

Input Observer: Measuring Text Entry
and Pointing Performance from
Naturalistic Everyday Computer Use

Abstract
In this paper we describe the Input Observer, a
background application that will be capable of
measuring a user’s text entry and pointing abilities
from everyday computer use “in the wild.” The
application runs quietly in the background of the user’s
computer and utilizes global Windows Hooks to observe
the text entry input stream and use of the mouse, and
will yield data equivalent to results from lab-based
measures of text entry and target acquisition. A major
challenge is the lack of a task model from which
researchers can know the intent of the user at every
moment. We describe our approach to handling this
issue for both text entry and mouse pointing.

Keywords
Text entry, mouse pointing, field studies, naturalistic
computer use.

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User
interfaces—Evaluation/methodology.

General Terms
Human Factors, Measurement.

Copyright is held by the author/owner(s).

CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.

ACM 978-1-4503-0268-5/11/05.

Abigail Evans1
Jacob O. Wobbrock1

1The Information School
DUB Group
University of Washington
{abievans, wobbrock}
@uw.edu

CHI 2011 • Work-in-Progress May 7–12, 2011 • Vancouver, BC, Canada

1879

Introduction
People with motor impairments face numerous
challenges when using computers. They either need to
adapt themselves to hardware and software that has
not been designed with the needs of motor-impaired
users in mind, or they need to use assistive technology
designed for users with a range of motor impairments
that may still fall short of addressing the needs of the
individual user.

Previous work by Gajos et al. [6] has shown that it is
possible to create highly accessible computer interfaces
in which the interface adapts to fit the abilities of the
user. In order to build software that is better suited to
the abilities of individual users, however, designers and
software engineers need to be able to measure and
evaluate those abilities, ideally in naturalistic settings
from everyday computer use. But currently, such
evaluations are costly and time-consuming.

Most interactions with a computer involve text entry,
pointing, and target acquisition. There are many ways
to test these skills in lab settings but no comprehensive
way to measure them in the field. As lab studies can be
difficult for users with disabilities [2,5], the ability to
quantify text entry, pointing, and target acquisition in
the field is especially important when considering the
experience of users with impairments.

Building on existing methods for measuring text entry,
and mouse movements in the lab, we are developing
the Input Observer to measure those skills in the field.
The application runs on Windows and uses global
Windows Hooks to observe low-level text entry input
streams and mouse movements. The application has
two components: the Text Observer, which measures

text entry speed and error rates; and the Mouse
Observer, which measures target acquisition and
pointing accuracy. The Input Observer runs quietly in
the background of a user’s computer, gathering data
with minimal disruption.

At the time of writing, the Text Observer is close to
completion while the Mouse Observer is still in its
formative stages. This paper details the work done so
far, some of the challenges encountered in moving
from the lab to the field, and the next steps as we
continue to develop the Input Observer.

Text Entry Speed
In lab tests of text entry speed, participants are shown
a phrase which they transcribe as quickly and
accurately as possible. The transcribed phrase
represents a trial, which is then used to calculate text
entry speed as words per minute [12].

In the field, however, there is no phrase presented for
participants to transcribe so it is difficult to determine
what should constitute a trial. The most obvious place
to segment entered text to form a trial is when the user
types a period, as this is likely, but not always, the end
of a sentence and therefore would be similar to the
phrases used in lab tests. Although abbreviations are
not explicitly handled by our current implementation,
they may result in trials that are too short and are
therefore discarded. Other typical end-of-sentence
characters, such as the exclamation mark, question
mark, and the enter key, also can signify the end of
trial, as does the use of the mouse.

With no presented phrase, users will be composing as
they type, pausing to think and making edits as they go

CHI 2011 • Work-in-Progress May 7–12, 2011 • Vancouver, BC, Canada

1880

along. The first challenge is to distinguish between
pauses relevant to text entry speed, and pauses that
represent thinking time or result from an external
distraction. As it is not possible to determine a user’s
intention when there is a pause in text entry, we
decided to end a trial after a pause of 300 ms in order
to prevent irrelevant pauses from distorting results.
The figure of 300 ms was arrived at through trial-and-
error. We recognize that the difference between a
pause due to text entry speed and a pause due to
thinking time or other distractions is likely to vary
among participants. For this reason, the user interface
allows the pause length to be changed. This setting will
be tested once the Input Observer is deployed.

Determining a Text Entry “Trial”
While the time taken to make and correct errors
(mistakes or typos) should be included in the
calculation of words per minute, edits (i.e., word
changes) should not be included. For example, if the
user first types “See Spot rin”, and immediately
corrects “rin” to “run”, the time taken to change the “i”
to a “u” should be included in the duration of the trial.
However, if the user were then to delete “run” and
replace it with “walk”, it would be considered an edit
and neither the time taken to make the change, nor the
change in wording, should be included in the trial as it
would distort error rate calculations. Thus, we must
distinguish edits from corrections.

Without a presented phrase to compare to the phrase
entered by the user, it is difficult to determine the
user’s intention when they make changes to entered
text. We decided that if the user backspaces through an
entire word – from the last character entered up to or
through a space – it is counted as an edit and the trial

is ended at the last character entered that has not been
deleted. If the user backspaces through a partial word,
it is counted as a correction and the trial continues,
including the backspaces and erased characters.

Although this method of distinguishing between edits
and corrections is not perfect, we have had very
encouraging results for calculation of words per minute
during development. So far, the average words per
minute given by the Text Observer after 30-50 trials,
as tested by the authors, has consistently been within
5% of the result obtained in a conventional lab test.
Although the Text Observer will dismiss some error
corrections as edits and will count some edits as error
corrections, it seems to be accurate in most cases. We
will have to pay close attention to this aspect of speed
calculation when the software is deployed.

Text Entry Error Rates
Calculating text entry speed in naturalistic computer
use has been fairly straightforward. Calculating text
entry error rates, however, is more difficult.

Soukoreff and MacKenzie [11] describe two types of
errors in text entry: Incorrect Fixed, or corrected
errors, and Incorrect Not Fixed, or uncorrected errors.
Corrected errors are easily identified, as described
above, when the user backspaces through one or more
characters within a word. Uncorrected errors, on the
other hand, require more work to identify because the
user does not take any action that signals a possible
error, and with the Input Observer, we only have
access to the user’s low-level actions. The first step in
tackling this problem was to include a lexicon for error
checking in the Input Observer. Once the user has
entered a complete trial, the entered text is broken into

CHI 2011 • Work-in-Progress May 7–12, 2011 • Vancouver, BC, Canada

1881

words using spaces and appropriate punctuation as
delimiters. Each word is then checked against the
lexicon, which contains nearly 80,000 words and is
derived from the data freely available from the
Washington University in St. Louis English Lexicon
Project [4]. If the word is found in the lexicon, no
further checking is needed. If, however, the word is not
found, more steps need to be taken to confirm that it
contains an error, and also to identify the most likely
correct spelling of the word in order to determine
exactly how many errors are present.

Web search engines find occurrences of words that are
unlikely to appear in the lexicon but are correctly
entered - commonly used abbreviations or proper
nouns, for example. When a word is not found in the
lexicon, the Text Observer searches for the word on
Google using the “define:” command. For example, if
the user enters “freind”, it will not be found in the
lexicon, so the Text Observer searches for the term
“define:freind”. If Google returns a list of definitions the
word is deemed correct. If, however, the word is not
defined, the search will return a statement saying that
no definitions were found. Google will often offer an
alternative spelling, for example, “Did you mean:
friend?” This alternative word is taken to be the correct
word. The Text Observer then uses the algorithm given
by Mackenzie and Soukoreff [10] to calculate the
minimum string distance between the “correct” word
suggested by Google and the word entered by the user.
To reduce the number of future queries to Google, the
suggested word is added to a list of “learned” words,
which is used for error checking alongside the lexicon.

If no definitions are found for a word entered by the
user and Google cannot offer any alternative spellings,

it is not possible to calculate the minimum string
distance for that word. In that case, the average
minimum string distance is calculated and any
erroneous words that could not be resolved by Google
are assumed to exhibit that same average error rate.

Initially, whenever a segmenting event occurred, the
text entered since the previous segmenting event was
considered a trial and words per minute and error rates
would be determined for that trial. This meant that very
short bursts of text entry could be counted as a trial.
Although this did not greatly affect the measurement of
text entry speed, there were some concerns about the
effect on the uncorrected error rate. There are
numerous cases where a user may enter a short string
of characters that would look like an error to the Input
Observer despite being accurate. For example, website
addresses and search terms auto-completed after a few
characters could look like errors. To address this issue,
a text segment now has to be at least a minimum
length of 24 characters in order to qualify as a trial.
Twenty-four characters is one standard deviation less
than the mean length of phrases in the Mackenzie and
Soukoreff [9] phrase set. As that is the phrase set used
in the lab test that will provide the baseline data to be
compared with the Text Observer results, it was the
most relevant corpus from which to calculate a
minimum trial length.

The minimum trial length also addresses a privacy
concern. Trial data is recorded for error checking but,
as usernames and passwords are likely to be shorter
than 24 characters, the minimum trial length prevents
such data being recorded. However, raw data long
enough to qualify as a trial is logged to an XML file in
readable format. We are using the log to refine the Text

CHI 2011 • Work-in-Progress May 7–12, 2011 • Vancouver, BC, Canada

1882

Observer but in the released version logging will be
disabled unless the user decides to enable it. This
should prevent personal information from being
recorded without consent.

Another issue potentially leading to accurately entered
text appearing incorrect occurs when a segmenting
event arises in the middle of a word. For example, if a
user starts to type a word and pauses before
continuing, the text entry input stream will be
segmented at that point, leaving a partial word. In such
cases, the word will be split between two trials and
each half of the word will be checked for errors
independently. We addressed this problem by
identifying trials for which the first character was
immediately preceded by a letter or hyphen, as these
characters indicate that the first word in the trial may
actually be a section of a longer word. Next, the word is
extended to include the section of the word that was
entered before the trial began and the complete word is
checked for errors (the extended first word is not used
in the calculation of text entry speed). Any errors found
are included in the second of the two adjacent trials to
ensure the partial words are not counted twice.

Testing so far has shown the average errors given by
the Text Observer for both types of errors to be within
2% of lab test results. However, the error rates given
by the Text Observer are also consistently lower than
those from the lab test. The cause of this effect seems
to be the use of search engines for error checking.
Many incorrect words, whether typos or word
fragments, have definitions on Google, potentially
causing some errors to be considered correct. The lab-
tested error rates being used as baselines during
development are low (less than 2%) so it remains to be

seen how the error rates calculated by the Input
Observer will hold up with users who produce higher
error rates.

The Mouse Observer
While the Text Observer is almost ready for testing with
users in the field, we are still brainstorming how to
measure a user’s mouse pointing skills in the field.
Previous research [1] has assessed the validity of Fitt’s
Law in the field. We intend to go a step further by
computing Fitt’s Law throughput [8] and error rates.
The first step is to figure out how to determine a single
pointing attempt, i.e., the pointing “trial.” Although a
pointing attempt will usually end with a click of the
mouse, determining the start of the pointing attempt is
less clear. A user may move the mouse around without
clicking on anything so a single pointing attempt cannot
be assumed to be all cursor movements between one
click and the next. We will most likely need to identify a
suitable length for a pause between movements. Also,
we can smooth the raw velocity profile and then look
for an initial ballistic movement followed by corrective
submovements, which would indicate the expected
profile for a single pointing event. From this profile
information, the Mouse Observer can calculate the
distance and timespan of each movement

The Mouse Observer will also need to determine the
dimensions of the target the user clicks upon. With
about 74% of screen elements, we can get those
dimensions from the Windows Accessibility API [7].
However, many elements will be harder to access.
Eventually, Prefab [3] may make getting screen target
sizes possible just from targets’ drawn pixels. For now,
however, a different approach is required.

CHI 2011 • Work-in-Progress May 7–12, 2011 • Vancouver, BC, Canada

1883

To determine pointing errors, the Mouse Observer will
not only need to recognize when the user has missed a
target, it will also need to get the dimensions of the
intended target. For now, this task may be best suited
to human judgment. Our intention is to scrape pixels in
the vicinity of each mouse click, upload those as
thumbnails to Mechanical Turk, and provide turkers the
means to indicate whether a click was a hit or miss,
and the dimensions of the target. While automated
approaches have been tried [7], ours will be the first to
crowdsource this determination.

Conclusion
The Input Observer will be able to collect data on a
user’s text entry and mouse input in a single
deployment in the field. The measures given by the
Input Observer will include text entry speed, corrected
and uncorrected text entry error rates, pointing speed
and accuracy, and Fitts’ law pointing performance
measures and models. The measures will be
comparable to those that could be obtained in lab tests
of text entry and pointing performance. As the software
runs in the background and does not require any
special attention from the user, it will be convenient
and easy to use. The Input Observer will be a valuable
to tool to researchers wanting to validate innovations or
therapists evaluating interventions in the naturalistic
everyday computer use.

Acknowledgements
This work was supported by the National Science
Foundation under grant IIS-0952786.

References
[1] Chapuis, O., Blanch, R. and Beaudouin-Lafon, M.
(2007). Fitts' law in the wild: A field study of aimed

movements. LRI Technical Repport Number 1480.
Laboratorie de Recherche en Informatique. Orsay, France:
Universite de Paris Sud.
[2] Coyne, K.P. Conducting simple usability studies
with users with disabilities. Proc. HCI Int'l 2005.
Lawrence Erlbaum Associates (2005).
[3] Dixon, M. and Fogarty, J. A. (2010). Prefab:
Implementing advanced behaviors using pixel-based
reverse engineering of interface structure. In Proc. CHI
2010. New York: ACM Press, 1525-1534.
[4] English Lexicon Project. http://elexicon.wustl.edu/
[5] Feng, J., Sears, A. and Law, C.M. Conducting
empirical experiments involving participants with spinal
cord injuries. Proc. HCI Int'l '05. Lawrence Erlbaum
Associates (2005).
[6] Gajos, K.Z., Wobbrock, J.O. and Weld, D.S.
Improving the performance of motor-impaired users
with automatically-generated, ability-based interfaces.
Proc. CHI 2008. ACM Press (2008), 1257-1266.
[7] Hurst, A., Hudson, S. E. and Mankoff, J. (2010).
Automatically identifying targets users interact with
during real world tasks. Proc. IUI 2010. New York: ACM
Press, 11-20.
[8] MacKenzie, I.S. Fitts' law as a research and design
tool in human-computer interaction. Human-Computer
Interaction 7, 1 (1992), 91-139.
[9] MacKenzie, I.S. and Soukoreff, R.W. Phrase sets
for evaluating text entry techniques. In Extended
Abstracts CHI 2003. ACM (2003), 754-755.
[10] Soukoreff, R.W. and MacKenzie, I.S. Measuring
errors in text entry tasks: An application of the
Levenshtein string distance statistic. Extended
Abstracts CHI 2001. ACM Press (2001), 319-320.
[11] Soukoreff, R.W. and MacKenzie, I.S. Recent
developments in text-entry error rate measurement.
Extended Abstracts CHI 2004. ACM Press (2004), 1425-
1428.
[12] Wobbrock, J.O. Measures of text entry
performance. In Text Entry Systems: Mobility,
Accessibility, Universality, I. S. MacKenzie and K.
Tanaka-Ishii (eds.). Morgan Kaufmann, San Francisco,
47-74, 2007.

CHI 2011 • Work-in-Progress May 7–12, 2011 • Vancouver, BC, Canada

1884

