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an interactive tabletop under three conditions: (1) with no 
visual keyboard and no feedback, then (2) with and (3) 
without a visual keyboard, and with some feedback. We 
were interested in questions such as: What will the 
distribution of key presses look like if users are given no 
visual constraints when typing? Will the centroids for each 
key follow the layout of a standard rectangular keyboard? 
Will certain keys have a larger spread of hits? By using 
vision algorithms to detect hand contours, can we identify 
differences among users in key-to-hand mappings?  

Our findings have implications for the design of static and 
personalized touch screen keyboards. Based on finger touch 
data, we show that a curved keyboard with a gap between 
the hands is a more natural representation of actual typing 
patterns on flat surfaces than a standard rectangular 
keyboard. We also show that some keys are more difficult 
to hit consistently than others, suggesting those keys should 
be made larger (e.g., keys assigned to the little fingers). 
Typing patterns varied widely among users, but finger 
placement per key was highly reliable within an individual: 
with a simple classification approach using centroids of the 
key hit points, we classified key presses at 90% accuracy in 
a condition where there was no visual keyboard.  

This paper contributes a formative study of unconstrained 
typing patterns on a flat surface, and an empirical basis for 
future development of ten-finger flat-surface keyboards. 
We also show that expert typists exhibit spatially consistent 
key press distributions within an individual, which provides 
evidence that eyes-free text input may be possible on touch 
surfaces and points to the role of personalization in such a 
solution. Finally, we also contribute design implications for 
both static and personalized touch screen keyboards. 

RELATED WORK 
Adding to the techniques mentioned in the Introduction, we 
discuss text entry for large multi-touch devices, virtual 
keyboard work in general, and physical keyboards. 

Tabletops & Text Entry 
In 2007, Hinrichs et al. [12] surveyed text entry techniques 
for tabletops, dividing the space into external methods (e.g., 
physical keyboards) and on-screen methods (e.g., virtual 
keyboards). Most of the on-screen methods were for small, 
mobile touch screens and none supported ten fingers. 
Hinrichs et al. [12] also offered evaluation criteria for  
tabletop text entry, such as the need for rotatability, on-
screen mobility, and support for multi-person interaction. In 
an observational study of tabletop use, Ryall et al. [25] 
offered another general finding that has implications for 
typing: the difficulty of distinguishing between intentional 
and inadvertent touches of fingers, hands, and arms. 

Complementing our work, recent research has focused on 
tactile feedback to support tabletop text entry. Weiss et al. 
[31] proposed a silicon keyboard overlay that could 
potentially support eyes-free typing; no evaluation has yet 
been reported. McAdam and Brewster [17] studied distal 

tactile feedback during text entry and found that feedback 
on the wrist or upper arm improved typing speed. None of 
the previous work has studied ten-finger typing patterns, at 
most reporting speed, error rates, and subjective feedback. 

Virtual Keyboards 
Virtual keyboards provide a temporary allocation of screen 
space for text entry. Solutions using a mouse, eye-trackers, 
or other assistive technologies have been studied for 
accessible text entry (e.g. [16,28]). For the broader 
community, studies have largely focused on stylus or 
direct-touch interfaces. Although findings described in this 
section are highly relevant to ten-finger typing, there will be 
differences in biomechanics and efficiency because most of 
these techniques support a single point of input. 

Past research has examined key positioning and size. Sears 
et al. [27] found that smaller keys reduced text entry speed 
and increased errors. However, later work by MacKenzie 
and Zhang [21] found that, although a smaller keyboard 
increased errors compared to a larger one, there was no 
reduction in speed. This is in keeping with the application 
of Fitts’ law to performance optimization of virtual 
keyboards [38].  

Researchers have also explored relaxing the requirement to 
precisely hit each key. Kristensson and Zhai [14] proposed 
a method whereby the overall geometric shape formed by 
all of the hit points for a word is considered in linguistic 
matching. This approach was expanded on by Rashid and 
Smith [23] to enable typing without a priori determining the 
position of the keyboard, albeit with an extremely high 
error rate. Gunawardana et al. [9] proposed a method to 
expand or contract key areas for each press based on 
linguistic models, building on previous work by Goodman 
et al. [7] and Al Faraj et al. [1]. In similar work, Himberg et 
al. proposed adaptation through the movement of individual 
keys [11]. Alternatives to tapping a virtual QWERTY 
keyboard have also been proposed, including alternate key 
layouts [15,20,35,37], gestures [30], and methods that 
enable users to stroke between keys [13,36].  

Physical Keyboards 
The first practical typewriter was introduced in 1874 and 
touch-typing gained prominence a few decades later due to 
performance advantages and reduced fatigue over hunt-and-
peck typing [4]. The development of touch-typing expertise 
requires extensive training [4], with skilled typists reaching 
speeds of 60 WPM or higher [8]. 

Previous work on common typing errors serves as the basis 
for some of our own analysis. Errors include misstrokes, 
which result from inaccurate finger movement, omissions, 
insertions, and interchanging of letters in the text [8]. 
Substitution errors, where one letter is substituted for 
another, occur most commonly in the same row or column, 
and can even be homologous (mirror-image position on the 
opposite hand) [8]. In a survey of typing studies, one 
relevant finding Salthouse [26] reports is that different 
fingers result in different error frequencies.  
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and pack my box with five dozen liquor jugs, while the 
remaining phrases were randomly selected from the 
MacKenzie phrase set [19]. The random phrases and 
pangrams were intermixed. For each condition, the thumb 
configuration step was done once for the practice phrases 
and redone before the test phrases to allow participants to 
adjust their hands if they wished. Finally, feedback 
questionnaires were administered. 

Exploratory Questions 
The three conditions were designed to answer different 
questions. We summarize the most salient here. 

Unrestricted Typing 
1. How fast can users type on a flat surface when they 

assume their input is accurate? 
2. How many finger and non-finger touches occur and 

where do they occur?  
3. How do the number of finger touches compare to the 

length of the presented text? 

Asterisk Feedback, Visible Keyboard and No Keyboard 
1. How fast will users type with a visible keyboard versus 

no keyboard? How many errors will they commit? 
2. Is the emergent keyboard layout based on actual key 

presses different between the two conditions in terms of 
curvature and distance between hands? 

3. Do some keys have greater x- or y-axis deviation than 
others? Are such findings systematic by row or column?  

4. Do key-to-hand mappings follow the touch-typing 
standard (T, G, B to left hand and Y, H, N to right hand)? 

5. Are key press locations for each key consistent? How 
reliably can we classify key presses based on the 
observed centroids of key presses? 

Data and Analysis 
Across all participants, we collected 50,289 labeled key 
presses from the asterisk tasks, and 27,830 unlabeled finger 
touches in the unrestricted condition. In addition, on every 
touch down event (as opposed to moved or up events), we 
processed the raw image and recorded the convex hull 
around each hand. Due to a technical problem, only the left 
hand convex hull was recorded for the first 8 participants—
this was remedied for the remaining participants.  

Although we asked participants to correct all errors in the 
asterisk conditions, the ambiguity of providing asterisks as 
output meant that uncertainty remained in the labeling. 
Expert typists recognize between 40-70% of their own 
typing errors by feel and without visual feedback [26], 
which means that errors likely remained in the data due to 
the ambiguous visual feedback we provided. Clear cases of 
mislabeled key presses can be identified: for example, 
typing E then M instead of the opposite. To account for these 
mislabelings, we removed outlying points for each key that 
were more than three standard deviations away from the 
mean in either the x or y direction (1.8% of instances).  

We used repeated measures ANOVAs and paired two-tailed 
t-tests for our analyses. All post hoc pairwise comparisons 
following the ANOVAs were protected against Type I error 

using a Bonferroni adjustment. Reported fractional degrees 
of freedom (dfs) are from Greenhouse-Geisser adjustments. 
When parametric tests were not appropriate because the 
data violated the assumption of normality, we applied non-
parametric equivalents, such as the Wilcoxon signed-rank 
test. We report significant findings at p < .05. 

RESULTS 
We examine the unrestricted typing condition before 
exploring the asterisk feedback conditions in more depth. 

Unrestricted Typing: No Keyboard, No Feedback 
Our goals were to learn how quickly users can type on a flat 
surface when they assume their input is accurate, and to 
observe the pattern of touches, especially those that were 
not the result of user-intended actions. The mean number of 
reset trials per user was 20.8% (SD = 9.9). Figure 1 shows 
finger and non-finger touch points for all participants. 

Typing speed was 31% slower than the physical keyboard. 
We calculated WPM following MacKenzie [18]: 

WPM ൌ 	
|ܶ| െ 	1

ܵ
	ൈ 60	 ൈ

1
5

 

where T is the final transcribed string and S is the elapsed 
time in seconds, in our case, from first to last finger touch 
in a trial. For reset trials, we discarded input from before 
the reset. This measure provides an indication of the speed 
that users could achieve on a flat surface under ideal 
conditions. Participants typed an average of 58.5 WPM 
(SD = 18.0), with a range of 31.3 to 92.7 WPM. Although 
mean WPM was 31% slower than the physical keyboard, it is 
still almost 25 WPM faster than the predicted expert typing 
speed of a stylus-based QWERTY keyboard [37]. 

Fingers often rested on the screen, especially at the start of 
a trial. At the start of each trial, participants placed their 
hands in preparation for typing, with most participants 
resting at least some fingers on the screen, as if on the home 
row (fingers down at start: M = 5.08, SD = 2.94, range: 0 to 
10). We also compared the number of finger touches after 
the trial start to the length of the presented text. There were 
slightly more finger touches than expected (ratio of finger 
touches to length of the presented text: M = 1.07, 
SD = 0.07), indicating that participants sometimes rested 
their fingers on the screen or brushed them inadvertently 
against it. However, looking at occurrences where three or 
more fingers were down simultaneously, we found that only 
five participants exhibited this behavior more than once (for 
those five: M = 0.45 occurrences per trial, SD = 0.48). 
These results demonstrate the need to support fingers 
resting on the home row between text entry sequences, but 
not necessarily during a sequence.   

Hand and arm position varied. Fewer than half the 
participants (N = 7) consistently rested their hands on the 
screen, while the remaining participants rested their 
forearms on the edge of the table and hovered their palms. 
These behaviors resulted in more than one non-finger touch 
per word (per trial: M = 8.24, SD = 4.41). As Figure 1 
shows, however, finger and non-finger touches were highly 
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(except for the split between hands at T‐Y, G‐H, and B‐N) 
provides an estimate of the deviation from a straight line for 
that row, where an angle of 0º would be perfectly 
horizontal. The mean absolute angle between each pair of 
keys in the no keyboard condition was 9.9º compared to the 
visible keyboard condition at 5.4º (significant difference: 
t19 = 7.35, p < .001). Thus, a curved keyboard design should 
best support touch-typing. 

Distance between hands is greatest in the ‘no keyboard’ 
condition. We computed the average distance between the 
rightmost keys of the left hand and the leftmost keys of the 
right hand (between pairs T-Y, G-H, and B-N). On average, 
there was 1.12" of space between the hands in the visible 
keyboard condition (SD = 0.19") and 1.41" of space with no 
keyboard (SD = 0.42"), a difference that was significant 
(t19 = 4.17, p = .001). The mean distance in the visible 
keyboard condition is more than the 0.9" of space between 
visual key centers (t19 = 5.30, p < .001). This result shows 
that users are most comfortable typing with a gap between 
their hands. Even with a visible keyboard, the underlying 
key press model may need to take this gap into account. 

Hit Point Deviations per Key 
Where the keyboard shape analysis examined centroids of 
key hits, a more detailed examination of the spread of hits 
per key allows us to identify individual keys that may 
benefit from an increase in size. We first calculated the 
standard deviation of hits for each key per participant in x- 
and y-directions. We then grouped the 26 letter keys by 
finger and row, since previous research has shown these 
factors can affect error rates [4]. For example, the Q, A, Z, 
and P keys were grouped as little finger. For each of x- and 
y-direction standard deviation, we ran a repeated measures 
ANOVA with the following within-subjects factors: typing 
input (no keyboard vs. visible keyboard), row (bottom, 
middle, top), and finger (little, ring, middle, index). 

Overall, hit point deviations were greatest in the ‘no 
keyboard’ condition. There was a main effect of keyboard 
for both x- and y-directions (x-direction: F1,19 = 10.77, 
p = .004; y-direction: F1,19 = 39.28, p < .001). These results 
reflect the pattern evident in Figure 6, that there was a 
smaller spread of hits for each key when participants were 
given visual constraints compared to when they were not. 

The little finger resulted in the greatest horizontal spread of 
hits. There was a main effect of finger on x-direction 
deviation (F1.6,31.1=5.79, p = .011). Pairwise comparisons 
showed the keys assigned to the little finger had 
significantly greater x-direction deviation than the ring 
(p = .033) and middle fingers (p = .024), while comparison 
to the index finger was only a trend (p = .075). No other 
significant main or interaction effects were found on x-
direction deviation. This finding suggests that keys pressed 
with the little finger should be widest. 

Bottom row keys, especially with ‘no keyboard’, resulted in 
the greatest vertical spread of hits. All main and interaction 
effects were significant for y-direction deviation, so we 

examine the highest-order effect in detail: a three-way 
interaction of keyboard × finger × row (F2.8,34.3 = 5.70, 
p = .002). Significant pairwise comparisons (at p < .05) 
showed differences were stronger with no keyboard: the 
bottom row resulted in greater y-direction deviation than the 
middle and top rows for the little and index fingers, and just 
the top row for the ring finger. With the visible keyboard, 
this pattern held, but was only significant with the index 
finger. These results suggest that making the keys in the 
bottom row taller may improve accuracy. For completeness, 
the other significant effects were: finger (F3,57 = 17.88, p < 
.001), row (F2,38 = 16.11, p < .001), keyboard × finger 
(F3,57 = 4.65, p = .006), keyboard × row (F1.3,23.7 = 5.59, 
p = .021), and finger × row (F1.3,3.7 = 6.96, p = < .001). 

Key-to-Hand Mappings 
The keyboard shape analyses showed that participants were 
most comfortable with a gap between their hands. Although 
the most obvious split would be based on the standard key-
to-hand mapping for touch-typing (i.e., left hand: T, G, B 
and keys to the left; right hand: Y, H, N and keys to the 
right), an analysis of actual key-to-hand mappings indicates 
that even skilled typists have idiosyncrasies in this respect. 

Spacebar use is predominantly by only one thumb. Almost 
all participants used only one thumb for the spacebar (right:  
14 participants; left: 4 participants), replicating previous 
results with a wearable keyboard [6]. There was no 
relationship between handedness and thumb choice.  

Middle keys were often shared between hands. Based on the 
12 participants for whom we logged complete hand contour 
data, we checked within which hand each key press 
occurred. Some participants used the opposite hand or 
alternated hands for the B, H, and Y keys (e.g., right hand 
for B key). Excluding potential noise from mislabeled data 
when there were few (< 5) key presses from a participant 
using the opposite hand, we saw the left hand accounted for 
16.7% of Y presses (3 participants) and 5.2% of H presses (1 
participant), while the right hand accounted for 11.4% of B 
presses (4 participants). In 0.15% of cases, the center of the 
touch point was offset such that it fell between the hand 
contours; half of such cases occurred with H.  

Key Press Classification 
The analyses presented above provide insight into how 
keyboard layout and key size may be improved to support 
touch-typing patterns on a flat surface. In this section, we 
assess the reliability of key hit locations to evaluate how 
accurate the modified designs could be. We perform simple 
distance-based classification of key presses, both within a 
participant, and between a participant and the group’s 
average. Again, the no keyboard condition offers the closest 
representation to eyes-free touch-typing.  

User-dependent key press classification is highest with the 
visible keyboard, yet still 90% with no keyboard. Using 10-
fold cross-validation, we calculated the centroid of key 
presses for each training subset of the data, and classified 
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was especially common with the B and Y keys, which could 
potentially be placed on both sides of a split keyboard. 

In general, a more ergonomic layout should improve input 
accuracy over a rectangular one. In the asterisk feedback, 
visible keyboard condition, only 81.5% of key presses 
occurred within key bounds. However, key press 
classification based on the emergent key centroids for all 
users was almost 12% higher. 

We did not explore different visual designs, but the visual 
affordances of the keyboard would affect typing patterns. 
Many of the recommendations listed here could be 
implemented with or without a visual affordance. For 
example, allowing for space between the hands could mean 
the underlying keyboard model adjusts key centers away 
from the middle of the keyboard, but it does not necessarily 
mean that a visual gap must appear. Future work should 
explore what the best visual affordance, if any, will be for 
each design recommendation, and how user behavior 
changes with respect to visual changes in the keyboard. 

Towards Touch-Typing on Flat Surfaces 
The goal of this study was not only to identify design 
recommendations for current whole-hand touch screen 
keyboards, but also to explore the feasibility of eyes-free 
touch-typing on a flat surface. In the unrestricted typing 
condition, where participants were not aware of input 
errors, mean typing speed was 59 WPM. This number is 
indicative of speeds that novice users could achieve with an 
ideal ten-finger touch screen keyboard, and performance 
should improve with use. The unrestricted condition was 
slower than the physical keyboard, which we speculate may 
be due to differences in the mechanics of the two setups 
(i.e., flat surface vs. raised keyboard) and to previous 
negative experiences with touch screens, which could have 
made some participants initially hesitant. Again, with more 
practice these effects should decrease. 

Key press classifications from the asterisk feedback, no 
keyboard condition also point to the potential for touch-
typing on a flat surface. With no visual constraints, 
classification accuracy with a simple user-dependent model 
was 90%. While 90% is hardly perfect, it could be 
improved through more sophisticated classification 
schemes. Language modeling would also improve 
performance further (e.g., [7,14,30]). Word-level correction 
approaches should be particularly effective here: such 
approaches require clean segmentation between words, and 
the spacebar was the easiest key to classify. 

Personalization will most likely be a key element of any flat 
surface keyboard that allows for touch-typing. We observed 
many individual differences in terms of spacing between 
hands, size and shape of key press distributions, and key-to-
hand mappings. Underscoring these findings, user-
dependent key press classification was about 20% more 
accurate than user-independent classification for the 
asterisk feedback, no keyboard condition. This disparity 
suggests that if we want to allow users to type without 

frequently looking at the keyboard (as in that condition), the 
underlying model will need to adapt to each user. 

Limitations 
The conditions studied here provided either no feedback or 
masked feedback to users. While this decision was 
necessary to achieve our goals, providing users with 
unmasked text output would certainly impact behavior, 
allowing users to adapt their typing patterns to create more 
accurate output if necessary. We plan to explore methods to 
improve input accuracy, such as intelligently identifying 
spurious touch points or using a pressure sensitive surface. 
Further study is needed on how close experienced users will 
come to achieving the ideal speeds seen in the unrestricted 
condition. We predict that in real typing tasks users will 
achieve speeds somewhere between the asterisk feedback 
conditions and the unrestricted condition. 

Our participants only included expert touch-typists, which 
is a critical user group to study if the goal is to design the 
most efficient text input methods possible. Although the no 
keyboard conditions are not directly applicable to novice 
typists, the resulting design recommendations may still 
improve performance for those users; for example, the 
observed differences in hit point deviations per key may be 
reflective of basic human motor performance. Future work 
will need to confirm the degree to which the visible 
keyboard findings also apply to novice typists.  

Finally, we required users to place their hands consistently 
at the start of each trial to reduce noise from potential hand 
drift over the course of the study. Without this requirement, 
we would expect a decrease in the reliability of key press 
locations. Detecting the location of the user’s hands and 
adjusting the keyboard if needed may be a useful approach 
for mitigating this issue. Language modeling could also be 
used to offset this projected decrease in accuracy.  

CONCLUSION 
We have investigated the unconstrained typing patterns of 
20 expert typists on a flat surface. Our results demonstrate 
that typing patterns differ when users are provided with a 
visual keyboard compared to no visual affordance, yet key 
press locations remain relatively reliable within an 
individual. Design recommendations emerging from this 
study should improve the effectiveness of static touch 
screen keyboard designs. But our vision is to design 
keyboards that will allow users to touch-type on a flat 
surface. The results presented here should encourage 
researchers to pursue this goal, and indicate that an 
effective solution will require an element of 
personalization. Future work should apply the design 
recommendations here, and investigate the potential to 
which touch-typing on flat surfaces can be achieved. 
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