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ABSTRACT 
Guessability is essential for symbolic input, in which users 
enter gestures or keywords to indicate characters or 
commands, or rely on labels or icons to access features. We 
present a unified approach to both maximizing and 
evaluating the guessability of symbolic input. This 
approach can be used by anyone wishing to design a 
symbol set with high guessability, or to evaluate the 
guessability of an existing symbol set. We also present 
formulae for quantifying guessability and agreement among 
guesses. An example is offered in which the guessability of 
the EdgeWrite unistroke alphabet was improved by users 
from 51.0% to 80.1% without designer intervention. The 
original and improved alphabets were then tested for their 
immediate usability with the procedure used by MacKenzie 
and Zhang (1997). Users entered the original alphabet with 
78.8% and 90.2% accuracy after 1 and 5 minutes of 
learning, respectively. The improved alphabet bettered this 
to 81.6% and 94.2%. These improved results were 
competitive with prior results for Graffiti, which were 
81.8% and 95.8% for the same measures. 

Categories & Subject Descriptors: H.5.2 [Information 
Interfaces and Presentation]: User interfaces—
evaluation/methodology, input devices and strategies, user-
centered design. 

General Terms: Design, Experimentation, Measurement. 

Keywords: Guessability, immediate usability, symbols, 
referents, proposals, gestures, commands, command-line, 
keywords, labels, icons, text entry, unistrokes, EdgeWrite. 

INTRODUCTION 
The guessability of a system determines a great deal about 
its initial user experience. It is unrealistic to expect that 
users will have the time or desire to undergo extensive 
training with systems, whether by tutorial, on-line help, 
printed manual, or human instruction. Thus, a user’s initial 
attempts at performing gestures, typing commands, or 
using buttons or menu items must be met with success 
despite the user’s lack of knowledge of the relevant 
symbols. This requires high guessability. 

Guessability is particularly important in symbolic input, 
where users enter or access symbols to indicate associated 

referents. Examples of symbols and referents are stylus 
strokes that enter ASCII characters, command-line names 
that execute programs, and graphical buttons that access 
features. In these cases, users often know what referent 
they desire (e.g. the letter, program, or feature they want), 
but they do not know what symbol to use (e.g. the 
corresponding stroke, command name, or graphical button). 

High guessability is even more important when using small 
devices for off-desktop computing. Small devices mean 
contrived input schemes, limited screen real estate for help 
screens, and “on the go” mobile use without access to 
unwieldy manuals. Also, the typical intermittent use of 
handheld devices means that users have less time for in-use 
learning. Modern users expect success right from the start. 

Experts, not just novices, also need systems with high 
guessability. When an expert must perform an uncommon 
action, like entering an obscure character in a unistroke 
alphabet, his otherwise high performance may be 
significantly impeded unless the symbol is guessable. 

This paper offers an approach to maximizing and 
evaluating the guessability of symbolic input. It defines 
guessability and offers a formal measure. This approach 
can be used in the design of a new symbol set, or in the 
evaluation or redesign of an existing symbol set. It is 
particularly relevant to designers of symbol sets that map to 
large numbers of referents—the more referents there are, 
the more important high guessability becomes. 

We define guessability in symbolic input as: 

That quality of symbols which allows a user to 
access intended referents via those symbols despite 
a lack of knowledge of those symbols. 

Guessability is contrasted to immediate usability [7] in that 
the latter involves the holistic evaluation of the initial user 
experience after a brief learning period; guessability 
evaluates only the input symbols without prior learning. 

RELATED WORK 
Guessability is crucial in command-line interfaces. Prior 
studies [4,5] show that designers often supply only one 
command-line term per referent. But one term, no matter 
how “natural,” results in guessability failures of 80-90% 
[3]. A proposed solution is “unlimited aliasing” [4], where 
the system makes the best guess at the intended referent in 
the event of an unrecognized symbol. Having multiple Copyright is held by the author/owner(s). 
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synonyms has also been recognized as a key to achieving 
high guessability in command-line interfaces [4,5]. 

The guessability of text labels and graphical icons has also 
been studied [8]. Guessable labels and icons are important 
for the usability of buttons, toolbars, and menus. This 
paper’s method for maximizing guessability can be applied 
to studies where participants devise text labels or sketch 
graphical icons for described features. Procedures for such 
studies have been delineated elsewhere (e.g. [1], p. 316). 

The immediate usability of handheld text entry methods, 
most notably Graffiti [7], Graffiti 2 [6], and the Palm OS 
virtual keyboard [2,6], has also been studied. Immediate 
usability has been defined as initial usage after minimal 
training. An example is a user acquiring a new Palm PDA, 
studying the Graffiti character chart for a minute, and then 
trying to write. Results for both Graffiti and Graffiti 2 
accuracy show respectably high immediate usability after 
minimal practice. Not surprisingly, virtual keyboards also 
have high immediate usability, since the symbol-to-referent 
mappings are obvious (i.e. labeled buttons enter 
corresponding ASCII characters). 

Although immediate usability is important, it is a separate 
metric from guessability. Guessability is focused only on 
the quality of the input symbols without prior learning. 
Immediate usability assumes prior learning and evaluates 
the system as a whole, not just its input symbols. 

MAXIMIZING GUESSABILITY 
It is possible to design a highly guessable symbol set by 
acquiring guesses from participants. With the same 
participant data, we can also evaluate the guessability of an 
existing symbol set. The following sections describe our 
procedure. Then a concrete example is given for a real 
unistroke symbol set. 

Achieving High Guessability with Participants 
Participants are first recruited to propose symbols for 
specified referents within a given domain. The more 
participants, the more likely the resulting symbol set will be 
guessable to external users. The goal is to obtain a rich set 
of symbols from which to create the resultant symbol set. 

Participants should be informed only of the details essential 
to proposing intelligent symbols. For example, if unistroke 
symbols are required, participants must be told what 
unistrokes are so that they refrain from making multi-stroke 
symbols. Participants should not be shown any example 
symbols or symbols from preexisting symbol sets. Of 
course, they must know the referents to which their 
symbols refer. Example referents are the ASCII letters to 
which unistrokes refer, the functions to which commands 
refer, or the features to which icons or text labels refer. 

Capturing Symbols 
Participants propose a symbol for each referent in turn. 
Symbols are captured and coupled with their intended 
referents. It is important not to bias the forms of the 
symbols by displaying the referents. For example, if 
participants are proposing unistroke gestures for ASCII 

letters, they should not see typeset letters as prompts. 
Similarly, if command names are being proposed, prompts 
containing ideal keywords should be avoided. 

It is essential for conflict resolution (below) that captured 
symbols be testable for equality. Testing equality may be 
trivial, as in the case of keyword symbols, or more 
complex, as in the case of (x, y) point traces for unistrokes. 
For more complex symbols, designers may already have 
software to interpret them. Human judgment can also 
determine equality among, for example, sketches of icons. 

Resolving Conflicts 
One might imagine that we could simply lump together all 
participants’ proposed symbols as our resultant symbol set 
and trivially achieve 100% guessability for the participants 
used. In practice, however, this is not usually possible due 
to conflicts—i.e. the same symbol will have been used to 
indicate different referents. An example from the literature 
[5] is the email command “To Dennis” being proposed to 
mean “send a message to Dennis” and also “list messages 
sent to Dennis.” Similarly, the same unistroke gesture may 
be proposed for “h” and “n” [7]. But only one referent can 
be indicated by a given symbol. How do we decide which 
referent gets the symbol? 

Symbols are tested for equality and grouped so that 
identical symbols form a “conflict group.” After grouping, 
the different referents within each group are identified and 
the number of referring symbols counted. Then a scoring 
function determines which referent within each group is 
assigned that group’s symbol. To maximize guessability, 
the referent that “wins” the symbol is the one with the most 
proposed symbols. Equation 1 expresses this as a function. 

 symbolsscore =    (1) 

For example, in 20 participants, if the same unistroke were 
proposed for “n”, “h”, and “a” with counts of 14, 5, and 1, 
respectively, the gesture would be assigned to referent “n”. 

In general, the more conflicted the set of proposed symbols, 
the lower the maximized guessability of the resultant 
symbol set. Intuitively, high conflict means participants are 
using identical symbols for different referents. Designers 
may improve this situation by making referents more 
distinct, by relaxing constraints on symbolic forms, or by 
asking participants to resolve all conflicts within their own 
sets of proposed symbols before they are finished. 

Domain-specific considerations may be accommodated by 
using alternate scoring functions, although guessability 
may not be maximized. For example, in alphabetic entry 
we may wish to favor common letters over uncommon 
ones. Equation 2 is an example of an alternate scoring 
function that balances both letter frequency (0..1) and the 
number of proposed symbols. 

 
symbolsfrequencyscore

1

=   (2) 
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Calculating Guessability 
Guessability has not been formalized in the literature. We 
therefore introduce a measure of guessability for symbolic 
input. The guessability G of the resultant symbol set S for 
the captured set of proposed symbols P is: 

 %100⋅=
∑
∈

P

P
G Ss

s

   (3) 

In equation 3, P is the set of proposed symbols for all 
referents, and Ps is the set of proposed symbols using 
symbol s, which is a member of the resultant symbol set S. 
For our example of “n”, “h”, and “a” above, S = {“n”} and 
G = 14/20 · 100% = 70%. This means our resultant symbol 
set S was able to accommodate 70% of the symbols 
proposed by the participants. 

Agreement 
We may wish to know the agreement among symbols 
proposed by the participants. We therefore introduce a 
formalization of agreement A among symbols from our 
captured set P. Intuitively, agreement should be 100% 
when proposed symbols are identical, and ≈0% when they 
are unique. For example, in 20 proposals for referent r, if 
15/20 are of one form and 5/20 are of another, there should 
be higher agreement than if 15/20 are of one form, 3/20 are 
of another, and 2/20 are of a third. Equation 4 captures this: 
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In equation 4, r is a referent in the set of all referents R, Pr 
is the set of proposals for referent r, and Pi is a subset of 
identical symbols from Pr. The range of equation 4 is 1/|Pr| 
· 100% ≤ A ≤ 100%. The lower bound is non-zero because 
even when all proposals disagree, each one trivially agrees 
with itself. For r, [(15/20)2 + (5/20)2] / 1 · 100% = 62.5% 
and [(15/20)2 + (3/20)2 + (2/20)2] / 1 · 100% = 59.5%. 

Evaluating the Guessability of an Existing Symbol Set 
One may also use the same participant data to evaluate the 
guessability of an existing symbol set S. Where a proposed 
symbol p ∈ P used an existing symbol s ∈ S that was 
correctly intended for s’s referent r, the proposal p is 
assigned to s. These proposed symbols (i.e. guesses) 
accumulate to form Ps in equation 3, the set of proposals 
using symbol s. Then equation 3 is applied, giving the 
percentage coverage of the captured symbols P by the 
symbols in the existing symbol set S. If all proposed 
symbols P are covered by S, the guessability G is 100%. 

THE GUESSABILITY OF EDGEWRITE 
As an example, we applied our approach to increase the 
guessability of the unistroke alphabet EdgeWrite [9]. 
Intuitively, one would not expect EdgeWrite to be highly 
guessable since its letters are made along the edges and into 
the corners of an area bounded by a physical square. 

Method 
Twenty participants, mostly staff and students from CMU, 
served as paid volunteers. None had prior experience with 
EdgeWrite or Graffiti. Participants were told they would be 
making unistroke gestures on a touchpad to indicate letters 
for a new alphabet. The unistroke concept was explained to 
prevent multi-stroke symbols. The importance of the four 
corners of the square input area was also explained, since 
EdgeWrite letters are defined not by their overall paths of 
motion but by their sequences of corner-hits [9]. No other 
constraints were in place and no examples were shown. 

Participants were verbally prompted to enter each letter of 
the alphabet (a..z) and each number (0-9) by a Visual C# 
program that also recorded their gestures. An audio prompt 
was used to avoid biasing participants by the appearance of 
typeset letters. Participants were free to redo their symbols 
as often as they liked, but once a symbol was committed for 
a character, it could not be changed. To increase the variety 
of proposed symbols, participants were required to resolve 
conflicts among their own symbols before they were 
finished. Thus, each participant contributed 36 unique 
symbols, for |P| = 20 · 36 = 720 proposed symbols in all. 
Results 
Corner sequences fully define an EdgeWrite gesture [9], so 
the 720 symbols were grouped by identical corner 
sequences in preparation for conflict resolution. The 
agreement of P was A = 34.9%, meaning about a third of 
the proposed symbols for a given referent agreed on 
average. After conflict resolution using the maximization 
scoring function (equation 1), the ensuing user-designed 
symbol set Su accommodated 577 of 720 proposed 
symbols, for Gu = 80.1%. The original EdgeWrite symbol 
set So was then evaluated for the proposed symbols P. It 
accommodated only 367 of 720, for Go = 51.0%. Assuming 
the participants were representative, the improvement from 
So to Su should generalize to larger populations of users. 

THE IMMEDIATE USABILITY OF EDGEWRITE 
In order to validate the improvement from So to Su, we 
replicated a prior study of the immediate usability of 
Graffiti [7] for the two EdgeWrite alphabets. Recall that Su 
was designed only by the proposed symbols of participants 
without designer intervention, and So was created by 
EdgeWrite’s designers over many prior studies [9]. Indeed, 
EdgeWrite’s designers were skeptical that an amalgam of 
uninformed participant symbols could actually be more 
usable than the product of many hours’ design work. They 
were further dubious that either alphabet would approach 
the immediate usability of Graffiti, since Graffiti had been 
shown to be “very respectable” in this manner [7]. 

Method 
Our testing of immediate usability followed the prior study 
of Graffiti by MacKenzie and Zhang [7]. Twenty new 
participants served as paid volunteers. Like before, none of 
them had prior experience with Graffiti or EdgeWrite. The 
unistroke concept and importance of corner sequences were 
described to them. The same computer apparatus and 
touchpad were used as before. 
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As in the study of Graffiti [7], participants entered the 
alphabet (a..z) five times. This occurred twice in two 
separate phases of testing: the first after 1 minute of 
studying a 26-letter EdgeWrite character chart, and the 
second after 5 minutes of freeform practice with the same 
chart. Entered letters appeared in a Notepad document in 
Times 36pt font. Participants were not allowed to correct 
erroneous entries. Ten of the 20 participants used the 
original EdgeWrite alphabet So, and 10 used the user-
designed alphabet Su. Thus, for each alphabet, there were 
26 · 5 · 2 · 10 = 2600 letters entered. 

Results 
As in the prior study, we measured the “accuracy attainable 
after minimal exposure” [7]. Figure 1 shows our results and 
those for Graffiti. After 1 minute of chart study, 
participants were 78.8% (12.6 stdev) accurate with the 
original alphabet So. This improved to 81.6% (12.8) for the 
user-designed alphabet Su. This was very near the prior 
average for Graffiti of 81.8% (12.1). A one-way ANOVA 
shows no statistical differences for the three percentages 
(F2,42=.23, p=.80), and no paired contrasts are significant. 

After 5 minutes of freeform practice, So was 90.2% (11.0) 
accurate. Su improved this to 94.2% (7.2). The latter was 
competitive with the prior result for Graffiti of 95.8% (4.0). 
A one-way ANOVA is nearly significant for the three 
percentages (F2,42=2.43, p=.10). A paired contrast shows 
Graffiti was significantly more accurate than So (F1,42=4.85, 
p<.05), but not significantly more accurate than Su 
(F1,42=.40, p=.53). Su was not significantly more accurate 
than So, but the trend is in this direction (F1,42=1.73, p=.19). 

 
Figure 1. Guessability and immediate usability results. Error bars 

represent standard deviations. Graffiti data are from [7]. 

DISCUSSION 
It was surprising that strict adherence to the guessability 
maximization procedure resulted in an alphabet (Su) with 
higher average immediate usability than a highly iterated 
designer-made alphabet (So). Although this improvement 
was not quite significant after 5 minutes, that the average 
immediate usability increased at all shows the power of 
using participants to improve even refined symbol sets [5]. 
Furthermore, after examining the immediate usability data, 
we believe Su could be improved even more by changing a 
few problematic symbols. For example, the “q” from Su 
was only 57% accurate, while the “q” from So was 75% 
accurate. Other letters that were better in So than Su were 

“t” (61% vs. 80%) and “y” (78% vs. 90%). It was also 
interesting that the standard deviations were similar for the 
three alphabets after 1 minute (≈12), but shrank 
considerably after 5 minutes for Su (7.2) and Graffiti (4.0) 
but not for So (11.0), indicating more consistent 
performance for the more refined symbol sets. Finally, it 
was pleasing that EdgeWrite could be made competitive 
with Graffiti’s laudable immediate usability [7]. 

CONCLUSION 
High guessability is essential in today’s computing 
systems, particularly for symbolic input. We have defined 
guessability and offered a procedure for its evaluation and 
maximization for symbolic input. The procedure described 
in this paper can be applied to a variety of domains, 
including gestures, voice commands, command keywords, 
text labels, and the design of icons. Through the application 
of this procedure, guessability can be quantified and 
compared, and the learnability of systems can be improved. 
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