
Designing Software for Unfamiliar Domains

Parmit K. Chilana, Amy J. Ko and Jacob O. Wobbrock
The Information School

DUB Group
University of Washington

{pchilana, ajko, wobbrock}@u.washington.edu

In recent years, software has become indispensable in
complex domains such as science, engineering,
biomedicine, and finance. Unfortunately, software
developers and user researchers, who are usually experts
in programming and Human-Computer Interaction
(HCI) methods, respectively, often find that the insight
needed to design for complex domains only comes with
years of domain experience. How can everyone on a
software design team acquire just enough knowledge to
design effective software, especially user interfaces,
without having to become domain experts? We are
performing a series of studies to investigate this
question, with the ultimate goal of designing tools to
help software teams better capture, manage and explore
domain knowledge.

We have already completed two preliminary studies.
In the first study, we investigated developers designing
bioinformatics tools, comparing those with biology
backgrounds and those without (i.e., only computer
science). The results showed that developers with no
domain knowledge relied extensively on biologists to
understand the biological problem and interpret the
output rather than using other information sources. The
developers preferred an informal exchange with
biologists to acquire just enough knowledge, but the
process of doing this was inefficient.

In another study, we investigated the work of
usability professionals in complex domains to
understand if and how they adapted traditional
evaluation techniques. Our 21 informants worked in
industry and research, with an average experience of 10
years designing for domains such as medical imaging,
software development, network security, aviation,
genomic analysis, healthcare, financial derivatives, and
business-process support. A main finding from our study
was that usability professionals regarded domain experts
as the best resource for understanding domain-specific
nuances, but access to domain experts was limited. Our
results indicate the need for more lightweight methods
that can take into account the limited availability of
domain experts and still allow usability professionals to
capture the necessary domain-related details.

Of course, these two perspectives are only part of the
story. We are planning other studies of how software
developers, testers, managers, and requirements analysts

cope with a lack of domain expertise. For example, in an
ongoing study, we are investigating design arguments
that occur in open source bug reports, analyzing how
developers form and defend design decisions for
unfamiliar domains. One preliminary finding is that
developers frequently invoke the “elastic user:” they
describe users in whatever terms that support their
opinion for the time being, even if it means being
inconsistent with prior ascriptions.

We are also practicing user-centered design in
complex domains ourselves. The first author, for
example, is devising user studies with clinical
researchers to guide the design and evaluation of large-
scale biomedical systems at the University of
Washington. Through this firsthand experience, we are
gaining insight into the intricacies of this complex
domain and the challenges of applying conventional
design and evaluation approaches.

Based on the results from our studies, we will
prototype ways of facilitating communication between
members of a software design team, as well as
communication with domain experts who help inform
design decisions. Some tools have attempted to address
this issue, but they have several limitations. For
example, artificial intelligence systems for capturing
domain expertise focus explicitly on creating formal
structured representations of a domain, but not for the
purpose of posing questions about design. Requirements
engineering tools have the same formality, leading to
low-level formalisms and diagrams that facilitate the
creation of software architectures, specifications, and
components. Tools designed for user testing limit data to
user profiles and scenarios. None of these tools take a
team-oriented or software lifecycle view of domain
knowledge. Our proposed work will support multiple
roles and phases of software design, including early
sketches and implemented systems.

The benefit of this research lies not only in
understanding how software teams currently capture,
manage, and explore domain knowledge, but also in
providing new ways of improving this process. This will
lead to a better match between software and the
activities it supports, and improved usability for millions
of software users.

