
 1869

Maximizing the Guessability of Symbolic Input
Jacob O. Wobbrock, Htet Htet Aung, Brandon Rothrock and Brad A. Myers

Human-Computer Interaction Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

{ jrock, hha, rothrock, bam }@cs.cmu.edu

ABSTRACT
Guessability is essential for symbolic input, in which users
enter gestures or keywords to indicate characters or
commands, or rely on labels or icons to access features. We
present a unified approach to both maximizing and
evaluating the guessability of symbolic input. This
approach can be used by anyone wishing to design a
symbol set with high guessability, or to evaluate the
guessability of an existing symbol set. We also present
formulae for quantifying guessability and agreement among
guesses. An example is offered in which the guessability of
the EdgeWrite unistroke alphabet was improved by users
from 51.0% to 80.1% without designer intervention. The
original and improved alphabets were then tested for their
immediate usability with the procedure used by MacKenzie
and Zhang (1997). Users entered the original alphabet with
78.8% and 90.2% accuracy after 1 and 5 minutes of
learning, respectively. The improved alphabet bettered this
to 81.6% and 94.2%. These improved results were
competitive with prior results for Graffiti, which were
81.8% and 95.8% for the same measures.

Categories & Subject Descriptors: H.5.2 [Information
Interfaces and Presentation]: User interfaces—
evaluation/methodology, input devices and strategies, user-
centered design.

General Terms: Design, Experimentation, Measurement.

Keywords: Guessability, immediate usability, symbols,
referents, proposals, gestures, commands, command-line,
keywords, labels, icons, text entry, unistrokes, EdgeWrite.

INTRODUCTION
The guessability of a system determines a great deal about
its initial user experience. It is unrealistic to expect that
users will have the time or desire to undergo extensive
training with systems, whether by tutorial, on-line help,
printed manual, or human instruction. Thus, a user’s initial
attempts at performing gestures, typing commands, or
using buttons or menu items must be met with success
despite the user’s lack of knowledge of the relevant
symbols. This requires high guessability.

Guessability is particularly important in symbolic input,
where users enter or access symbols to indicate associated

referents. Examples of symbols and referents are stylus
strokes that enter ASCII characters, command-line names
that execute programs, and graphical buttons that access
features. In these cases, users often know what referent
they desire (e.g. the letter, program, or feature they want),
but they do not know what symbol to use (e.g. the
corresponding stroke, command name, or graphical button).

High guessability is even more important when using small
devices for off-desktop computing. Small devices mean
contrived input schemes, limited screen real estate for help
screens, and “on the go” mobile use without access to
unwieldy manuals. Also, the typical intermittent use of
handheld devices means that users have less time for in-use
learning. Modern users expect success right from the start.

Experts, not just novices, also need systems with high
guessability. When an expert must perform an uncommon
action, like entering an obscure character in a unistroke
alphabet, his otherwise high performance may be
significantly impeded unless the symbol is guessable.

This paper offers an approach to maximizing and
evaluating the guessability of symbolic input. It defines
guessability and offers a formal measure. This approach
can be used in the design of a new symbol set, or in the
evaluation or redesign of an existing symbol set. It is
particularly relevant to designers of symbol sets that map to
large numbers of referents—the more referents there are,
the more important high guessability becomes.

We define guessability in symbolic input as:

That quality of symbols which allows a user to
access intended referents via those symbols despite
a lack of knowledge of those symbols.

Guessability is contrasted to immediate usability [7] in that
the latter involves the holistic evaluation of the initial user
experience after a brief learning period; guessability
evaluates only the input symbols without prior learning.

RELATED WORK
Guessability is crucial in command-line interfaces. Prior
studies [4,5] show that designers often supply only one
command-line term per referent. But one term, no matter
how “natural,” results in guessability failures of 80-90%
[3]. A proposed solution is “unlimited aliasing” [4], where
the system makes the best guess at the intended referent in
the event of an unrecognized symbol. Having multiple Copyright is held by the author/owner(s).

CHI 2005, April 2–7, 2004, Portland, Oregon, USA.
ACM 1-59593-002-7/05/0004.

 1870

synonyms has also been recognized as a key to achieving
high guessability in command-line interfaces [4,5].

The guessability of text labels and graphical icons has also
been studied [8]. Guessable labels and icons are important
for the usability of buttons, toolbars, and menus. This
paper’s method for maximizing guessability can be applied
to studies where participants devise text labels or sketch
graphical icons for described features. Procedures for such
studies have been delineated elsewhere (e.g. [1], p. 316).

The immediate usability of handheld text entry methods,
most notably Graffiti [7], Graffiti 2 [6], and the Palm OS
virtual keyboard [2,6], has also been studied. Immediate
usability has been defined as initial usage after minimal
training. An example is a user acquiring a new Palm PDA,
studying the Graffiti character chart for a minute, and then
trying to write. Results for both Graffiti and Graffiti 2
accuracy show respectably high immediate usability after
minimal practice. Not surprisingly, virtual keyboards also
have high immediate usability, since the symbol-to-referent
mappings are obvious (i.e. labeled buttons enter
corresponding ASCII characters).

Although immediate usability is important, it is a separate
metric from guessability. Guessability is focused only on
the quality of the input symbols without prior learning.
Immediate usability assumes prior learning and evaluates
the system as a whole, not just its input symbols.

MAXIMIZING GUESSABILITY
It is possible to design a highly guessable symbol set by
acquiring guesses from participants. With the same
participant data, we can also evaluate the guessability of an
existing symbol set. The following sections describe our
procedure. Then a concrete example is given for a real
unistroke symbol set.

Achieving High Guessability with Participants
Participants are first recruited to propose symbols for
specified referents within a given domain. The more
participants, the more likely the resulting symbol set will be
guessable to external users. The goal is to obtain a rich set
of symbols from which to create the resultant symbol set.

Participants should be informed only of the details essential
to proposing intelligent symbols. For example, if unistroke
symbols are required, participants must be told what
unistrokes are so that they refrain from making multi-stroke
symbols. Participants should not be shown any example
symbols or symbols from preexisting symbol sets. Of
course, they must know the referents to which their
symbols refer. Example referents are the ASCII letters to
which unistrokes refer, the functions to which commands
refer, or the features to which icons or text labels refer.

Capturing Symbols
Participants propose a symbol for each referent in turn.
Symbols are captured and coupled with their intended
referents. It is important not to bias the forms of the
symbols by displaying the referents. For example, if
participants are proposing unistroke gestures for ASCII

letters, they should not see typeset letters as prompts.
Similarly, if command names are being proposed, prompts
containing ideal keywords should be avoided.

It is essential for conflict resolution (below) that captured
symbols be testable for equality. Testing equality may be
trivial, as in the case of keyword symbols, or more
complex, as in the case of (x, y) point traces for unistrokes.
For more complex symbols, designers may already have
software to interpret them. Human judgment can also
determine equality among, for example, sketches of icons.

Resolving Conflicts
One might imagine that we could simply lump together all
participants’ proposed symbols as our resultant symbol set
and trivially achieve 100% guessability for the participants
used. In practice, however, this is not usually possible due
to conflicts—i.e. the same symbol will have been used to
indicate different referents. An example from the literature
[5] is the email command “To Dennis” being proposed to
mean “send a message to Dennis” and also “list messages
sent to Dennis.” Similarly, the same unistroke gesture may
be proposed for “h” and “n” [7]. But only one referent can
be indicated by a given symbol. How do we decide which
referent gets the symbol?

Symbols are tested for equality and grouped so that
identical symbols form a “conflict group.” After grouping,
the different referents within each group are identified and
the number of referring symbols counted. Then a scoring
function determines which referent within each group is
assigned that group’s symbol. To maximize guessability,
the referent that “wins” the symbol is the one with the most
proposed symbols. Equation 1 expresses this as a function.

 symbolsscore = (1)

For example, in 20 participants, if the same unistroke were
proposed for “n”, “h”, and “a” with counts of 14, 5, and 1,
respectively, the gesture would be assigned to referent “n”.

In general, the more conflicted the set of proposed symbols,
the lower the maximized guessability of the resultant
symbol set. Intuitively, high conflict means participants are
using identical symbols for different referents. Designers
may improve this situation by making referents more
distinct, by relaxing constraints on symbolic forms, or by
asking participants to resolve all conflicts within their own
sets of proposed symbols before they are finished.

Domain-specific considerations may be accommodated by
using alternate scoring functions, although guessability
may not be maximized. For example, in alphabetic entry
we may wish to favor common letters over uncommon
ones. Equation 2 is an example of an alternate scoring
function that balances both letter frequency (0..1) and the
number of proposed symbols.

symbolsfrequencyscore

1

= (2)

 1871

Calculating Guessability
Guessability has not been formalized in the literature. We
therefore introduce a measure of guessability for symbolic
input. The guessability G of the resultant symbol set S for
the captured set of proposed symbols P is:

 %100⋅=
∑
∈

P

P
G Ss

s

 (3)

In equation 3, P is the set of proposed symbols for all
referents, and Ps is the set of proposed symbols using
symbol s, which is a member of the resultant symbol set S.
For our example of “n”, “h”, and “a” above, S = {“n”} and
G = 14/20 · 100% = 70%. This means our resultant symbol
set S was able to accommodate 70% of the symbols
proposed by the participants.

Agreement
We may wish to know the agreement among symbols
proposed by the participants. We therefore introduce a
formalization of agreement A among symbols from our
captured set P. Intuitively, agreement should be 100%
when proposed symbols are identical, and ≈0% when they
are unique. For example, in 20 proposals for referent r, if
15/20 are of one form and 5/20 are of another, there should
be higher agreement than if 15/20 are of one form, 3/20 are
of another, and 2/20 are of a third. Equation 4 captures this:

 %100

2

⋅






=
∑ ∑
∈ ⊆

R

P

P

A
Rr PP r

i

ri
 (4)

In equation 4, r is a referent in the set of all referents R, Pr
is the set of proposals for referent r, and Pi is a subset of
identical symbols from Pr. The range of equation 4 is 1/|Pr|
· 100% ≤ A ≤ 100%. The lower bound is non-zero because
even when all proposals disagree, each one trivially agrees
with itself. For r, [(15/20)2 + (5/20)2] / 1 · 100% = 62.5%
and [(15/20)2 + (3/20)2 + (2/20)2] / 1 · 100% = 59.5%.

Evaluating the Guessability of an Existing Symbol Set
One may also use the same participant data to evaluate the
guessability of an existing symbol set S. Where a proposed
symbol p ∈ P used an existing symbol s ∈ S that was
correctly intended for s’s referent r, the proposal p is
assigned to s. These proposed symbols (i.e. guesses)
accumulate to form Ps in equation 3, the set of proposals
using symbol s. Then equation 3 is applied, giving the
percentage coverage of the captured symbols P by the
symbols in the existing symbol set S. If all proposed
symbols P are covered by S, the guessability G is 100%.

THE GUESSABILITY OF EDGEWRITE
As an example, we applied our approach to increase the
guessability of the unistroke alphabet EdgeWrite [9].
Intuitively, one would not expect EdgeWrite to be highly
guessable since its letters are made along the edges and into
the corners of an area bounded by a physical square.

Method
Twenty participants, mostly staff and students from CMU,
served as paid volunteers. None had prior experience with
EdgeWrite or Graffiti. Participants were told they would be
making unistroke gestures on a touchpad to indicate letters
for a new alphabet. The unistroke concept was explained to
prevent multi-stroke symbols. The importance of the four
corners of the square input area was also explained, since
EdgeWrite letters are defined not by their overall paths of
motion but by their sequences of corner-hits [9]. No other
constraints were in place and no examples were shown.

Participants were verbally prompted to enter each letter of
the alphabet (a..z) and each number (0-9) by a Visual C#
program that also recorded their gestures. An audio prompt
was used to avoid biasing participants by the appearance of
typeset letters. Participants were free to redo their symbols
as often as they liked, but once a symbol was committed for
a character, it could not be changed. To increase the variety
of proposed symbols, participants were required to resolve
conflicts among their own symbols before they were
finished. Thus, each participant contributed 36 unique
symbols, for |P| = 20 · 36 = 720 proposed symbols in all.
Results
Corner sequences fully define an EdgeWrite gesture [9], so
the 720 symbols were grouped by identical corner
sequences in preparation for conflict resolution. The
agreement of P was A = 34.9%, meaning about a third of
the proposed symbols for a given referent agreed on
average. After conflict resolution using the maximization
scoring function (equation 1), the ensuing user-designed
symbol set Su accommodated 577 of 720 proposed
symbols, for Gu = 80.1%. The original EdgeWrite symbol
set So was then evaluated for the proposed symbols P. It
accommodated only 367 of 720, for Go = 51.0%. Assuming
the participants were representative, the improvement from
So to Su should generalize to larger populations of users.

THE IMMEDIATE USABILITY OF EDGEWRITE
In order to validate the improvement from So to Su, we
replicated a prior study of the immediate usability of
Graffiti [7] for the two EdgeWrite alphabets. Recall that Su
was designed only by the proposed symbols of participants
without designer intervention, and So was created by
EdgeWrite’s designers over many prior studies [9]. Indeed,
EdgeWrite’s designers were skeptical that an amalgam of
uninformed participant symbols could actually be more
usable than the product of many hours’ design work. They
were further dubious that either alphabet would approach
the immediate usability of Graffiti, since Graffiti had been
shown to be “very respectable” in this manner [7].

Method
Our testing of immediate usability followed the prior study
of Graffiti by MacKenzie and Zhang [7]. Twenty new
participants served as paid volunteers. Like before, none of
them had prior experience with Graffiti or EdgeWrite. The
unistroke concept and importance of corner sequences were
described to them. The same computer apparatus and
touchpad were used as before.

 1872

As in the study of Graffiti [7], participants entered the
alphabet (a..z) five times. This occurred twice in two
separate phases of testing: the first after 1 minute of
studying a 26-letter EdgeWrite character chart, and the
second after 5 minutes of freeform practice with the same
chart. Entered letters appeared in a Notepad document in
Times 36pt font. Participants were not allowed to correct
erroneous entries. Ten of the 20 participants used the
original EdgeWrite alphabet So, and 10 used the user-
designed alphabet Su. Thus, for each alphabet, there were
26 · 5 · 2 · 10 = 2600 letters entered.

Results
As in the prior study, we measured the “accuracy attainable
after minimal exposure” [7]. Figure 1 shows our results and
those for Graffiti. After 1 minute of chart study,
participants were 78.8% (12.6 stdev) accurate with the
original alphabet So. This improved to 81.6% (12.8) for the
user-designed alphabet Su. This was very near the prior
average for Graffiti of 81.8% (12.1). A one-way ANOVA
shows no statistical differences for the three percentages
(F2,42=.23, p=.80), and no paired contrasts are significant.

After 5 minutes of freeform practice, So was 90.2% (11.0)
accurate. Su improved this to 94.2% (7.2). The latter was
competitive with the prior result for Graffiti of 95.8% (4.0).
A one-way ANOVA is nearly significant for the three
percentages (F2,42=2.43, p=.10). A paired contrast shows
Graffiti was significantly more accurate than So (F1,42=4.85,
p<.05), but not significantly more accurate than Su
(F1,42=.40, p=.53). Su was not significantly more accurate
than So, but the trend is in this direction (F1,42=1.73, p=.19).

Figure 1. Guessability and immediate usability results. Error bars

represent standard deviations. Graffiti data are from [7].

DISCUSSION
It was surprising that strict adherence to the guessability
maximization procedure resulted in an alphabet (Su) with
higher average immediate usability than a highly iterated
designer-made alphabet (So). Although this improvement
was not quite significant after 5 minutes, that the average
immediate usability increased at all shows the power of
using participants to improve even refined symbol sets [5].
Furthermore, after examining the immediate usability data,
we believe Su could be improved even more by changing a
few problematic symbols. For example, the “q” from Su
was only 57% accurate, while the “q” from So was 75%
accurate. Other letters that were better in So than Su were

“t” (61% vs. 80%) and “y” (78% vs. 90%). It was also
interesting that the standard deviations were similar for the
three alphabets after 1 minute (≈12), but shrank
considerably after 5 minutes for Su (7.2) and Graffiti (4.0)
but not for So (11.0), indicating more consistent
performance for the more refined symbol sets. Finally, it
was pleasing that EdgeWrite could be made competitive
with Graffiti’s laudable immediate usability [7].

CONCLUSION
High guessability is essential in today’s computing
systems, particularly for symbolic input. We have defined
guessability and offered a procedure for its evaluation and
maximization for symbolic input. The procedure described
in this paper can be applied to a variety of domains,
including gestures, voice commands, command keywords,
text labels, and the design of icons. Through the application
of this procedure, guessability can be quantified and
compared, and the learnability of systems can be improved.

Acknowledgements
The authors thank Lisa Anthony, Darren Gergle, John Kembel,
and Elaine Wherry. This work was supported by General Motors,
Microsoft, Synaptics, and the National Science Foundation under
grant UA-0308065. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect those of the NSF.

REFERENCES
[1] Brinck, T., Gergle, D. and Wood, S.D. (2001) Usability for the

Web. San Francisco: Morgan Kaufmann.

[2] Fleetwood, M.D., Byrne, M.D., Centgraf, P., Dudziak, K.Q.,
Lin, B. and Mogilev, D. (2002) An evaluation of text-entry in
Palm OS—Graffiti and the virtual keyboard. In Proc. HFES
2002. Human Factors and Ergonomics Society, pp. 617-621.

[3] Furnas, G.W., Landauer, T.K., Gomez, L.M. and Dumais, S.T.
(1984) Statistical semantics: Analysis of the potential
performance of keyword information systems. In Human
Factors in Computer Systems, J.C. Thomas and M.L.
Schneider (eds). Norwood, New Jersey: Ablex, pp. 187-242.

[4] Furnas, G.W., Landauer, T.K., Gomez, L.M. and Dumais, S.T.
(1987) The vocabulary problem in human-system
communication. Communications of the ACM 30 (11), pp.
964-971.

[5] Good, M.D., Whiteside, J.A., Wixon, D.R. and Jones, S.J.
(1984) Building a user-derived interface. Communications of
the ACM 27 (10), pp. 1032-1043.

[6] Költringer, T. and Grechenig, T. (2004) Comparing the
immediate usability of Graffiti 2 and virtual keyboard. In
Proc. CHI 2004. ACM Press, pp. 1175-1178.

[7] MacKenzie, I.S. and Zhang, S.X. (1997) The immediate
usability of Graffiti. In Proc. Graphics Interface 1997.
Canadian Information Processing Society, pp. 129-137.

[8] Wiedenbeck, S. (1999) The use of icons and labels in an end
user application program: An empirical study of learning and
retention. Behavior and Information Technology 18 (2), pp.
68-82.

[9] Wobbrock, J.O., Myers, B.A. and Kembel, J.A. (2003)
EdgeWrite: A stylus-based text entry method designed for
high accuracy and stability of motion. In Proc. UIST 2003.
ACM Press, pp. 61-70.

