to 
measuring text entry errors using the web; (2) an approach 
to measuring pointing errors using crowdsourcing; and, (3) 
a method for applying Crossman’s [9] speed-accuracy 
normalization to “wild” pointing data without prescribed 
target distances (A) or target sizes (W). 

RELATED WORK 
Chapuis et al. [7] conducted a study of Fitts’ law “in the 
wild,” demonstrating that Fitts’ law holds in the field as 
long as steps are taken to reduce the “noise” present in field 
data. Chapuis et al. segmented pointing movements using 
pauses, treated all movements as accurate, used the 
Accessibility API to extract 22% of possible target bounds, 
and averaged over many individual pointing trials using an 
arbitrary number of quantiles based on index-of-difficulty 
values. Hurst et al. [22] conducted a similar study, although 
with people of varying pointing abilities. Both studies 
found that pointing “in the wild” differs from pointing in 
the lab in important ways. Unlike the current work, 
however, these studies did not measure errors, extract post 
hoc A×W “conditions,” apply Crossman’s correction [9] in 
Fitts’ law, or produce a reusable tool for others to employ. 
They also did not consider text entry at all. 
In other work, Hurst et al. [21] were able to distinguish 
between novice and skilled users by applying learned 

statistical models to mouse data from a specially 
instrumented application. Although Hurst et al.’s 
participants had no task model and the data was gathered 
“in the wild,” data was only gathered from one application 
built by the researchers. In contrast, the Input Observer 
collects mouse and text entry data directly from the 
operating system and is therefore application-agnostic. 
We are not the first to attempt to identify real-world targets. 
Hurst et al. [23] used a combination of the Accessibility 
API, machine learning, and computer vision to get target 
information. The Accessibility API alone enabled the 
researchers to find 74% of on-screen targets, but when it 
was combined with machine learning and computer vision, 
84% of targets were discovered. For a different approach, 
Dixon and Fogarty [11] used pixel-based matching methods 
to identify targets. We use yet another approach, namely a 
combination of the Windows Automation API1 and 
crowdsourcing on Mechanical Turk to identify targets. An 
advantage of using crowdsourcing is that it enables us to 
identify pointing errors for the first time. 

MEASURING “WILD” TEXT ENTRY 
The review above makes it clear that although pointing 
performance outside the lab has been touched on by prior 
work, everyday text entry has been largely ignored. In this 
section, we describe the Input Observer’s approach to 
measuring text entry performance beyond the lab. 

Collecting Data beyond the Laboratory 
In controlled studies of text entry performance, users 
transcribe presented phrases as “quickly and accurately as 
possible” [47]. Each phrase is considered a single trial. 
Transcribing presented phrases ensures that participants 
only need to copy text, not compose it, which would ruin 
experimental control, error measurement, and 
reproducibility [29]. Further, controlled text entry studies 
disallow the use of the mouse cursor or text cursor keys 
during entry, permitting backspace as the only mechanism 
for correction [47]. Doing so enables error rate calculation 
[42], but limits the ecological validity of lab studies. 
Key performance measures calculated in controlled text 
entry studies are words per minute (WPM) and uncorrected 
error rates [42,47]. Uncorrected errors are those remaining 
in the final transcribed string. There are also corrected 
errors, which are any characters backspaced during entry, 
but these are of less interest because error correction takes 
time and is therefore subsumed in WPM [47] (see p. 56). 
The Input Observer is produces all of these measures, but 
without presenting phrases for transcription. Instead, the 
tool examines the text input stream and extracts phrases, or 
“trials,” in which text entry is continuous. 

Segmenting Text Entry “Trials” from the Input Stream 
While the Input Observer runs on a participant’s computer, 
it collects text entry data. However, the software does not 

1 The Automation API supersedes the Accessibility API. See 
http://msdn.microsoft.com/en-us/library/dd561918(v=vs.85).aspx. 

Session: Old Mouse, New Tricks: Desktop Interfaces CHI 2012, May 5–10, 2012, Austin, Texas, USA

1948



log the text input stream in its entirety. Instead, the stream 
is segmented into “trials” as the participant types. Each 
“trial” has a start point—the first key-press—and an end 
point—the last key-press—before an identified segmenting 
event. In everyday text entry, finding the start and end 
points analogous to those from a controlled trial can be 
tricky. For segmenting events, we use the entry of end-of-
sentence punctuation (e.g., periods, exclamation points, and 
question marks), the ENTER key, and characters not 
appearing in the MacKenzie and Soukoreff text entry 
phrase set [30]. Successive capital letters and numbers are 
also segmenting events, as is any mouse movement. 
Pauses are also used for segmentation. However, a single 
pause value is not sufficient to properly segment everyday 
text input streams into “trials” similar to those from lab 
studies. Users pause for different lengths of time while 
typing depending on whether they are typing letters or 
backspaces, or transitioning between the two. Empirically, 
we observed from 9 participants that two successive non-
backspaces or backspaces were fastest (156 ms); a non-
backspace following a backspace was next (247 ms); and a 
backspace following a non-backspace was slowest (465 
ms). Adding 3 SD to each of these means gives us our three 
pause segmentation times: 1270 ms, 2085 ms, and 3215 ms. 
With the criteria above, some segmented phrases can be 
very short, even a few characters. Such phrases result in 
unreliable and inaccurate measures; therefore, to be logged 
as “trials,” segmented phrases must contain at least 24 
characters. This length is 1 SD less than the mean length of 
phrases in the MacKenzie and Soukoreff phrase set [30]. 
Measuring text entry speed is straightforward once a “trial” 
is properly segmented [47]. However, text entry error rates 
are much more complicated. A source of complication is 
distinguishing text entry errors from edits, described next. 

Distinguishing Errors from Edits 
In a lab study, all backspaces can be regarded as error 
corrections because participants are attempting to match 
presented strings. Outside the lab, however, backspaces 
may correct errors, or they may indicate “changes of mind.” 
We therefore must distinguish errors from edits, an issue 
that affects both corrected and uncorrected error rates. 
While backspaces from error corrections must remain in a 
“trial” to measure corrected error rates, backspaces from 
editing should not be included, as they do not reflect errors. 
To distinguish errors from edits, backspaced text is 
compared to the text entered in its place, word by word. If 
users stop backspacing partway through a word, as in 
Figures 1a & 1c, the partial word is extended up to the 
nearest space to make a complete word. If the backspaced 
word is not the same as the word that replaced it, the Bing 
API’s spell query2 is used to identify errors in the 
backspaced word. If the spell query returns a suggested 
spelling for the backspaced word, the suggested word is 

2 http://msdn.microsoft.com/en-us/library/dd251056.aspx 

compared to the word re-entered by the user. If the two 
words are the same, the original edits are considered errors 
(Figures 1a-b). If Bing has no suggestion, or the suggested 
word and the re-entered word are different, then the 
backspaces and subsequent entries are edits, and the phrase 
is segmented just before the first backspace (Figures 2c-d). 
(a) (c)

 
(b) (d)

 

Figure 1. (a) A text entry input stream showing the correction of 
mistyped “freind” to “friend”. (b) The mistyped “freind” is 
deemed “friend” by Bing, which matches the user’s final word, 
so “freind” has two errors. (c) A text entry input stream showing 
a change of mind from “black” to “brown”. (d) The backspaced 
“black” gives no spelling results from Bing, indicating it was not 
misspelled. As it does not equal “brown”, the changes are called 
edits and no errors are counted. 

Corrected Error Rate Calculation  
Corrected errors are characters that are backspaced during 
entry and therefore do not remain in the transcribed string 
[42]. As described in the previous subsection, backspaces 
used to correct errors are distinguished from backspaces 
used to edit text. Therefore, when a user’s log file is 
analyzed, the corrected error rate can be calculated simply 
from the backspaces recorded in the log. 

Uncorrected Error Rate Calculation 
In controlled text entry studies, uncorrected errors are 
calculated using the minimum string distance between the 
presented and transcribed strings [41,42]. The Input 
Observer has no presented strings, so uncorrected errors 
must be calculated from transcribed strings another way. 
To measure uncorrected errors, each “trial” is broken into 
words by looking for spaces and between-word 
punctuation. Each word is checked against an offline 
lexicon containing ~80,000 words from the freely available 
Washington University in St. Louis English Lexicon Project 
[3]. If the word is found, it is considered correct. 
If the word is not found, the Input Observer calls the Bing 
API’s spell query. If the word contains an error recognized 
by the API, the query returns a suggested word (Figure 1b). 
In such cases, the word entered by the user is marked as 
containing one or more errors, and the suggested word from 
Bing is taken to be the intended word. The minimum string 
distance [41] between the entered word and the suggested 
word is calculated for the uncorrected error rate [42]. To 
reduce repeat queries to the Bing API, suggested words 
returned by Bing are added to the offline lexicon. 
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When no suggested word is returned from a spell query to 
the Bing API, the word entered by the user is either error-
free, or it contains an unrecognized error for which Bing 
cannot find an alternative. To distinguish between the two 
cases, an additional query is sent to the Bing API to define 
the word using the syntax define:<word>. If the query 
returns any results, then the word has a definition and is 
taken to be correct and added to the lexicon. If no definition 
is found, then the word is marked as containing an 
unknown error and cached for later. At the end of text entry 
data collection, the average minimum string distance from 
words containing known errors is applied to all cached 
words containing unknown errors. 
Segmenting pauses frequently occur in the middle of words. 
Mid-word pauses can lead to partial words at the start and 
end of “trials,” falsely inflating the uncorrected error rate. 
To address this issue, the initially-segmented phrase is 
maintained for the speed calculation but may be adjusted to 
complete partial words for the purpose of error-checking. If 
the last character before the pause is a letter or hyphen, it is 
assumed that the word was split by the pause and the first 
word of the next “trial” is adjusted to include the part of the 
word entered before the pause. Any errors that are found 
are only counted as part of the second “trial” to prevent 
errors from being counted twice. 
Other segmenting events, such as mouse movements and 
cursor key-presses, can also occur in the middle of words. 
In these cases, the position of the text entry cursor may 
have changed since the last entered text so it is not possible 
to complete partial words. Instead, if an error is found in the 
first word of a “trial” following such a segmenting event, 
that word is omitted from the uncorrected error calculation. 
As noted above, in lab studies, participants may only use 
backspace to correct errors [47]. In everyday use, however, 
users can employ several methods, including the mouse and 
cursor keys, to position the text cursor for error correction. 
To date, no theoretical breakthroughs have enabled the 
handling of the mouse or cursor keys in text entry error 
measurement. As a result, errors corrected using the mouse 
or cursor keys remain in segmented “trials” and falsely 
appear as uncorrected errors. To address this for cursor 
keys, phrases segmented by them are not included in the 
calculation of uncorrected or corrected error rates. We do 
not address this issue for mouse-based error correction. 
Text Entry and Privacy 
Clearly, the Input Observer’s text entry measurement 
features introduce privacy concerns, as every extracted text 
“trial” is recorded in a log file. The Input Observer’s 
minimum trial length of 24 characters ensures that 
usernames and passwords are not logged. However, longer 
phrases of text from personal communications still raise 
privacy concerns. We added an obfuscation feature that 
causes the Input Observer to log the letter “m” in place of 
actual text. In this case, the Input Observer still performs 
the above measurements on entered text, stores the results, 

and then logs only “m” characters. In addition, participants 
can turn off text entry logging at any time. 

MEASURING “WILD” MOUSE POINTING 
The pointing performance measures calculated by the Input 
Observer are time (ms), error rate (%), and throughput 
(bits/s), an important combined speed-accuracy measure of 
efficiency [15,27,32,43,50]. The Input Observer also 
generates MacKenzie et al.’s path analyses [28], although 
they are not reported here due to space constraints. 
Unlike in controlled pointing studies, in everyday computer 
use, there are no defined trials or conditions. An important 
feature of the Input Observer is its ability to extract pointing 
“trials” that resemble pointing behavior in the lab and build 
post hoc “conditions” from myriad unsorted pointing 
events. The Input Observer is also the first to measure error 
rates for unprescribed pointing. 

Segmenting Pointing “Trials” from the Input Stream 
Rosenbaum [38] argues that the leading explanatory theory 
of Fitts’ law is Meyer et al.’s [33] optimized initial impulse 
model. In this model, an aimed pointing attempt comprises 
a ballistic movement to the target vicinity and one or two 
optional corrective submovements for acquisition. The 
Input Observer examines mouse movements using this 
model to extract aimed pointing “trials.” When the user 
signals the end of a pointing attempt with a click (Figure 2, 
F), the Input Observer moves through the movement 
backwards in time to find the “trial” start. This may be the 
first movement after a previous click, or it may be the first 
movement after the mouse velocity last fell to zero (Figure 
2, A), whichever occurred closer in time to the current 
click. Prior to this scan, the mouse velocity is temporally 
resampled at 100 Hz and then smoothed using a Gaussian 
kernel filter with standard deviation parameter of 3 [14]. 

 
Figure 2. An actual velocity profile, recorded by the Input 
Observer, of a mouse movement that meets Meyer et al.’s [33] 
criteria for an aimed pointing movement. 

With start and end points now identified, the smoothed 
velocity profile is scanned to find all local maxima and 
minima. The highest peak (Figure 2, B), representing the 
ballistic phase of the movement, should also be the first 
maximum. When the highest peak is not the first peak in the 
movement, the start point for the “trial” is moved 
temporally forward to begin at the minimum immediately 
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preceding the greatest maximum. Figure 3 shows a velocity 
profile for a movement where the start point of the “trial” is 
adjusted in this way. 

 
Figure 3. An aimed pointing movement whose start point is at 
the dashed line in accordance with Meyer et al.’s model [33]. 

The submovement maxima are smaller than the ballistic 
maximum and occur later in time (Figure 2, C-E). The 
number of submovements can be set in the Input Observer’s 
configuration dialog. If the number of submovements is less 
than or equal to the maximum set by the researcher, the 
movement data is retained as a “trial.” Movements that 
exceed the allowable number of submovements are 
discarded. The maximum allowed in our study was three, 
one extra than prescribed by Meyer et al.’s model [33]. 
Admittedly, uses of the Input Observer for alternative input 
devices (e.g., eye-trackers) or users with motor challenges 
(e.g., older users [45]) would need to adjust this parameter. 

Identifying Targets 
Pointing time (ms) can be calculated easily after extracting 
the velocity profile, but pointing error rate (%) and Fitts’ 
throughput (bits/s) calculations require knowing target 
locations and dimensions. When a user clicks, the clicked 
target’s coordinates can sometimes be obtained through the 
Windows Automation API. However, a number of common 
targets, such as buttons in web pages, are not accessible 
through the Automation API. Also, the Automation API can 
only provide information on targets that the user 
successfully acquired—it cannot discern whether a user 
may have missed in the first place. 
To identify targets invisible to the Automation API and to 
identify pointing errors, we utilize Amazon’s Mechanical 
Turk.3 For each extracted “trial,” a thumbnail screenshot 
300 × 300 pixels in size is captured at the click point. 
(Hurst et al. [23] reported that 92% of on-screen targets are 
smaller than 300 × 300 pixels.) A dotted line representing 
the path of the mouse cursor up to the click-point and a 
picture of an arrow cursor are superimposed on the 
thumbnails (Figure 4). Even if the Automation API gives 
information about the widget the user clicked upon, the 
screenshots are sent to Mechanical Turk as the Automation 
results are not always reliable. For example, if the user 

3 https://www.mturk.com/mturk/welcome 

misses the button she was aiming for and accidentally 
clicks in the empty space beside the button, the Automation 
API will return the coordinates and dimensions of the 
container or window in which the button resides. 
(a) (b)

 
Figure 4. (a) Thumbnail showing the mouse trail, mouse cursor, 
and target. (b) Thumbnail showing a Turker (black cursor) 
dragging a bounding box over a web “Login” button, indicating a 
miss because the box fails to contain the white cursor.  

Turkers communicate target locations, dimensions, and 
pointing errors in one swift step by dragging a bounding 
box around the target for which they think the user was 
aiming (Figure 4b). Turkers can also indicate with a 
checkbox that the intended target is not identifiable within 
the thumbnail image. In such cases, the “trial” is excluded 
from error rate and throughput calculations, regardless of 
whether the Automation API provided target dimensions. 
Each image is sent to three Turkers to ensure the accuracy 
of responses. Targets’ left (x), top (y), width, and height 
from each Turker for each “trial” are compared. When two 
or more sets of results have all four values within 10 pixels 
of each other, the results are considered “in agreement,” 
and the mean values are calculated and kept. Mechanical 
Turk results are also compared to results from the 
Automation API. In the case of agreement between 
Mechanical Turk and the Automation API, the Automation 
results are used. If there is agreement among Mechanical 
Turk results but the Automation API returns different target 
dimensions, the Automation results are ignored—such 
results can be misleading for missed targets and targets to 
which the API has no access, such as buttons on web pages. 
In our study, the Automation API was incorrect for 33% of 
the targets identified correctly by Turkers. 
Pointing errors are identified based on the target boundary 
results obtained. If the click-point is outside the identified 
target dimensions, the “trial” is marked as a pointing error. 
Of the 20,380 “trials” sent to Mechanical Turk by the Input 
Observer during our study, Turkers’ bounding boxes agreed 
on target locations for 39.7% (8086) of the thumbnails. 
Those “trials” in the other 60.3% either had results failing 
to agree or Turkers agreed that no target could be identified. 
Based on a stratified random sample of 20 images from 
each of the 10 mousing participants (cf. Table 1), manual 
inspection showed that of the 12,296 thumbnails on which 
Turkers’ bounding boxes did not agree, an estimated 94.5% 
contained targets that were genuinely ambiguous (e.g., 
characters in a text editor). 
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Creating A×W “Conditions” from Pointing Field Data 
Once the Mechanical Turk results have been compiled and 
“trials” with inconclusive target boundaries have been 
discarded, remaining “trials” are grouped into “conditions” 
by target distance (A) and target size (W) to produce Fitts’ 
law models for each user. To understand the need for A×W 
“conditions,” we must review Fitts’ law lab studies. 
In lab studies, participants are presented with conditions 
defined by target distance (A) and target size (W), within 
which they perform numerous individual pointing trials 
[43]. Subsequently, when fitting Fitts’ law to a participant, 
each nominal A×W condition provides one data point to the 
set of points on which Fitts’ linear relationship between 
index of difficulty and movement time is established. The 
data point for a single A×W condition is plotted as 
( )MTIDe , , where MT  is the average movement time of 
trials in the A×W condition and IDe is the effective index of 
difficulty, which utilizes Crossman’s [9] post hoc speed-
accuracy normalization. IDe is calculated as 
log2(Ae / We + 1), where Ae is the average movement 
distance of trials in the given A×W condition and We 
reflects the spread of hits; in two dimensions, it is equal to 
4.133×SDx,y, where SDx,y is the bivariate deviation of 
endpoints from their centroid [49]. 
The above procedure depends on having well-defined A×W 
conditions within which Ae and We can be calculated. These 
calculations are important for normalizing speed-accuracy 
tradeoffs and avoiding inflated throughputs that result from 
using nominal ID = log2(A / W + 1) [31]. A×W conditions 
also enable us to retain error trials, rather than discarding 
errors, which must be done when using nominal ID. But for 
pointing “in the wild,” there are no inherent A×W 
conditions, resulting in prior work only using nominal IDs 
and disregarding errors [7,22]. 
In seeking to utilize Crossman’s [9] speed-accuracy 
correction and retain error trials, we enabled the Input 
Observer to cluster trials in our field data such that A×W 
“conditions” could naturally arise from the data itself. 
Given all pointing “trials” for a participant, the Input 
Observer clusters them into “conditions” using the nominal 
A and W parameters. (Prior work [35] recommends using 

WH for nominal W in two dimensions, so that is what we 
do.) After the A×W “conditions” are established, IDe can be 
calculated as usual. 
To find the groups of “trials” to serve as A×W “conditions” 
for a given user, that user’s “trials,” plotted as (A, WH ) 
ordered pairs, are clustered. The popular k-means algorithm 
[26] is not adequate because of the requirement that k, the 
number of clusters, be specified. Therefore, the G-means 
algorithm [19], which requires no specification of k, is used 
to cluster “trials.” We augmented the G-means algorithm to 
use k-means++ [2], which provides better initial cluster 
centers to G-means as G-means iteratively searches. G-
means uses the Anderson-Darling test for normality [1], the 
statistic from which, called A2, we adjust with Stephens’ 

correction [44] for unknown means and variances, and 
D’Agostino’s correction [10] for small samples in cases of 
n ≤ 25. In using the Anderson-Darling test, G-means 
requires a significance value (α) to be specified, which we 
set based on the number of data points. For 400 or fewer 
data points, we use α = .10. For more than 400 points, we 
use α = .05. Corresponding critical values from D’Agostino 
[10] are 0.631 and 0.752, respectively. Therefore, non-
normality is asserted if A2, the outcome of the Anderson-
Darling test, is greater than the critical value. 

Within each cluster, outliers in (A, WH )-space are 
defined as being more than 1.5×SDx,y from the centroid of 
the cluster. These outliers are removed. Similarly, temporal 
outlier “trials” with movement times longer than 1.5×SDMT 
from the cluster’s mean movement time are also removed. 
Twelve percent of all “trials” were identified as spatial or 
temporal outliers. To ensure that the “conditions” used to 
produce Fitts’ law models still contain sufficient points 
after outlier removal, only clusters with 10+ surviving data 
points are retained. Fifty-seven percent of “trials” contained 
fewer than 10 data points after outlier removal. 
“Conditions” where the IDe is very small are also removed, 
as previous work has shown that Fitts’ law is questionable 
in such cases [26]. We chose an IDe of ≥1 as the threshold 
for inclusion in the throughput calculation. Eight percent of 
“trials” were removed because IDe was less than 1. 
In our study, the Input Observer formed, on average, 14.1 
(SD = 7.7) clusters, or A×W “conditions,” per participant. 
This number turned out to be close to the 18 conditions 
used in our lab study of 3 levels of A × 6 levels of W. On 
average, there were 12.7 “trials” in each cluster (SD = 1.3) 
and the IDe ranged from 1.01 to 5.80. 

Mouse Pointing and Privacy 
At 300 × 300 pixels, the thumbnails extracted around click-
points are large enough that a user’s privacy could be 
compromised when the images are uploaded to Mechanical 
Turk. For example, when a user clicks in a mail program to 
read email, or clicks on a link in an online banking site, 
readable areas of potentially sensitive text may be visible. 
We have taken several steps to protect users’ privacy. First, 
Tessnet2,4 a .NET wrapper for the Tesseract OCR library 
[40], is used to identify areas of text in each thumbnail. 
Those areas are then blacked out (Figure 5a). In addition, 
the Emgu wrapper5 for OpenCV’s [4] face detection library 
is used to find and black out faces (Figure 5b). Although the 
text and face detection processes go a long way towards 
protecting privacy, they are not perfect. Therefore, a narrow 
“filmstrip” showing thumbnails queued for Mechanical 
Turk remains docked at the right side of the desktop for 
users to observe while the Input Observer is running 
(Figure 5c). Users can see full-size images by hovering 
their mouse over thumbnails. Users can choose to remove 

4 http://www.pixel-technology.com/freeware/tessnet2/ 
5 http://www.emgu.com/wiki/index.php/Main_Page 
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any thumbnail (and its associated “trial” data) by right-
clicking on the thumbnail. Thumbnails are shown in the 
“filmstrip” for at least 2 minutes before uploading. 

 
Figure 5. The Input Observer blacks out (a) text and (b) faces 
in thumbnails prepared for Mechanical Turk. (c) It also shows a 
“filmstrip” of thumbnails before uploading, enabling users to 
remove any thumbnails they wish. 

INPUT OBSERVER EVALUATION  
Our evaluation of the Input Observer comprised a weeklong 
field deployment and lab tests of participants’ text entry and 
pointing performance. The lab results provided a baseline to 
which we compared the Input Observer data. It is important 
to note that human behavior differs between the lab and the 
field, and so there is no a priori reason to expect results 
from the Input Observer to exactly match those from the 
lab. Rather, our comparison is for gaining confidence that 
the Input Observer’s measurements are not horribly awry. 
Twelve participants ran the Input Observer on their own 
computers for the equivalent of one work-week. Five 
participants provided both text and mouse data, 5 provided 
only mouse data, and 2 provided only text data. All 
participants providing pointing data used an optical mouse. 
Table 1 summarizes participant demographics and the 
amount of field data collected. 
P Sex Age Observed No. of Text 

“Trials” 
No. of Mouse 

“Trials” 
Recorded Used 

1 f 25 mouse n/a 1436 254 
2 m 23 both 48 3686 261 
3 f 28 mouse n/a 2595 265 
4 f 34 mouse n/a 935 67 
5 f 29 both 68 608 47 
6 m 53 mouse n/a 743 34 
7 f 22 both 108 3378 313 
8 f 26 both 149 2609 243 
9 f 34 both 145 762 273 
10 f 24 mouse n/a 1124 119 
11 m 32 text 60 n/a n/a 
12 f 31 text 83 n/a n/a 
Mean  30.3  94.43 1787.60 187.60 
SD 8.7 40.60 1168.35 107.75 
Table 1. Participants and types and amounts of data collected. 

Participants also completed lab tests of their text entry and 
pointing performance. The text entry data was collected 
using TextTest [46]. Each participant was presented with 55 
phrases, including 5 practice phrases, from the MacKenzie 
and Soukoreff phrase set [30], which they were asked to 

type as quickly and accurately as possible. The text entry 
results were analyzed using StreamAnalyzer [46].  
FittsStudy [49] was used for the pointing lab sessions. 
There were 3 levels of target distance (A = 256, 384, and 
512 pixels) and 6 levels of target width (W = 8, 16, 32, 64, 
96, and 128 pixels) resulting in 13 unique nominal IDs 
ranging from 1.59 to 6.02 bits. In each A×W condition, 
participants performed 23 trials, the first 3 of which were 
practice. Circular two-dimensional targets were used. The 
lab studies were conducted and analyzed based on prior 
work [43,49].  

RESULTS 
Text Entry Results 
Table 2 shows text entry results per participant: 
 WPM Unc. Errors (%) Cor. Errors (%) 
Participant Lab Field Lab Field Lab Field 
2 97.22 101.26 0.00 0.07 2.39 0.22 
5 80.02 92.54 0.14 0.08 0.84 0.44 
7 72.46 80.60 0.06 0.93 3.90 0.55 
8 73.24 70.62 0.34 0.18 2.79 1.14 
9 79.52 84.64 0.15 0.30 3.53 2.24 
11 54.81 57.73 0.17 0.00 3.44 0.92 
12 63.70 76.76 0.00 0.38 0.80 0.81 
Mean 74.47 80.59 0.12 0.28 2.53 0.90 
SD 13.39 14.28 0.12 0.32 1.27 0.67 
Table 2. Text entry results from TextTest and StreamAnalyzer 
[46], and field results from the Input Observer.  

As Table 2 shows, the average text entry speed in the lab 
was 74.47 WPM (SD = 13.39). The Input Observer’s 
average from the field was 80.59 WPM (SD = 14.28). The 
average uncorrected error rate in the lab tests was 0.12% 
(SD = 0.12). In the field it was 0.28% (SD = 0.32).  
Although of lesser importance [47] (see p. 56), corrected 
errors were also measured. The average corrected error rate 
in the lab tests was 2.53% (SD = 1.27). In the field it was 
0.90% (SD = 0.67). Recall that due to theoretical 
limitations, backspaces are the only error correction 
mechanism allowed in lab studies. In the field, however, 
error correction may also employ the mouse or cursor keys. 
Unfortunately, until theoretical breakthroughs incorporating 
such mechanisms are made, these error correction activities 
will remain elusive to tools like the Input Observer. 

Mouse Pointing Results 
As shown in Table 3 (next page), the average movement 
time in the lab was 971.34 ms (SD = 88.96). In the field, it 
was 870.07 ms (SD = 114.84). Note that movement times 
are dependent upon the A and W task parameters. A benefit 
of Fitts’ law, of course, is that it is independent of A and W 
and only considers their ratio. That movement time is 
longer in the lab than the field indicates that lab targets may 
have been further away or smaller than those encountered 
in the field. 
The average pointing error rate in the lab was 4.42% 
(SD = 3.56), which is near the ~4% rate prescribed for Fitts’ 
law studies [27,43]. It was similar in the field, at 4.66% 
(SD = 1.76).  
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 Time (ms) Error Rate (%) Throughput 
Participant Lab Field Lab Field Lab Field 
1 989.67 749.31 2.78 2.22 3.47 3.84 
2 990.22 891.98 0.56 1.91 3.63 3.12 
3 1024.11 779.17 1.39 5.51 3.32 3.60 
4 948.56 1022.88 11.94 4.73 3.35 3.25 
5 1097.61 889.19 1.11 7.64 3.19 3.12 
6 1079.67 1099.43 4.17 3.24 3.03 2.94 
7 986.44 800.09 2.50 5.85 3.45 3.80 
8 926.22 854.66 7.78 5.44 3.49 3.70 
9 821.83 861.54 5.83 4.61 3.99 3.47 
10 849.11 752.41 6.11 5.42 3.87 3.63 
Mean 971.34 870.06 4.42 4.66 3.48 3.45 
SD 88.96 114.84 3.56 1.76 0.29 0.32 
Table 3. Pointing results from FittsStudy [49] and field results 
from the Input Observer. Throughputs are measured in bits/s. 

Recall that throughput is a combined speed-accuracy 
measure of pointing efficiency. The average throughput in 
the lab was 3.48 bits/s (SD = 0.29). In the field it was very 
similar, at 3.45 bits/s (SD = 0.32).  
Table 4 gives the Fitts’ law models for each participant’s 
lab and field data. Figure 6 shows an example plot of MT 
(ms) by IDe (bits) for one participant’s extracted field data. 
 Lab Field 
Participant a b R2 a b R2 
1 27.75 253.50 0.95 275.29 157.49 0.78 
2 27.63 267.82 0.97 210.21 224.65 0.71 
3 153.69 224.36 0.95 381.54 137.04 0.77 
4 -32.04 279.78 0.96 559.30 140.02 0.64 
5 -61.57 335.11 0.95 548.70 124.12 0.66 
6 106.55 294.37 0.98 899.23 59.72 0.51 
7 -130.34 335.97 0.98 528.16 89.11 0.68 
8 15.45 283.21 0.96 591.27 80.14 0.72 
9 -13.60 255.30 0.97 394.59 154.42 0.90 
10 5.78 258.92 0.94 450.39 122.72 0.95 
Table 4. Fitts’ law models from FittsStudy [49] and from the 
Input Observer.  

 
Figure 6. A plot of P9’s extracted pointing data. Each blue dot 
represents one extracted A×W “condition.” The red line 
represents the Fitts’ law model. 

DISCUSSION 
Several measures produced by the Input Observer were 
very similar to the lab results, namely text entry uncorrected 
error rates, pointing error rates, and Fitts’ throughputs. 
Also, the magnitudes of text entry speeds were within 
8.42% on average across participants. 

For text entry uncorrected error rates, both lab and field 
rates were nearly zero, but the field results were higher. 
Manual review of our log files showed that the differences 
were largely due to actual human behavior differences 
between lab and field, with more errors occurring in the 
field. One reason for this could be differences in the need 
for accurate spelling. In controlled studies, participants are 
told to be both fast and accurate. This resembles formal 
writing situations where accuracy is important. However, in 
informal writing, such as instant messaging, accuracy is less 
important and may even be undesirable, as error correction 
slows typed conversations. 
We also manually crosschecked the Bing API to see how 
reliably it detected text entry errors. In most cases, the Bing 
API was good at catching errors. However, it occasionally 
marked error-free proper nouns, such as event names, as 
containing unknown errors. Although the Input Observer 
follows up on words not found by the Bing spell query with 
a web search to define the unknown word, Bing does not 
always return definition results for proper nouns. Google, 
on the other hand, does return definitions for proper nouns. 
Initially, the Input Observer used Google for text errors. 
However, Google changed its API during our project, 
necessitating the switch to Bing. Fortunately, proper nouns 
comprised only about 2% of words per participant. 
Corrected error rates were different between the lab and 
field. Concern over corrected errors is mitigated by two 
points: (1) although corrected error rates give insight into 
the text entry process, they do not say much about the 
ultimate speed or accuracy of a method, as they are 
subsumed in WPM and, for methods with efficient error 
correction, do not imply that inaccurate text will be 
ultimately produced; and (2) forms of text entry error 
correction available in the field, such as using the mouse or 
text cursor keys, are not allowed in lab settings due to a 
theoretical inability to accommodate such behaviors in error 
rate analyses. Our manual review of field log files reveals 
that our participants frequently used the text cursor keys. 
Although we can see that a cursor key was used, we cannot 
see whether it was used to correct an error, make an edit, or 
even to scroll a web page or Adobe PDF file. 
We are pleased with the Input Observer’s ability to 
calculate pointing errors using crowdsourcing. Error 
calculation enabled the use of Crossman’s [9] speed-
accuracy normalization in calculating Fitts’ throughputs. 
Although calculating pointing errors, Crossman’s 
correction, and Fitts’ throughputs required substantial 
infrastructure involving Automation APIs, crowdsourcing 
on Mechanical Turk, and data clustering with G-means [19] 
and k-means++ [2], we were able to extract “trials” from 
field data and obtain performance measures that were 
similar to lab results. This was despite target layouts in the 
field being quite unlike the ISO 9241-9 circular layout of 
targets used in the lab [43] (cf. Figure 2, p. 754).  
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FUTURE WORK 
A better understanding of application and environmental 
context and how it affects text entry and mouse pointing 
would be useful to this work. Supporting pointing devices 
other than conventional mice such as touchpads, trackballs, 
or isometric joysticks is also important, as these devices 
produce different submovement profiles [34]. An Input 
Observer for mobile devices would be useful for the study 
of “situational impairments” [39]. Similarly, enabling the 
Input Observer to segment text entry and mouse pointing 
for users with different abilities, such as older users [45], 
children [20], or people with motor impairments [24], is an 
important future step. The Input Observer already exposes 
parameters for the number of allowable submovements, and 
additional “knobs” are foreseeable. Finally, a challenging 
future topic is the extension of text entry error correction 
measurement to include not just the backspace key, but also 
the mouse and cursor keys. 

CONCLUSION 
The Input Observer is a potentially useful tool enabling 
field data to be gathered and analyzed unobtrusively and 
with sensitivity to privacy. We have shown that it is 
possible to extract lab-like “trials” and associated measures 
from everyday text entry and mouse pointing. Doing so 
entails inferring users’ intentions with online resources such 
as web search and crowdsourcing. Our work may benefit 
researchers, device makers, and assistive technology 
specialists interested in evaluating and measuring 
performance during extended periods of “wild behavior.” 
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