The Benefits of Physical Edges in Gesture-Making: Empirical Support for an Edge-Based Unistroke Alphabet

The Problem: Handheld Text Entry is Difficult for People with Motor Impairments
As part of the Pebbles project, we have developed a handheld application called Remote Commander that allows people with motor impairments to control their PCs entirely from handheld devices. The conventional keyboard and mouse require gross motor control, which many motor-impaired users lack, whereas using a PDA largely requires fine motor control. However, text entry with " soft" keyboards is difficult because the keys are hard to hit and take up precious screen space. What's more, Graffiti is difficult due to tremor and rapid fatigue. What is needed is an easier, more stable means of text entry for those with motor impairments.

The Approach: Use Physical Edges to Provide Stability, Accuracy, and Speed
Our hypothesis was that physical edges, such as those that surround a handheld screen, or those imposed by a plastic attachment, can provide stability, accuracy, and speed during movement with a stylus. Perhaps physical edges could be used in interaction techniques to provide stability for those with motor impairments. Fitts' Law tells us that acquiring targets on edges is easier than acquiring targets " in the open." But what about movement along an edge? Would users with motor impairments be able to exert enough pressure against an edge while moving to gain any benefits? What exactly would those benefits be?

Study \#1: Understanding Movement Along and Away From Edges

We conducted a small study with 3 users with motor impairments: 2 with Cerebral Palsy, 1 with Muscular Dystrophy. The study involved tracing lines of 5 different position types on the Palm PDA, shown below. The line position types varied according to presence or absence of an edge along the task-axis, and presence or absence of an edge behind the task-axis end-point. Subjects' movement data was logged on a laptop PC over a serial cable. It was analyzed according to the measures described in the side bar. The PDA screens below show multiple lines at once, but subjects only saw one line at a time.

For all path analysis measures below, smaller values are better. Means are reported along with standard deviations, in parentheses. Units are as follows: MT (seconds); TAC, MDC, ODC (no. per trial); ME, MO, MV, SE , EE (pixels). See the side bar for more details.

Study \#2: Analyzing Unistroke Characters by the Motor-Impaired: Graffiti and EdgeW rite

The same 3 motor-impaired subjects that participated in Study 1 made 11 letters 3 times each in both Graffiti and EdgeW rite (side bar). The letters were $\mathrm{K}, \mathrm{T}, \mathrm{X}, \mathrm{U}, \mathrm{G}, \mathrm{N}, \mathrm{V}, \mathrm{J}, \mathrm{E}, \mathrm{D}$, and Y . Graffiti letters took an average of 2.47 seconds from pen-down to pen-up. EdgeW rite letters took an average of 2.82 seconds, a non-significant difference. Graffiti recognition was a mere 64.6%. Subjects were shown a 3×5 card with the intended letter on it, so this recognition rate is not confounded with users' misconceptions about what letters to make, or how to make them. At the time of this study the EdgeW rite recognition engine was still under development. Movement plots show the EdgeW rite characters to be smoother than the Graffiti characters. Some of these plots are shown below.

Graffiti D

Graffiti N

