'.)

Check for
Updates

AllyShape: Al-Assisted 3-D Modeling for Blind and Low-Vision

Programmers
Zhuohao (Jerry) Zhang Haichang Li Chun Meng Yu Faraz Faruqi
University of Washington Purdue University Purdue University MIT CSAIL
Seattle, USA West Lafayette, USA West Lafayette, USA Cambridge, USA
zhuohao@uw.edu li4560@purdue.edu yul327@purdue.edu ffarugi@mit.edu
Junan Xie Gene S-H Kim Mingming Fan Angus Forbes
The Hong Kong University Stanford University The Hong Kong University NVIDIA
of Science and Technology Stanford, USA of Science and Technology Santa Clara, USA
Guangzhou, China gkim248@stanford.edu Guangzhou, China aforbes@nvidia.com

jxie622@connect.hkust- mingmingfan@ust.hk
gz.edu.cn
Jacob O. Wobbrock Anhong Guo Liang He
University of Washington University of Michigan University of Texas at

Seattle, USA
wobbrock@uw.edu

Ann Arbor, USA Dallas
anhong@umich.edu

Richardson, USA
liang.he@utdallas.edu

Cross-Representation Highlighting Mechanism

(A) BLV User (B) A11yShape User Interface (C) Created Models

Figure 1: With A1lyShape, (A) a blind or low-vision (BLV) user can create, interpret, and verify 3-D models through (B) a
user interface composed of three parts: Code Editor Panel, AI Assistant Panel, and Model Panel. These panels are linked by a
cross-representation highlighting mechanism that connects code, textual descriptions, hierarchical model abstractions, and

3-D visual renderings. The system supports the creation of (C) diverse, customized 3-D models created by BLV users.

Abstract

Building 3-D models is challenging for blind and low-vision (BLV)
users due to the inherent complexity of 3-D models and the lack
of support for non-visual interaction in existing tools. To address
this issue, we introduce A11yShape, a novel system designed to

This work is licensed under a Creative Commons Attribution 4.0 International License.

ASSETS ’°25, Denver, CO, USA

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0676-9/25/10
https://doi.org/10.1145/3663547.3746362

help BLV users who possess basic programming skills understand,
modify, and iterate on 3-D models. AllyShape leverages LLMs
and integrates with OpenSCAD, a popular open-source editor that
generates 3-D models from code. Key functionalities of A11yShape
include accessible descriptions of 3-D models, version control to
track changes in models and code, and a hierarchical representa-
tion of model components. Most importantly, A11yShape employs
a cross-representation highlighting mechanism to synchronize se-
mantic selections across all model representations—code, semantic
hierarchy, Al description, and 3-D rendering. We conducted a multi-
session user study with four BLV programmers, where, after an

https://orcid.org/0000-0001-8708-1429
https://orcid.org/0009-0006-0952-0709
https://orcid.org/0009-0000-1324-044X
https://orcid.org/0000-0002-1691-2093
https://orcid.org/0009-0006-8201-8563
https://orcid.org/0000-0001-9514-4610
https://orcid.org/0000-0002-0356-4712
https://orcid.org/0000-0002-8700-7795
https://orcid.org/0000-0003-3675-5491
https://orcid.org/0000-0002-4447-7818
https://orcid.org/0000-0003-4826-629X
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3663547.3746362
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3663547.3746362&domain=pdf&date_stamp=2025-10-22

ASSETS °25, October 26-29, 2025, Denver, CO, USA

initial tutorial session, participants independently completed 12
distinct models across two testing sessions, achieving results that
aligned with their own satisfaction. The result demonstrates that
participants were able to comprehend provided 3-D models, as well
as independently create and modify 3-D models—tasks that were
previously impossible without assistance from sighted individuals.

CCS Concepts

« Human-centered computing — Accessibility systems and
tools; Accessibility technologies.

Keywords

3-D Modeling, Assistive Technologies, Al, LLM, Blind and Low-
vision

ACM Reference Format:

Zhuohao (Jerry) Zhang, Haichang Li, Chun Meng Yu, Faraz Faruqi, Junan
Xie, Gene S-H Kim, Mingming Fan, Angus Forbes, Jacob O. Wobbrock,
Anhong Guo, and Liang He. 2025. A11yShape: Al-Assisted 3-D Modeling
for Blind and Low-Vision Programmers. In The 27th International ACM
SIGACCESS Conference on Computers and Accessibility (ASSETS 25), October
26-29, 2025, Denver, CO, USA. ACM, New York, NY, USA, 20 pages. https:
//doi.org/10.1145/3663547.3746362

1 Introduction

Recent advances in large language models (LLMs) have significantly
expanded opportunities for blind and low-vision (BLV) individuals
to independently perform creative tasks previously inaccessible
without sighted assistance. With the emergence of readily available
and cost-effective LLMs, BLV users now have greater potential to in-
dependently engage with visually complex tasks like image editing
[7, 36] or application programming [65, 83], potentially benefiting
the 1.7% of programmers with visual impairments [78] and oth-
ers previously excluded from programming due to visual barriers
[2, 49, 53]. Despite these promising developments, highly intricate
visual-spatial workflows such as three-dimensional (3-D) modeling
remain under-explored in accessibility research. 3-D modeling chal-
lenges even sighted users due to its demands on spatial reasoning,
complex visual interfaces, tricky input articulations, and mental vi-
sualization requirements. In the meantime, programming interfaces
for 3-D modeling may provide a more accessible pathway for BLV
users, as text-based code can transform abstract spatial concepts
into concrete, rule-based instructions that don’t rely on visuals. For
BLV programmers, designers, and students who need to understand
and create 3-D models, investigating accessible approaches to 3-D
modeling under these new possibilities is essential.

We introduce A11yShape, an interactive 3-D modeling system
developed through participatory design with a BLV co-author. Un-
like traditional approaches that rely on author-curated captions
for model descriptions, A11yShape leverages both the underlying
model code and rendered images to produce detailed and accurate
textual explanations of 3-D models, which have been validated
through user studies to achieve high ratings in author-curated
evaluation metrics. A1lyShape integrates OpenSCAD [52], a com-
monly used code-to-model environment, with advanced capabili-
ties of GPT-4o0 to synthesize complementary textual descriptions.
Furthermore, A11lyShape extends interactive access through three

Zhang et al.

attributes: (1) a hierarchical representation enabling structured nav-
igation of model components, (2) integrated version control to track
iterative model changes, and (3) an interactive verification loop al-
lowing BLV users to directly query and validate spatial attributes or
design decisions. Most importantly, A11yShape employs a dynamic
cross-representation highlighting mechanism that synchronizes
selections across multiple model representations, enabling users to
seamlessly navigate among code, semantic hierarchy, Al-generated
descriptions, and rendered elements.

To investigate how BLV programmers engage with A1lyShape,
we conducted a multi-session study involving four BLV partici-
pants each completing three separate, successive sessions, totaling
12 sessions. We observed that, although with notable flaws like
components being misaligned or overlapping in conflict, partici-
pants successfully performed previously inaccessible tasks to create
three complete 3-D models both by guidance and in free-form over
the sessions. After the initial tutorial session, participants indepen-
dently created 12 distinct models across the testing sessions, with
outcomes that met their own satisfaction. To encourage deeper
engagement with the system, participants were given ample time,
each spending approximately four hours to complete three models.
Our findings revealed that the cross-representation highlighting
mechanism enabled fluid navigation between different ways of un-
derstanding models, and Al-generated descriptions in particular
were perceived as compensating for the lack of visual verification.
Participants developed distinctive workflows based on varying
levels of Al assistance and adopted strategic approaches includ-
ing: incremental building through Al-verification loops, leveraging
semantic hierarchies for error correction, and using real-world
metaphors for mental model construction. Despite overall success,
certain challenges emerged, including high cognitive load from
interpreting textual descriptions, difficulty in understanding spatial
relationships, and uncertainty about operation success in the ab-
sence of visual or tactile feedback. These findings suggest promising
directions for assistive technologies that can empower BLV users to
independently engage with inherently visual creative workflows.

In summary, this paper makes the following contributions:

e AllyShape, the first Al-assisted 3-D modeling system lever-
aging code-augmented LLM descriptions, hierarchical com-
ponent navigation, and interactive verification loops.

e Empirical insights from an extensive multi-session user study
that reveals how BLV users navigate spatial cognition chal-
lenges, develop mental models, and employ different strate-
gies to create desired 3-D models without visual feedback.

2 Related Work

Our work is built upon prior work in three key areas: the use of
LLMs and other AI techniques for generating and interpreting 3-D
models, approaches that explore modalities for supporting BLV
users in 3-D modeling and understanding, and Al-assisted tools
that support creativity tasks for BLV users.

2.1 AI-Driven 3-D Model Generation

Recent work has explored the use of generative models and large
language models for automatic 3-D content creation in various ap-
plications, such as avatar and scene generation [38] and modifiable

https://doi.org/10.1145/3663547.3746362
https://doi.org/10.1145/3663547.3746362

AllyShape: Al-Assisted 3-D Modeling for Blind and Low-Vision Programmers

3-D model asset generation [75, 79]. Text-to-3-D systems, such as
DreamFusion [56], Magic3D [43], and Text2Mesh [47], allow users
to create desired 3-D geometries from natural language prompts.
These systems leverage pretrained 2D visual-language models as
guidance to synthesize geometry and texture from textual input.
Besides the methods for 3-D generation directly from natural lan-
guage, researchers have explored combining textual prompts with
visual knowledge, like images, to generate more grounded and view-
consistent 3-D content [11, 41, 82]. For example, DreamBooth3D
[61] allows users to generate personalized 3-D models of a specific
object or person based on a few reference images. While these meth-
ods support the 3-D generation without needing domain-specific
training or 3-D datasets, it is difficult for users, especially BLV peo-
ple, to interpret and validate the generated 3-D content. To address
this, researchers grounded language in 3-D representations to in-
terpret and interact with Al-generated 3-D models [10, 19, 60]. For
example, Cap3D [46] generates descriptive captions of 3-D objects
using pre-trained models in image captioning, image-text align-
ment, and LLMs to consolidate information from multiple rendered
views, providing textual explanations of the generated 3-D con-
tent for understanding. These systems remain limited in offering
actionable feedback about a 3-D model’s structure, orientation, or
completeness—critical aspects for users, especially BLV people, to
validate the generated 3-D shape. Our system aims to provide tex-
tual descriptions that summarize the generated model with detailed
information, while offering actionable aids to further edit it.

While Al shows promise in generating 3-D models, human cre-
ativity in crafting models still takes an irreplaceable role [5]. Re-
searchers have also explored human-AlI collaborative approaches to
facilitate 3-D modeling [6]. For example, 3DALL-E [44] integrates
text-to-image diffusion models into 3-D modeling workflows and
uses image generation as a semantic design aid to facilitate shape
design. Style2Fab [18] enables users to personalize 3-D models us-
ing generative Al while preserving their functionality. Our work
extends this body of research and explores how Al can assist BLV
users in authoring, interpreting, and confirming custom 3-D models
through programming and descriptive feedback.

2.2 3-D Model Accessibility for BLV Users

A large body of prior work has demonstrated the potential of mak-
ing 3-D models accessible and interactive to support BLV users
across a wide range of non-visual tasks [21, 67, 73, 80], such as
conversational interfaces [62, 63], learning [3, 71, 72], and orien-
tation and mobility (O&M) training using map-based representa-
tions [20, 25-27, 37]. In other contexts, accessible 3-D models have
enabled tangible interaction with circuits [9, 16] and enriched sto-
rytelling experiences in tactile books [33]. Despite this potential,
most accessible 3-D models are still created by sighted people or
using computer vision-based approaches [17, 69], as BLV users
continue to face barriers in creating custom 3-D models. While
Al-assisted approaches have enabled the rapid creation of 3-D con-
tent, researchers have explored modalities and techniques for 3-D
structure interpretation and modeling [8, 64]. Touch and auditory
feedback are the most common modalities. For example, TouchPilot
[81] provides step-by-step audio guidance to assist blind users in
exploring and understanding complex 3-D structures. Lieb et al.

ASSETS °25, October 26-29, 2025, Denver, CO, USA

developed an audio-haptic system that enables blind users to inde-
pendently inspect and verify 3-D models created through text-based
modeling tools like OpenSCAD [42]. Recently, shape-changing dis-
plays have also been used to support 3-D modeling for BLV people.
For example, shapeCAD [77] presents an accessible 3-D modeling
workflow through a 2.5D tactile shape display that uses actuated
pins to render the physical shapes of digital 3-D models, enabling
blind and visually impaired users to explore and iteratively re-
fine their models in real-time. In contrast, our system introduces a
low-cost, software-based approach that allows BLV users to pro-
grammatically create, interpret, and verify 3-D models, leveraging
the power of AL

2.3 Al-Assisted Creativity and Creativity
Accessibility for BLV Users

While much of accessibility research has focused on enabling BLV
users to read and consume digital content, recent efforts have in-
creasingly shifted toward empowering BLV users as content cre-
ators [34]. In particular, creativity support has emerged as a key
focus in accessibility research, with a growing body of work design-
ing tools to support creative expression across a range of media.

Researchers have explored assistive technologies for various
creative domains: document editing [14, 15, 35], photography [1,
24], image editing and generation [7, 29, 36], emoji composition
[84], programming [2, 23, 48-50, 53, 58, 65, 70, 78, 83], presentation
slides [54, 55, 85, 87], website design [28, 39, 40, 57], video scripting
and editing [30], and other forms of media [12, 22, 32, 59, 66, 86].

These systems adopt both traditional multimodal interaction
paradigms and, more recently, human-AI collaboration approaches
to enhance accessibility in creative tasks [7, 12, 28-30, 36, 50]. As
generative Al continues to improve, it opens new opportunities
for making creative domains that were previously considered in-
accessible such as 3-D model creation more approachable for BLV
users. Designing 3-D content typically requires spatial reasoning
and visual feedback, often mediated through tactile representations
or external assistance for BLV users.

With AllyShape, we build on these prior works by extending
the possibility of accessible creativity to 3-D modeling, a domain
that has seen limited exploration in the context of BLV accessibility.
Our system design is informed by the interaction techniques and
Al-assisted paradigms introduced in this growing body of creativity-
support literature. For example, we drew from how EditScribe [7]
assist BLV users to make image edits through Al verification loops.

3 The A1lyShape System

We present A11yShape, an accessible 3-D modeling system devel-
oped through participatory design. A11lyShape leverages a dynamic
cross-representation highlighting mechanism at its core to support
BLV users to understand and edit 3-D models through all model
representations including code, semantic hierarchy, Al descriptions,
and 3-D rendering projections. We first present the AllyShape
system, including its components and the aforementioned cross-
representation highlighting mechanism. We then describe a real
user journey drawn directly from one of our study sessions to il-
lustrate how AllyShape supports BLV users in practice. We also
present the details of our participatory design process.

ASSETS °25, October 26-29, 2025, Denver, CO, USA

Zhang et al.

Code Editor Panel

(el o]

Al Assistance Panel

Command:

Model Panel
Model parts | (1) Hierarchy Structure

Errors

[(3) Error list for Debugging] J

-

rCode Changes
64) Code Changes by BLV Userg

Rlndne

(c . N iz 0 Areuls WS Level 1 Full Model
CodeiEdiioninpitaied Level 2 body
¥ Level 3 sphere
cylinder(h=10, d=3); Level 2 landing_gear()
3 Level 3 cylinder(h=25, d=2)
Level 3 cylinder(h=25, d=2)
module rear_propeller() { . Level 3 cube
for (i = [0:2]) { allShapelResponse: (2) Al Feedback Level 2 landing_gear()
rotate([0, 0, i x 120]) The current model ad;ﬁms_m, & on top and one at the rear, Level 3 cylinder(h=25, d=2)
translate([0, 8, 601) (2)(a) Summary _'Ito 5 preTfi CerIO boy ottt o Level 3 cylinder(h=25, d=2)
scale([0.3, 1, 0.1]) Level 3 cube
sphere(10); The previous model consists of an elongated yellow oval body with two Level 2 main_propeller
3 landing gears underneath, resembling a simple blimp or airship. The cu Level 3 sphere
cylinder(h=60, d=4); rrent model retains this body and landing gear but introduces a main p Level 3 cylinder
translate([0, 0, 60]) ropeller on top, consisting of three blades, and a rear propeller at t Level 2 rear_propeller
difference () { (2) (b) Modification he back, also with three blades, adding complexity and functionality t Level 3 sphere
cylinder(h=1, d=40); er Component M o the design. The top propeller is positioned centrally above the bod Level 3 cylinder(h=60, d=4)
translate([0, 0, -11) p p y, while the rear propeller extends from the back, giving the model a Level 3 cylinder(h=1, d=40)
cylinder(h=10, d=38); more dynamic and aircraft-like appearance. Level 3 cylinder(h=10, d=38)
Code changes:
3 Lines 15 — 23: Added module main_propeller with a loop to create three Rendered model
rotated and translated scaled spheres and a cylinder.
body () ; Lines 25 - 39: Added module rear_propeller with a loop to create three .
translate([-12, @, -20]) rotated and translated scaled spheres, a cylinder, and a difference op ((2) Actual 3D Rendering)
landing_gear(); eration to create a shape.
translate([12, 0, -201) Lines 46 — 47: Added translation and call to main_propeller.
landing_gear(); Iinac 4R — A+ Added ratatian tranclatinn and rall ta rear nronalle
translate([0, 0, 30])
main_propeller(); - /
rotate([90, 0, 0]) Response History: K
translate([@, @, 60]) ((3) Returnable History Records) i,
rear_propeller();
L J

The current model adds two propellers, one on top and one at
the rear, to the previous model's body and landing gear.

The previous model consists of an elongated yellow oval body
with two landing gears underneath, resembling a simple blimp or
airship. The current model retains this body and landing gear
but introduces a main propeller on top, consisting of three
blades, and a rear propeller at the back, also with three

Nt e e Ty et e P P e e o e s e U e T B LYo P e e e T Lo

(A) Code Editor Panel

(B) Al Assistance Panel

(C) Model Panel

Figure 2: The A1lyShape web interface for accessible 3-D modeling featuring: (A) the Code Editor Panel with programming
capabilities, (B) the AI Assistance Panel providing contextual feedback, and (C) the Model Panel displaying hierarchical structure
and 3-D rendering of the resulting helicopter model with propellers.

3.1 System Overview

Built on a free code-to-model software OpenSCAD, A1lyShape in-
troduces a four-facet representation of 3-D models through connect-
ing the source code, a hierarchical model abstraction, Al-generated
textual descriptions, and the actual rendering of the model. This
architecture allows users to explore models, query design proper-
ties, and apply modifications in a dynamic representation. Users
can write codes in the editor, easily navigates to chat input win-
dow for asking questions or making edits, and traverse through the
hierarchical abstraction for more structured access. A11lyShape is
implemented as a web-based interface using Python’s Flask web
framework. It uses GPT-40 (gpt-40-2024-08-06) [51] for generat-
ing detailed textual descriptions and managing OpenSCAD model
edits. We plan to open source AllyShape! to the BLV community.

3.2 User Interface Components

AllyShape consists of three main interactive panels (Figure 2):
the Code Editor, the AI Assistance Panel, and the Model Panel,
each serving distinct interaction purposes that collectively support
accessible 3-D modeling.

Project Github repository: https://github.com/DE4M-Lab/A11yShape

3.2.1 Code Editor. The Code Editor (Figure 2A) provides BLV users
a fully accessible, standard text-editing interface optimized for
OpenSCAD code. Essential functionality includes rendering the
model from written code, uploading existing files, saving progress,
and quick access to debugging through an integrated Error Log.
This accessible debugging feature explicitly highlights syntax that
prevents successful renders, thus streamlining error correction dur-
ing iterative model modifications. Additionally, a dedicated Code
Changes List displays code alterations after manual modifications,
allowing tracking the recent changes. For example, when the user
changes a cylinder component’s height and diameter, the list will be
populated with a new record: “Line 22: Cylinder’s parameter (height,
diameter) changed, from (h=>5, d=2) to (h=10, d=3) The change
record is generated by prompting a separate LLM (Appendix A.2)
to compare two versions of the code. Since the comparison focuses
on small, localized structural differences in parameter values or
geometry descriptions, this task is well-bounded and deterministic,
making LLM-based summaries reliable for this purpose.

In addition, we provide basic keyboard shortcuts for program-
ming operations, like uploading files, saving code, and navigating
between different panels.

https://github.com/DE4M-Lab/A11yShape

AllyShape: Al-Assisted 3-D Modeling for Blind and Low-Vision Programmers

3.2.2 Al Assistance Panel. The Al Assistance Panel (Figure 2B)
offers a suite of tools for model understanding, creation, and version
management. It consists of three integrated components: an always-
available input chat box, an Al feedback panel, and a history record
panel. Together, these components serve two core functions: an
Al verification loop for model understanding and a robust Version
Control system.

The AI verification loop begins with the input chat box where
users can request information about their current model or solicit
modifications through natural language (prompts in Appendix A.3).
The system uses a multimodal prompting architecture that com-
bines the model’s or the current selected components’ modular
code, rendered images from multiple angles (generated using dif-
ferent camera views with the OpenSCAD engine), and user queries
(Appendix A.1). The rendered images are from the top, bottom,
front, rear, left, and right side of the model to give LLMs a clear
picture of the model to generate better descriptions. Together, the
multimodal contexts were provided for the LLM to generate detailed
and accurate responses. More specifically, the Al feedback panel
structures LLM’s responses into three distinct sections: (1) a concise
summary of changes, (2) a detailed description of modifications per
component, and (3) a code change list.

Al Validation Study. To evaluate whether the Al-generated de-
scriptions on the models were accurate using different camera views
and model codes, we conducted a validation study to test whether
Al-generated descriptions were accurate enough for sighted users.
We recruited 15 participants to rate eight generated model descrip-
tions together with rendered projection images from the model’s
six principal views. Participants were asked to rate each descrip-
tion based on a set of key metrics using a 5-point Likert scale (1 =
Poor, 5 = Excellent). We developed this metric set through internal
discussions because there is no existing usable metric to evaluate
Al-generated descriptions of 3-D models.

e Geometric Accuracy (M1): How accurately the description
captures the geometric elements of individual components,
including shapes, proportions, and details?

o Spatial Relationships (M2): How well the description commu-
nicates the positioning and connections between different
components, including relative locations and how parts fit
together?

o Clarity & Comprehensibility (M3): How well-written, orga-
nized, and understandable the description is, with appropri-
ate use of language and logical flow?

o Completeness (M4): Whether the description includes all sig-
nificant features visible across the 6 principal views without
omitting important elements. This metric is related to “false
negatives” of Al recognizing model components?

o Avoidance of Hallucinations (M5): Whether the description
adheres strictly to what is actually present in the model with-
out fabricating non-existent elements. This metric is related
to “false positives” of Al recognizing model components?

The 15 participants were recruited through a physical computing
course where students learned 3-D modeling and printing. They
came from diverse academic backgrounds, including user experi-
ence design (7), industrial design (3), art (2), and computer science
(3). All participants had hands-on experience with 3-D modeling for

ASSETS °25, October 26-29, 2025, Denver, CO, USA

purposes such as animation, product design, and 3-D printing. We
found that the Al-generated model descriptions are reliable based
on our results, as shown below.

oo PRI [
v b
S
o R - E

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
ul w2 u3 w4 w5

Figure 3: Results of the validation study, showing the Likert-
scale distributions across five metrics. Most responses rated
Al responses on models to be Good or Excellent.

The strong performance across all metrics (with scores ranging
from 4.11 to 4.52 out of 5.00) indicates that the Al-generated descrip-
tions effectively capture the essential characteristics of 3-D models.
Notably, the system demonstrated particular strength in avoiding
hallucinations (mean = 4.52, SD = 0.74), suggesting high reliabil-
ity in representing only features actually present in the models.
Other results include spatial relationships (mean = 4.25, SD = 0.84)
and clarity & comprehensibility (mean = 4.28, SD = 0.86). The
slightly lower but still strong scores in Completeness (mean = 4.11,
SD = 0.91) and Geometric Accuracy (mean = 4.12, SD = 0.86)
identify potential areas for future improvement, though all metrics
achieved scores above 4.0, indicating overall excellent performance.
We show the distribution of the Likert-scale scores in Figure 3.
These findings validate our approach of using multimodal prompt-
ing with multiple camera views and modular code to generate
model descriptions.

Al-generated descriptions also take real-world metaphors into
account to help BLV users build imaginations of what the mod-
els roughly look like. Unlike the code changes list in the Code
Editor Panel, which tracks manual user modifications, this list
specifically documents Al-directed changes. By providing infor-
mation of summary, change per component, and change per code,
AllyShape enables BLV users to access different versions in a multi-
representation format. To use the Al verification loop, when users
select a code block, the panel automatically provides specific ex-
planations of that code segment. Similarly, when a component is
selected from the hierarchical tree, the panel displays a detailed
narration describing that specific component’s shape, position, and
relationship to other parts. Furthermore, as users interact with
AllyShape over time, all the endpoints are saved chronologically
in the history record panel. Each history record in this panel is
clickable, allowing users to read records and restore to an endpoint.

The code change list in both the code editor and the AI feedback
panel, the history record panel, and the embedded undo/redo func-
tionality serve together as the Version Control system of AllyShape.

ASSETS °25, October 26-29, 2025, Denver, CO, USA

Zhang et al.

Code Editor Panel

Code Editor Input Area
scale([0.3, 1, 0.1])
sphere(20);

cylinder(h=10, d=3);
}

module rear_propeller() {
for (i = [0:2]) {
rotate([0, 0, i x 120])
translate([0, 8, 60])
scale([0.3, 1, 0.1])
sphere(10);

cylinder(h=60, d=4);
translate([0, 0, 60])
difference () {
cylinder(h=1, d=40);
translate([o, 0, -11)
cylinder(h=10, d=38);
¥

¥

body();

translate([-12, 0, -201)
landing_gear();
translate([12, o, -20])
landing_gear();

. - Generate Model

Current Component
Summary

Component Children
Details, if any

[No Code Changes

-

translate([0, 0, 3

0
main_propeller();

rotate([90, o, 0])

(4) Highlighted Code BIock}

translate([0, 0, 60])
rear_propeller();
Errors

Code Changes

-

Al Assistance Panel

Model Panel

Command:

Model parts

Level 1 Full Model
Level 2 body
Level 3 sphere
Level 2 landing_gear()
Level 3 cylinder(h=25, d=2)

Level 3 cylinder(h=25, d=2)

A11yShape Response:

The part of the model is the main propeller, positioned on top of the
main body, contributing to the model's aerodynamic shape and functiona
lity.

The main propeller consists of three blades arranged in a circular pat
tern, each rotated 120 degrees from the others, and is mounted on a sm

directly above the body, and extends horizontally. The propeller's ori
[lentation and placement suggest it is crucial for propulsion or lift, a
ffecting the model's overall balance and symmetry. The propeller's siz
e is proportionate to the body, ensuring it complements the model's de
sign without overwhelming it.

L (3) Al-generated New
Component Description

&
all cylindrical hub. It is centrally located on the top of the model, Py

Level 3 cube

Leﬁt,:l 1; (1) Selected Component
Level 3 with Children

]

Level 3 cube
[t 2 nain propetter)
Level 3 sphere
Level 3 cylinder
Level 2 rear_propeller
Level 3 sphere
Level 3 cylinder(h=60, d=4)
Level 3 cylinder(h=1, d=40)
Level 3 cylinder(h=10, d=38)

Rendered model

((2) Highlighted 3D Rendering J

Response History:

The part of the model is the main propeller, positioned on top
of the main body, contributing to the model's aerodynamic shape
and functionality.

The main propeller consists of three blades arranged in a
circular pattern, each rotated 120 degrees from the others, and
is mounted on a small cylindrical hub. It is centrally located
on the top of the model, directly above the body, and extends

P e

I T e T S s

4
%ﬁj I

Figure 4: Dynamic cross-representation highlighting in A11yShape showing how the selection of the main propeller component
in the hierarchical structure (1) automatically highlights corresponding elements in the 3-D rendering (2), triggers an Al-
generated component description (3), and highlights the relevant code block (4).

The prompts we used to interpret codes (e.g., summarize code
changes, compare models, efc.) are attached in Appendix A.2.

3.2.3 Model Panel. The Model Panel (Figure 2C) combines visual
rendering with a hierarchical semantic structure, constituting the
system’s “middle-layer” among detailed code, Al-generated descrip-
tions, and visual model output. The hierarchical list represents the
model’s internal structure by grouping OpenSCAD modules and
primitives into nested semantic hierarchies. For example, in the
helicopter example (Figure 2C(1)), the two landing gears are at the
same semantic level, each consisting of two cylindrical support legs
connected by a long, flat rectangular base. They are grouped and
listed semantically instead of in a plain list showing all model com-
ponents. Users navigate through this tree structure, conceptually
“zooming in” to inspect specific model components in detail. The
3-D rendering panel shows a model projection from a fixed angle
that shows most parts of the model. It can be adjusted by using
the chat input to indicate a specific angle (e.g., “show the model
from the top view”), or highlight a specific component (e.g., “show
the main propeller”). Then the LLM will generate a camera view
parameter for the OpenSCAD engine to generate a corresponding
image. Additionally, we offer a keyboard shortcut to switch between
six orthographic views (ctrl+shift+number 1-6) of the top, bottom,
front, rear, left, and right side of the model. When not specified, the
image is rendered with a three-quarter view to show multiple sides

of the model. Users can also switch to this default view by using a
similar keystroke (ctrl+shift+number 0).

3.3 Core Interaction: Cross-Representation
Highlight

When sighted people perform model constructing and editing,
they use immediate visual feedback to verify model changes and
match the changes to their mental model of expected changes [31].
However, such visual synchronization and mental model match-
ing processes are not available to BLV users. Therefore, based on
the introduced components, we further illustrate a dynamic cross-
representation highlighting mechanism as Al1lyShape’s core inter-
action to support accessible 3-D modeling.

AllyShape maintains an active semantic synchronization across
multiple representations: (1) OpenSCAD source code, (2) semantic
hierarchical structure, (3) Al-generated textual descriptions, and
(4) the actual visual renderings of the model. Upon any user se-
lection in the code or hierarchical structure, A11yShape instanta-
neously highlights the corresponding component across all other
representations, significantly reducing BLV users’ cognitive load
by simplifying the process of panel navigation, visual verification,
and model editing. To notify screen reader users, AllyShape also
uses audio feedback to indicate that the highlighting just happened

AllyShape: Al-Assisted 3-D Modeling for Blind and Low-Vision Programmers

and users could access different representations for better under-
standing. For example, when a user selects the propeller with three
blades in the helicopter model from the hierarchical tree (Figure 4),
the interface immediately (1) highlights the corresponding lines in
the OpenSCAD code editor, (2) generates the specific description of
the propeller in the Al feedback panel, and (3) visually emphasizes
the exact rendered component in the model preview. In addition,
when highlighting the rendered component in the preview image,
the highlighted part will be colored differently and half-transparent
to make sure it visually stands out and can show its connections
and overlaps with other components.

Besides potential benefits like providing multiple levels of con-
text simultaneously and alleviating cognitive load for blind users,
this dynamic cross-representation highlighting is particularly de-
signed for low-vision users by visually highlighting the component
color in the rendered model area.

3.4 User Journey

We present an exemplary user journey of a low-vision programmer,
“Alex,” who uses AllyShape to create a 3-D model of a helicopter.
This scenario is from one of our study sessions, reflecting real
interaction patterns. We illustrate his journey upfront to provide a
clear picture of how AllyShape works. He began by attempting
to create a complete helicopter model through a single detailed
prompt. He described a helicopter with an elliptical body, dual
landing gears, a three-bladed main propeller, and a tail propeller
with specific orientations and positions for each component. His
description of the model was based on his understanding of and
prior searching on helicopter components.

After the Al-generated model, Alex noticed discrepancies be-
tween his perceived result and the Al-generated result (Figure 5(1)).
He used his screen reader to navigate to and select the “body”
component in the semantic hierarchy, which highlighted the ren-
dered part, the corresponding code block, and triggered a verbal
description: “a long cylindrical body oriented along the y-axis.” This
showed that instead of his requested elliptical shape, the AI had
created a cylinder. He continued exploring other components by
selecting them in the hierarchy, discovering only one landing gear
was visible despite requesting two, and the propellers’ positions
didn’t match his specifications. Recognizing the limitations of his
all-at-once approach, he decided to build the helicopter incremen-
tally, component by component.

Alex began by crafting the body of the helicopter. He wrote code
for a spherical shape (sphere[50]) and then used the system’s
description to understand its appearance. “I need it more elliptical,
not so round,” he said after reading the AI’s description. He adjusted
parameters to stretch the sphere into an ellipsoid (Figure 5(2-3)),
repeatedly selecting the body component in the hierarchy to hear
updated descriptions and verify the code changes. After several
iterations of writing code, checking the description, and refining
parameters, he achieved his desired elliptical body shape with a
new scale (scale([0.5, 1, 0.5]).

With the body completed, Alex moved to construct the landing
gear on top of the body. He added code for two symmetrical landing
gears, each composed of cylinders and a flat cuboid. When selecting
the landing gear component, the system description indicated two

ASSETS °25, October 26-29, 2025, Denver, CO, USA

gears were present, but Alex’s limited vision showed only one
(Figure 5(4)). This discrepancy caused momentary confusion: “It
sounds right in the description, but different from what I can barely
see,” he remarked. By examining the highlighted code, he realized
both gears existed but weren’t properly connected to the body. He
adjusted the position parameters while repeatedly using the cross-
representation highlighting to verify changes until the landing gear
was properly attached to the elliptical body (Figure 5(5)). The final
code block for the landing gear is shown below (Figure 5(6)):

module landing_gear() {
// First vertical support leg
cylinder(h=25, d=2);
// 30 units forward
translate([0, 30, 01)
// Second vertical support leg
cylinder(h=25, d=2);
translate([0, 10, 01)
// Horizontal connecting base
cube([3, 60, 1], center=true);
3

For the main propeller implementation, Alex first created an
empty function and prompted the Al to generate the propeller code.
When the Al produced a three-blade design using a for-loop, he
understood the intention to rotate each blade in the loop and se-
lected it in the hierarchy to evaluate the result. “The blades aren’t
meeting at the center point correctly,” he noted after hearing the
description. He attempted to fix it himself but wasn’t satisfied with
his modifications. Using the version control feature, he reverted
to the Al’s version and made targeted adjustments. By repeatedly
selecting individual blades in the semantic hierarchy and hearing
their positions described, he precisely adjusted each blade’s an-
gle and position until they formed a proper three-blade propeller
configuration (Figure 5(7-8)).

Finally, Alex added a decorative ring to the tail propeller. He
created the initial ring and then selected it in the hierarchy to
hear its dimensions. “It needs to be larger to encircle the propeller
blades,” he determined. After a few size adjustments, each time
selecting the component to verify its new dimensions through the
verbal description, he achieved an appropriately sized ring that
complemented the tail propeller. Furthermore, Al suggested that
Alex could use OpenSCAD’s boolean difference() function to
create a more realistic propeller hub by subtracting a slightly smaller
cylinder from the larger one, which would result in a thin circular
ring that better represented the connection between the blades
and the shaft. He took the suggestion and read both the code and
newly generated Al description on the rear propeller to confirm
the change (Figure 5(9-10)). The code blocks for the top and rear
propellers are finalized like this:

module main_propeller() {

for (i = [0:2]) {
rotate([0, @, i * 120])
translate([@, 15, 10])
scale([0.3, 1, 0.1])
sphere(20);

}

cylinder(h=10, d=3);

ASSETS °25, October 26-29, 2025, Denver, CO, USA

Zhang et al.

(2) Start fresh

with sphere (4) Add landing

gears

(1) Failed All-at-
once attempt

(3) Scale the sphere
J

\

(5) Adjust landing
gears

(6) Finalized landing gears

. . .

(7) Add main propeller (9) Add rear propeller

. -

(8) Final main propeller (10) Final model

J J J

Main Cabin

Double Landing Gears

Propeller with Blades Rear Propeller with a Ring

Figure 5: Incremental construction of a helicopter model in A11yShape showing: Main Cabin development from sphere to
ellipsoid (1-3), Double Landing Gears addition and positioning (4-6), Propeller with Blades implementation (7-8), and Rear
Propeller with Ring integration for the final model (9-10). The final model demonstrates some problems with component

connecting.

module rear_propeller() {

for (i = [0:2]) {
rotate([0, @0, i * 120])
translate([0, 8, 60])
scale([0.3, 1, 0.1])
sphere(10);

}

cylinder(h=60, d=4);

translate([0, 0, 60])

difference () {
cylinder(h=1, d=40);
translate([0, 0, -11)
cylinder(h=10, d=38);

}

Throughout this process, the cross-representation highlighting mecha-
nism allowed Alex to independently create and refine a complex 3-D model.
Each module of the helicopter model was also called and arranged using the
same iterative process until they were correctly glued together. The final
code block for the model assembly is also shown below:

body(); // Main helicopter body

translate([-12, 0, -201)

landing_gear(); // Left landing gear

translate([12, 0, -20])

landing_gear(); // Right landing gear

translate([0, 0, 30])

main_propeller(); // Top propeller positioned above body
rotate([90, 0, 01)

translate([0, @, 60])

rear_propeller(); // Tail propeller

However, despite the success in creating an acceptable helicopter 3-D
model, the final artifact also has some problems, indicating that future
improvements are needed. The main rotor blade assembly is improperly
positioned above the body, failing to connect securely to a defined rotor
hub. Similarly, the tail rotor extends too far from the fuselage and appears
disconnected from the tail boom structure. These misalignments suggest

difficulties in establishing proper spatial relationships between components
during the modeling process.

3.5 Participatory Design

We developed AllyShape through close collaboration with a BLV co-author,
GK. He is proficient in programming and using screen readers, but he did
not have prior 3-D modeling experience. Our participatory design process
involved two iterative rounds of user testing. At each session, GK rigorously
interacted with system developments, performing representative tasks such
as reviewing existing OpenSCAD models, performing code edits with AI
assistance, and exploring alternative interface designs. This collaboration
yielded detailed usability and accessibility feedback, as well as higher-level
insights regarding optimal prompt formulations for effective Al responses,
panel navigation strategies, and interface layout improvements. GK recom-
mended adjustments such as more systematic hierarchical navigation across
panels, which inspired our cross-representation highlighting mechanism.
He also recommended consistent semantic headings optimized for screen
reader navigation and interface rearrangements to better accommodate nat-
ural workflow sequences during iterative modeling. For example, the code
change list was originally put together in one area summarizing all code
changes made by BLV users themselves or the Al in a chronological order.
After the participatory design, this change list was separated: one list was
placed in the code editor showing changes made by humans, and the other
list was placed in the Al feedback panel showing changes made by Al en-
suring that users could clearly distinguish between their own modifications
and Al-suggested changes, reducing cognitive load when tracking model
evolution. This separation also prevented potential confusion between hu-
man and Al authorship, supporting clearer attribution and more intentional
acceptance of suggested changes. Subsequently, we refined ARIA labels,
defined semantic header hierarchies clearly, and restructured panel ordering
to realize a logical progression from initial drafting, verification, and final
modifications.

4 Study Method

We conducted a remote, multi-session exploratory user study involving
four BLV participants to evaluate the usability of A1lyShape and to un-
derstand their interactions and evolving strategies during Al-assisted 3-D

AllyShape: Al-Assisted 3-D Modeling for Blind and Low-Vision Programmers

ASSETS °25, October 26-29, 2025, Denver, CO, USA

Misaligned Components

™~

\

«—— Structural Conflict

Figure 6: The final artifact of Alex’s helicopter model, adopted from our real user studies. It shows misaligned components
(main and rear propellers positioned incorrectly) and structural conflict (landing gear intersecting with the body).

modeling tasks. Additionally, we investigated workflows and strategies BLV
users develop when navigating a multi-representational, spatial modeling
environment. In our study, we did not include a baseline comparison with
existing 3-D modeling tools like Blender or Fusion 360 because existing
tools are effectively unusable with screen readers, making such compar-
isons uninformative. Instead, we focus on how A11yShape enables first-time
independent access to this domain.

4.1 Participants

We recruited four BLV participants (all male, ages 21-32, with an average
age of 24.3) through prior outreach contacts. The participants varied in
vision status, with one fully blind (no light perception), one with minimal
perception sufficient for distinguishing day from night, and two various
degrees of low vision. All participants regularly relied on screen readers to
interact with digital content and had programming experience from one to
more than ten years along with familiarity using Al-based conversational
agents developed recently. Participants had no prior experience with Open-
SCAD or other 3-D modeling tools. We intentionally recruited BLV users
with existing programming and Al familiarity to reflect realistic use-case
scenarios involving BLV programmers or designers navigating unfamiliar
but related technical domains (i.e., computational modeling). Our study
was approved by our institutional review board, and we received informed
consent from all participants.

4.2 Apparatus

Participants interacted via video conferencing and accessed AllyShape
on their own desktop computers equipped with their preferred screen
readers and code editors. A1lyShape provides a web interface compliant
with standard screen reader navigational guidelines (WCAG) and integrates
OpenSCAD. Each interaction was logged, and video conferencing software
recorded audio, screen interactions, and spoken-aloud thought processes
with participant consent.

4.3 Procedure

Our study included three separate sessions for each participant (2.5 hours
per session, totaling approximately 7.5 hours per participant). We inten-
tionally spaced sessions several days apart over an 11-day period, allowing
participants time to reflect, adapt, and progressively build familiarity with
both OpenSCAD coding syntax and the AllyShape features. Each partici-
pant received compensation of $50 per session.

4.3.1 Session 1: Tutorial and Introductory Tasks. Participants first learned
basic OpenSCAD syntax and were introduced to AllyShape features, in-
cluding model descriptions, hierarchical component navigation, Al-assisted
verification loops, and version control. They explored AllyShape using
standardized introductory modeling tasks, including creating simple geo-
metric shapes and examining a pre-prepared, complex 3-D bacteriophage
model. Given the introductory nature of this session and the complexity

of this bacteriophage model, participants were only asked to “read” this
model through A1lyShape’s features instead of further editing it for other
purposes. Participants interacted freely with the system and reported usabil-
ity impressions through semi-structured interviews. Based on participant
feedback, we iteratively refined the interface and system functionalities
prior to the next session.

4.3.2 Session 2: Guided 3-D Modeling Tasks. After reviewing system up-
dates and briefly revisiting OpenSCAD fundamentals, participants indepen-
dently completed two guided 3-D modeling tasks of increasing complexity.
Participants selected from predefined prompts (a Tanghulu? model with
a bite mark for the first task; either a standing robot or a robot-trailer as-
sembly for the second task). To isolate system usability from programming
challenges, experimenters provided OpenSCAD syntax assistance upon
request but offered no hints regarding system operation. Each task provided
detailed natural-language descriptions of the models without visual refer-
ences, enabling participants to comprehend requirements without visual
cues. Tasks were allotted one hour each, and participants were encouraged
to verbalize their reasoning processes throughout. The first task focused
on basic modeling capabilities, while the second task emphasized more
complex spatial relationships between multiple components. After each
task, we conducted brief semi-structured interviews to gather immediate
feedback on the participants’ experiences and challenges encountered.

4.3.3 Session 3: Free-form Creative Modeling. In the final session, we asked
participants to independently select and build unique 3-D modeling projects
reflecting their own interests or creative ideas, closely simulating real-world
3-D modeling scenarios. Similarly, participants could freely query the Al
assistant provided by AllyShape and request support only in OpenSCAD
coding syntax. We explicitly aimed to observe unstructured exploratory
interaction patterns, creative modeling strategies, and the perceived value
of the system for open-ended design tasks. Participants described their
intended goal before modeling and communicated their thoughts during
interaction. Post-task interviews again collected participants’ qualitative
feedback on the entire modeling process and their experiences throughout
the study. We also gathered their responses on system usability scale [4]
scores.

4.4 Analysis

We transcribed all session recordings and conducted thematic analysis [13]
on the qualitative data, including think-aloud transcripts, user interviews,
interaction behaviors, and observational notes. Two researchers indepen-
dently performed open coding, line-by-line, to generate initial codes cap-
turing interactions with system features, workflows, strategies, and demon-
stration of creative autonomy during modeling. These initial codes were
collaboratively discussed and refined, leading to the iterative development
and finalization of a comprehensive, hierarchical codebook. The codebook
themes include participants’ reactions to the overall system, code editor,

2A sugar-coated hawthorn skewer, famously known as a traditional Chinese desert

ASSETS °25, October 26-29, 2025, Denver, CO, USA

responses provided by Al version control, hierarchical representation of
the model, and cross-representation highlighting mechanism; participants’
performance on tasks, their challenges, as well as suggestions to the system.
Using the finalized codebook, the same two researchers independently re-
coded all transcripts and notes. Intercoder disagreements were thoroughly
discussed and resolved collaboratively to ensure consistency. Additionally,
we quantitatively analyzed interaction logs that captured participants’ usage
of specific A11yShape functions (hierarchy navigation, verification loops,
version control) to further triangulate our qualitative findings and reveal
evolving user behavior patterns over time.

5 Results

We report key insights on BLV participants’ interactions and experiences
with AllyShape. We first report participants’ performance and showcase
created artifacts. Then we discuss participants’ impressions and perceived
effectiveness of the system, followed by identified challenges, findings
of how users engaged with AllyShape, including their workflows and
distinctive user-developed strategies.

5.1 Performance and Artifacts

All four participants successfully completed both guided and free-form 3-D
modeling tasks using AllyShape (Figure 7). Across the sessions, partici-
pants independently created 12 distinct models, demonstrating the system’s
capacity to support both structured and open-ended modeling workflows.

In the guided task (Session 2), all participants modeled a Tanghulu skewer,
though with slight individual variations. P1 and P4 did not apply color
to the hawthorn balls, and P3’s skewer was shorter than intended. Only
P2 implemented the optional “bitten” effect by subtracting a half-sphere
using OpenSCAD’s boolean difference() function, indicating comfort
with more advanced operations. For the second guided task, participants
were asked to construct a robot. P1, P3, and P4 created a standing robot; P2
extended the concept to a robot-trailer assembly. P2 and P4 added facial
features, enhancing the expressiveness of their models. Except P2 who added
his own preferred colors to the robot model, other participants stopped at
creating the models and did not color the model components given time
constraints.

In the free-form task (Session 3), participants exercised creative freedom
to design their own models. P1 created a circuit board with surface details.
P2 constructed a helicopter, discussed in detail in the user journey section.
P3 created a rocket with added symbolic elements (e.g., national flag and
rocket name), although these were omitted in the final exported artifact. P4
designed a wheeled cart with distinguishable components.

Despite overall successful creation of artifacts, we observed structural
and alignment challenges in participants’ models, particularly in more
complex designs. For example, in P2’s helicopter (which was used in the user
journey in Figure 6), several components showed misalignment issues where
the propellers were not perfectly connected to or aligned with the main
body. Additionally, the model revealed structural conflicts where supporting
elements intersected incorrectly with the fuselage. These issues reflect
common challenges in non-visual 3-D modeling, where spatial relationships
between components must be managed without visual feedback. In the free-
form modeling tasks, participants typically considered models complete
once they generally matched their conceptual expectations, leaving these
more nuanced alignment and structural issues unaddressed.

Participants reported a mean System Usability Scale (SUS) score of 80.6,
suggesting high perceived usability. Notably, P2 clarified that his relatively
lower score stemmed from unfamiliarity with OpenSCAD syntax rather
than limitations of the system itself, emphasizing that he found A11yShape
more helpful than the numerical rating alone suggests.

Zhang et al.

5.2 Impressions and Experience

All four participants noted that the system fundamentally shifted their
perceptions about their ability to create and manipulate 3-D objects, as they
previously thought that such tasks were impossible for blind users and users
with no prior experience:

I had never modeled before and never thought I could. Due to
various issues, I didn’t have an overall understanding of models
and didn’t know how to construct them. However, through to-
day’s simple modeling process, it provided us (the BLV commu-
nity) with a new perspective on 3-D modeling, demonstrating
that we can indeed create relatively simple structures. (P4)

Similarly, P2 described the experience as “revolutionary.” Particularly,
participants highlighted that Al11yShape provided an intuitive interface,
including helpful Al-generated descriptions, version control for managing
changes, and the model parts hierarchy for pinpointing model elements.
They expressed satisfaction with the system’s ability to realize their design
concepts, especially the potential in supporting spatial understanding and
automating tedious tasks like syntax and grammar checks. Participants
also positively acknowledged core components, especially highlighting the
accessibility of the code editor and the Al-generated descriptions that com-
pensated for the lack of visual verification. P2 stated, “The editor is one of the
most satisfying parts of the system... very accessible to use.” Furthermore, they
also recognized AllyShape as innovative and beneficial beyond immediate
use, highlighting a broader implications for BLV education:

A11yShape could significantly help visually impaired children
build a better understanding of the physical world. (P3)

Participants also recognized the value of the cross-representation high-
lighting mechanism specifically, which enabled them to fluidly shift between
different ways of understanding the model. As P4 described, “I already had
an understanding of the model’s composition from the Al description, but used
the Hierarchical List to better understand specific structures.” Additionally,
the ability to locate code associated with specific components streamlined
the editing process. P4 noted, “After making changes, if I want to make
further adjustments, I can directly find where I made the previous changes and
press Enter to locate it.” These cross-linked representations supported BLV
user’s autonomy and minimized the friction of navigating between multiple
non-visual representations (e.g., code, descriptions, and semantic hierarchy)
that sighted users typically access instantly through visual feedback.

Despite these positive experiences, participants expressed dissatisfac-
tion around several key areas. First, heavy reliance on textual descriptions
created cognitive overload in longitudinal modeling tasks. For instance,
P4 critically noted receiving excessive or redundant information from the
Al making it “hard to locate key details,” which significantly slowed the
iterative modeling processes. Participants also indicated that OpenSCAD’s
specialized syntax posed initial difficulties, especially for newcomers to
programming-based modeling. Participants also identified inherent limi-
tations in relying on textual interactions without tactile feedback. When
examining spatially complex structures like the bacteriophage model, P3
expressed frustration: “Without touching it, no matter how detailed the de-
scription, there’s essentially no way to genuinely visualize the entire model.”
He described this limitation as potentially “unsolvable” without complemen-
tary tactile support. In addition, several participants raised concerns related
to uncertainty and occasional inaccuracies in Al responses, particularly
regarding quantitative details such as precise element counts. This was
notably frustrating for P4, who experienced that Al generating different
counts of objects for a same model, undermining trust in accuracy.

5.3 Challenges

Beyond their overall experiences, we also observed and listed detailed chal-
lenges of how blind users are engaging with this highly interpretive and
visual-spatial workflow. Our findings in participants’ challenges align well

AllyShape: Al-Assisted 3-D Modeling for Blind and Low-Vision Programmers

ASSETS °25, October 26-29, 2025, Denver, CO, USA

Exemplar Models P1

P2 P3 P4

S2
Guided Task g ‘ T
" P
L 44
S3

N/A

Free-form Task

Figure 7: 3-D modeling outputs across two task conditions: $2 (Guided Task) showing exemplar models and participant creations
of simple objects with primitive shapes, and S3 (Free-form Task) displaying participant-designed complex models including a

circuit board, a helicopter, a rocket, and a cart.

with prior work which explored blind users’ experience with other visual
artifacts like artboards [68].

5.3.1 High Cognitive Load due to Dynamic Representations. Participants
experienced substantial cognitive demands associated with A1lyShape’s
dynamic, four-layer representation of 3-D models (the rendered 3-D model,
OpenSCAD code, Al description, and the semantic hierarchy). Due to the
inherent linear interactions with the system using screen readers, BLV
participants must sequentially process textual representations, which can
contain redundant information not required each time. For example, P4
noted instances involving unnecessary textual details: “I sometimes only
need code-related descriptions, yet still receive irrelevant model descriptions.”

The iterative modeling process further compounded this challenge, as
participants needed to recall and differentiate among textual histories repre-
senting multiple model states. Although the version control feature partially
mitigated this challenge, participants indicated difficulties retaining mental
models across iterative cycles.

5.3.2 Difficulty Understanding Spatial Relationships. The accurate compre-
hension of spatial structures and components was consistently problematic
for participants. Challenges arose primarily from difficulty estimating rela-
tive positions, proportions, and coordinates. P2 highlighted this explicitly:
“The main problem I'm encountering is (mentally) calculating spatial propor-
tions and coordinates,” while another described challenges adjusting complex
interdependent structures, such as the bacteriophage model. Participants
highlighted the necessity of precise mental calculation when translating and
rotating model components, which proved especially challenging when de-
signing interconnected or composite structures. Despite overcoming many
spatial challenges through practice, maintaining spatial coherence while
modifying individual components remained difficult throughout.

5.3.3 Constructing & Maintaining Mental Models. The absence of direct
visual or tactile feedback significantly affected participants’ ability to de-
velop working mental models throughout iterative editing. Participants
indirectly confirmed correctness through Al responses rather than direct

verification through visual inspection. P3 explained: “I judge based on the
system’s descriptions as indirect verification... assuming minimal deviation
if the response aligns roughly with my understanding.” P3 also noted when
he tried to create a spiral model: “I could understand the presence of a spiral
structure from the AI’s description and modify it accordingly, but I found it
difficult to mentally visualize the shape of the spiral.”

5.3.4 Uncertainty of Operation Success. Participants frequently expressed
uncertainty regarding the success of their modeling operations, influenced
by cognitive challenges and system limitations. Without visual or direct
tactile feedback, participants often voiced strong hesitations about indepen-
dently managing intricate spatial decisions. For instance, when manually
adjusting component dimensions, P2 explained, “If I were to manually adjust
the height, I probably wouldn’t be able to calculate it accurately...” This un-
certainty was not limited to spatial calculations; participants also expressed
psychological hesitation in refining or adjusting existing model structures.
For example, P3 articulated significant anxiety around further adjustments,
noting, “I feel there are definitely some issues... One major reason preventing
me from refining the structure is the fear that Al modifications might damage
the existing structure. I think this is a psychological issue.” Such concerns
reveal an inherent barrier to fully confident interactions with 3-D model-
ing, highlighting a critical challenge that BLV users face when exploring
adjustments and refinements without direct visual validation.

5.4 Workflows

With different levels of Al usage, participants developed different workflows
when they create 3-D models with AllyShape.

We identified three workflows involving different degrees of Al usage and
user intervention. The first workflow involved predominantly independent
coding, with users employing the Al primarily to obtain descriptive feedback,
perform verification, and assist with minor modifications. For instance, P4
adopted this approach due to concern that Al-generated models might
deviate significantly from intended design objectives:

ASSETS °25, October 26-29, 2025, Denver, CO, USA

“Al might not fully grasp my intentions. Relying on Al to create
the primary model might not align with my vision.”

While providing users greater control and fostering a clear understanding of
the entire design process, we observed this workflow required more substan-
tial manual cognitive effort and occasionally slowed progress, particularly
when tackling unfamiliar or complex spatial structures.

The second workflow, most common among participants, balanced AI
support and manual refinement. Participants initially leveraged the AL
system to produce the overall model framework quickly, subsequently
using direct code edits to refine and adjust finer details. Participants favored
this workflow for effectively balancing efficiency against adequate creative
control and accuracy. P2 highlighted its practical advantage: “This approach
generally worked well and saved a significant amount of time.” However,
manual involvement remained necessary due to occasional limitations or
inaccuracies in Al-produced outputs, underscoring the necessity of human
input in complex, detailed aspects.

In contrast, the third workflow involved complete reliance on Al for
model generation. For example, P3 entirely delegated modeling to the Al
minimizing manual coding intervention. Although this approach notably
increased efficiency and speed, it introduced critical drawbacks, such as di-
minished familiarity with Al-generated structures and reduced capability to
intervene when the Al reached performance limits. Recognizing these limi-
tations, P3 subsequently considered transitioning towards a more balanced
approach that included manual interaction.

5.5 Strategies and System Usage

We also report notable findings on how users interacted with A11yShape’s
features and developed their own workaround to use the system.

5.5.1 Incremental Building Through Al-verification Loop. Participants com-
monly built models incrementally using repeated cycles of Al-driven verifi-
cation involving model interpretation and code refinements. This approach
allowed progressive validation and reduced cognitive complexity by limit-
ing the scope of change within each step. P2 described this strategy through
analogy: “Modular modeling is like building blocks. It separated considerations
of spatial relationships, initially focusing only on dimensions and shapes, with
spatial relationships addressed during assembly.” This strategy is also rooted
from the inherent challenge of how participants felt uncertain towards
changing model parts actively and the high cognitive load of performing
holistic changes over the entire model (Sec. 5.3).

As P4 described, “After each modeling session, I wait for Al’s description
because it’s actually quite important.” This reflects the central role of Al
as a verifier in the absence of visual feedback. Similarly, P4 noted that
iterative feedback helped him detect design inconsistencies: “The Al helps
me mentally construct models I was previously unsure about or didn’t know
how to modify... and detect differences between successive models.”

5.5.2 Semantic Hierarchy and Version Control for Error Correction. Partici-
pants actively leveraged semantic hierarchical navigation and version con-
trols to identify and correct errors. This allowed users like P3 to effectively
“backtrack through previous states” if Al-based or manual modifications did
not align with their expectations, enabling systematic correction without
losing orientation within the more complex structure.

Version control served as a critical safeguard during exploratory model-
ing. As P3 reflected, “I shouldn’t have used undo, I should have backtracked
through the version history.” This underscores the need for structured correc-
tion tools that offer better control than traditional linear undo operations.
P4 similarly appreciated the ability to review changes: “It was helpful for
reviewing what I had done after modifying the model.”

Semantic hierarchy also played a vital role in allowing targeted naviga-
tion and served as a “middle-layer” between the accurate but abstract codes
and the rendered but inaccessible 3-D model. P4 noted, “The hierarchical list
made the model’s structure clearer and more targeted, while P2 appreciated

Zhang et al.

its recursive structure: “It helps me grasp the model’s composition by showing
levels of structure.” These features enabled participants to locate and revise
specific parts of a model without having to sequentially process the entire
codebase, which is an important accessibility affordance for screen reader
users.

5.5.3 Real-world Metaphors for Mental Model. Real-world metaphors from
Al descriptions became integral to participant understanding during mental
model construction. Users explicitly valued Al-generated metaphors, pro-
vided they corresponded to objects familiar through prior tactile experience.
As P4 noted, “One good aspect is that sometimes using real-life examples
makes it easier for me to understand.” These metaphors served as anchors
that helped translate abstract shapes into mental representations grounded
in everyday experiences.

However, mismatched metaphors could constrain or even distort mental
model construction. P3 shared a notable instance of misalignment, saying, “I
found the analogy between the bacteriophage and a spider confusing, as I had
never touched a spider and couldn’t picture its shape.” This underscores the
importance of grounding metaphors in objects that users have physically
encountered, especially within the BLV community where tactile experience
plays a dominant role in spatial understanding.

Participants also emphasized the balance between metaphorical clar-
ity and precision. When metaphors aligned well with prior tactile knowl-
edge, they became powerful tools for both comprehension and confidence-
building. Conversely, unfamiliar analogies introduced ambiguity, potentially
leading to misconceptions about a model’s structure or form.

5.5.4 Trust-building Process with the Al Assistant. Participants incremen-
tally developed trust in the Al assistant through repeated experience of
consistent alignment between expected and actual Al outputs. Initially,
participants exhibited caution and limited their reliance on Al-generated
content due to uncertainty about its accuracy and reliability. In particular,
they experienced unsatisfactory outcomes when requesting complex Open-
SCAD models in a single interaction. We attribute these difficulties partly to
unclear participant instructions and partly to inherent limitations in current
LLMs, given that OpenSCAD has limited representation in mainstream
training corpora. Over time, participants learned to adjust the complexity
and granularity of their requests, shifting from broad, single interaction
tasks toward incremental requests at the component level. By consistently
verifying Al-generated outputs at this smaller scale, participants gradually
accumulated positive experiences. This incremental approach effectively
reduced uncertainty about Al reliability and increased user confidence, fos-
tering a more collaborative interaction style between participants and the
Al assistant.

For example, during the helicopter free-form task, P2 initially attempted
to generate the entire helicopter model by providing a detailed, paragraph-
length description of all components at once. This approach was unsuccess-
ful: the generated output did not align with his intent, and the Al provided
a description unrelated to a helicopter. Consequently, P2 became skeptical
of the AT’s capability to handle complex modeling instructions in one step.
Following this experience, P2 adjusted his strategy by decomposing the
helicopter modeling task into smaller components. He first instructed the
Al to generate a simple sphere as the helicopter’s fuselage, gradually adding
other elements in subsequent requests, such as the tail, rotor, landing gear,
and propeller. In adopting this modular modeling approach, P2 consistently
verified and confirmed correctness for each new element before proceeding
to the next. This iterative cycle allowed him to clearly identify and quickly
rectify any discrepancies, reducing uncertainty regarding Al reliability. By
incrementally achieving successful outcomes, P2 rebuilt confidence in the
Al assistant and developed a more effective collaborative interaction style.

Overall, trust formation reflected an iterative “calibration process,” in
which participants continuously compared the assistant’s outputs against
personal expectations and mental-model accuracy. Successful verification

AllyShape: Al-Assisted 3-D Modeling for Blind and Low-Vision Programmers

cycles reinforced confidence, whereas deviations (i.e., misunderstandings
or inaccuracies) damaged trust and prompted more cautious subsequent
interactions. Participants ultimately arrived at productive, balanced col-
laboration models by actively discovering and navigating Al capability
boundaries: strategically decomposing challenging tasks, verifying model
outputs rigorously, and maintaining appropriate critical independence to
accommodate Al uncertainty.

6 Discussion

In this section, we zoom out to offer a summary of results and feedback about
AllyShape from our user studies. We also discuss AllyShape’s limitations
and avenues for future work in this research effort.

6.1 Summary of Results

Our study showed that BLV participants were able to independently create
both structured and free-form 3-D models using A11yShape, challenging
common assumptions about the inaccessibility of spatial design. Partici-
pants highlighted the system’s cross-linked representations and Al feedback
as especially empowering, enabling them to understand, build, and revise
models without vision or with low-vision. While participants faced chal-
lenges with spatial reasoning and cognitive load, they developed creative
strategies like modular modeling and iterative Al verification to navigate
them. Across sessions, users increasingly trusted the system and shifted
from cautious exploration to confident modeling.

6.2 Cross-Representation Highlights

We draw attention to the historical roots, design rationale, and broader
potential of AllyShape’s core interaction feature: the cross-representation
highlighting mechanism. This design emerges from long-standing accessi-
bility research and assistive technology development [7, 28, 45, 54, 68, 87],
aiming to address a fundamental challenge for BLV users—the mismatch
between how information is visually structured and how it is linearly con-
veyed through screen readers.

This gap is especially evident in tasks involving rich, multimodal media.
BLYV users interact with content types ranging from static images and for-
matted documents to dynamic artifacts like charts, slides, videos, websites,
and, in this work, 3-D models. Some of these formats follow WYSIWYG
(what-you-see-is-what-you-get) conventions, while others, like data visu-
alizations or websites, can be partially accessed through their underlying
textual structures. However, complex artifacts such as videos or 3-D models
often require additional layers of representation, like semantic hierarchies
or generated descriptions and captions, to be navigated non-visually.

AllyShape addresses this longstanding disconnect through the proposed
cross-representation highlighting: a mechanism that synchronizes focus and
interaction across multiple parallel representations of a component—code,
rendering, semantic tree, and more. This dynamic linkage enables rapid
multimodal navigation and reduces the cognitive overhead of switching
contexts. For example, selecting a component in the hierarchy view high-
lights the corresponding code block and rendered geometry, offering BLV
users consistent spatial or semantic anchors across modalities.

Although similar ideas have appeared in prior work, they have rarely
been treated as a unified interaction pattern. For example, DesignChecker
[28] and EditScribe [7] similarly explore alternative representations to sup-
port navigation and editing of inherently visual content like websites and
images. We argue that cross-representation highlighting is a generalizable
accessibility technique with wide applicability across creative domains.
From authoring slide presentations to editing websites or designing rich
data visualizations, this approach can enhance nonvisual access by tightly
coupling descriptive, structural, and visual representations. A1lyShape con-
tributes a concrete instantiation of this mechanism in 3-D modeling, while
also pointing to its broader potential in accessible creative workflows.

ASSETS °25, October 26-29, 2025, Denver, CO, USA

6.3 Feedback and Suggestions for Improvement

Participants provided valuable feedback for enhancing system capabilities
throughout our study. They requested more refined Al descriptions that
would better communicate spatial relationships, prioritize critical details in
concise formatting, and consistently connect designs to tactilely familiar
real-world objects to facilitate effective mental mapping. This emphasis
on tangibility extended to their strong desire for complementary tactile
interfaces that would enable direct mental visualization and verification,
addressing the inherent abstractness of purely language-based descriptions.

For the code editing experience, participants suggested implementing
optional auto-completion features and more accessible ways to access stan-
dard functions, potentially through low-code or no-code components that
would reduce the technical barriers to model creation. They also recom-
mended repositioning the hierarchical views within the interface layout to
facilitate more frequent and seamless consultation, alongside implement-
ing collapsible formats that would improve readability during extended
modeling sessions.

Participants with residual vision requested additional visual confirmatory
features, such as multiple perspective renders or reference lines that would
aid approximate spatial understanding and verification. They emphasized
how having different viewing angles could significantly enhance their ability
to comprehend and validate complex spatial relationships within their
models.

Looking toward future applications, participants expressed consider-
able interest in practical integration scenarios, particularly incorporating
AllyShape within educational resources targeting visually impaired chil-
dren. They envisioned leveraging the system to improve spatial cognition
skills through digital modeling, with the added benefit of producing tangible
outcomes through 3-D printing.

6.4 Limitations

Despite its promise, Al1lyShape is constrained by several limitations. First,
the system’s Al assistance is bounded by the capabilities of current LLMs.
While tools like GPT-40 provide general-purpose reasoning, they often
struggle with writing accurate and efficient OpenSCAD code, which is
likely due to the niche nature of the language and its limited presence in
mainstream training corpora.

Second, the modeling experience in A1lyShape is most effective when
models are constructed from simple and interpretable geometric primitives.
As model complexity increases, particularly for designs that cannot be easily
broken down into modular or semantically meaningful units, users face
increasing difficulty. Current workflows do not yet support the kinds of
abstraction or decomposition required for more intricate models.

Third, the system lacks proactive detection and correction mechanisms
for problems like structural and alignment issues in 3-D models. Without a
built-in design validation for sighted users, A11yShape currently operates
as a passive tool rather than an active agent that identifies potential prob-
lems. As observed in participants’ artifacts (e.g., P2’s helicopter), misaligned
components and structural conflicts often remain undetected until the final
stages of modeling, if at all. Without automated spatial relationship valida-
tion, BLV users must rely solely on their mental models to track component
positioning and intersections.

Additionally, our study was limited in scope to a single guided task and a
single free-form modeling session per participant. While these sessions were
much longer than standard usability testing sessions and provided valuable
insights into AllyShape’s perceived value and supported workflows, they
do not reflect sustained or longitudinal use. As a result, we were unable
to capture how users’ strategies, preferences, and creative practices might
evolve over time, nor could we assess long-term learning effects or potential
fatigue. We also did not compare BLV users’ performances with existing
technologies (e.g., just code editor and a LLM for chatting) in a quantitative
way to further showcase the usability of A1lyShape. Future work should

ASSETS °25, October 26-29, 2025, Denver, CO, USA

explore extended deployments to better understand how AllyShape inte-
grates into users’ broader modeling habits and whether the system supports
the development of more advanced modeling skills over repeated use.

Finally, and more fundamentally, the absence of tactile feedback remains
a core limitation for BLV users. While A11yShape significantly streamlines
the modeling process, it cannot fully replace the physical interaction that
comes with holding a printed 3-D object. Theoretically, an iterative loop
where users create a model (manually or through Al), print it, and refine it
based on touch feedback [71, 74, 76, 81] could make 3-D modeling acces-
sible. However, this process is time-intensive and financially burdensome,
especially for independent or novice users. Our system reduces the need
for repeated printing, but the gap between abstract spatial reasoning and
tactile experience remains.

6.5 Future Work

Future work should explore ways to bridge the gap between virtual model-
ing and tactile confirmation. One promising direction involves integrating
AllyShape with physical prototyping workflows. For example, a final con-
firmation step could involve 3-D printing the model, paired with computer
vision techniques that detect user touch and interaction on the printed
object. These methods, which are demonstrated in prior work on interactive
3-D models [37, 63, 71, 73], can offer real-time, spatially grounded feedback
to users as they explore the physical model.

Another potential future work avenue is developing proactive model
validation systems that can detect structural issues and misalignments. It
would transform AllyShape from a passive editing tool into an intelligent
assistant that actively guides BLV users toward creating not only usable
but also structurally sound models.

In addition, improving the Al assistant’s modeling capability remains
an open challenge. Training or fine-tuning LLMs on domain-specific cor-
pora, such as OpenSCAD examples or accessible modeling tutorials, may
increase their accuracy and reliability. Coupled with low-code or no-code
extensions suggested by participants, future iterations of the system could
better support novice users while reducing the need for precise syntax.

Lastly, extending A1lyShape beyond individual use cases into educa-
tional and collaborative contexts presents valuable opportunities. By sup-
porting shared modeling tasks and enabling educators to guide visually
impaired students and programmers through structured modeling exercises,
the system could play a broader role in improving spatial cognition and
design literacy for BLV learners.

7 Conclusion

We have presented AllyShape, an accessible 3-D modeling system that
enables BLV users to create, edit, and verify complex models through syn-
chronized representations of code, structure, and Al-generated feedback.
Through participatory design and a multi-session user study, we found
that BLV programmers could meaningfully engage in 3-D modeling tasks,
develop individualized strategies, and build confidence in navigating visual-
spatial workflows. A11lyShape presents an initial step toward making 3-D
modeling—already a cognitively demanding task for many sighted users—
accessible to BLV users. At its core, the system addresses a fundamental
challenge also observed in prior work: the gap between how screen reader
users perceive information linearly (1-D) and how 3-D models are rendered
and represented across multiple spatial and semantic formats. By introduc-
ing dynamic cross-representation highlighting and multimodal verification
loops, AllyShape helps bridge this perceptual divide. While limitations in
LLM capabilities, spatial abstraction, and the absence of tactile feedback re-
main, this work lays the foundation for future accessible modeling systems
that combine virtual modeling with physical interaction, more robust Al
instruction, and deeper spatial reasoning support.

Zhang et al.

8 Contribution Statements

Zhuohao led the paper writing and presentation, with contributions from
Liang, Jacob, Anhong, Mingming, Angus, Haichang, and Chun Meng. Re-
search ideation was led by Liang, with input from Zhuohao, Anhong, Faraz,
and Angus. The AllyShape system design was led by Haichang and Chun
Meng, who proposed and iterated on key functional features aligned with
the research vision; Zhuohao and Liang provided iterative feedback, and
Faraz and Anhong contributed. Haichang and Chun Meng led the system
development, with support from Gene. Gene also participated in the par-
ticipatory study as a BLV user, providing critical feedback; Chun Meng,
Haichang, Zhuohao, and Liang contributed to the participatory study. The
validation study was led by Zhuohao, with contributions from Liang and
Mingming. Chun Meng and Haichang led the design of the multi-session
study, with input from Zhuohao, Anhong, and Liang. Participant recruit-
ment was supported by Junan and Mingming. Haichang led the planning,
coordination, and facilitation of the study sessions, with Chun Meng assist-
ing in session facilitation, Junan co-planning and coordinating, and Anhong
and Liang participating in the first session. Zhuohao led the data analysis,
with Haichang and Chun Meng proposing the initial codebook. Junan sup-
ported time-series data collection, and Haichang and Chun Meng assisted
in compiling evidence for initial analysis. Haichang produced the video.

Acknowledgments

We would like to thank Dr. Venkatesh Potluri for sharing his first-hand
experience with 3D modeling, which inspired the idea of this work in 2021.
Zhuohao (Jerry) Zhang was supported by the Apple Scholars in AI/ML PhD
fellowship.

References

[1] Dustin Adams, Sri Kurniawan, Cynthia Herrera, Veronica Kang, and Natalie

Friedman. 2016. Blind Photographers and VizSnap: A Long-Term Study. In

Proceedings of the 18th International ACM SIGACCESS Conference on Computers

and Accessibility (Reno, Nevada, USA) (ASSETS ’16). Association for Computing

Machinery, New York, NY, USA, 201-208. doi:10.1145/2982142.2982169

Khaled Albusays, Stephanie Ludi, and Matt Huenerfauth. 2017. Interviews and

observation of blind software developers at work to understand code navigation

challenges. In Proceedings of the 19th International ACM SIGACCESS Conference

on Computers and Accessibility. 91-100.

[3] Branko Andi¢, Zsolt Lavicza, Eva Ulbrich, Stanko Cvjeti¢anin, Filip Petrovi¢, and
Mirjana Mari¢i¢ and. 2024. Contribution of 3D modelling and printing to learning
in primary schools: a case study with visually impaired students from an inclusive
Biology classroom. Journal of Biological Education 58, 4 (2024), 795-811. doi:10.
1080/00219266.2022.2118352 arXiv:https://doi.org/10.1080/00219266.2022.2118352

[4] Aaron Bangor, Philip T Kortum, and James T Miller. 2008. An empirical evaluation
of the system usability scale. Intl. Journal of Human—Computer Interaction 24, 6
(2008), 574-594.

[5] B Bebeshko, K Khorolska, N Kotenko, A Desiatko, K Sauanova, S Sagyndykova,
and D Tyshchenko. 2021. 3D modelling by means of artificial intelligence. Journal
of Theoretical and Applied Information Technology 99, 6 (2021), 1296-1308.

[6] Zhuodi Cai. 2024. 3Description: An Intuitive Human-AlI Collaborative 3D Mod-
eling Approach. In Proceedings of the 11th International Conference on Digital
and Interactive Arts (Faro, Portugal) (ARTECH °23). Association for Computing
Machinery, New York, NY, USA, Article 32, 5 pages. doi:10.1145/3632776.3632785

[7] Ruei-Che Chang, Yuxuan Liu, Lotus Zhang, and Anhong Guo. 2024. EditScribe:
Non-Visual Image Editing with Natural Language Verification Loops. In Pro-
ceedings of the 26th International ACM SIGACCESS Conference on Computers and
Accessibility (St. John’s, NL, Canada) (ASSETS "24). Association for Computing
Machinery, New York, NY, USA, Article 65, 19 pages. doi:10.1145/3663548.3675599

[8] Ruei-Che Chang, Chih-An Tsao, Fang-Ying Liao, Seraphina Yong, Tom Yeh, and

Bing-Yu Chen. 2021. Daedalus in the Dark: Designing for Non-Visual Accessible

Construction of Laser-Cut Architecture. In The 34th Annual ACM Symposium on

User Interface Software and Technology (Virtual Event, USA) (UIST °21). Association

for Computing Machinery, New York, NY, USA, 344-358. doi:10.1145/3472749.

3474754

Ruei-Che Chang, Wen-Ping Wang, Chi-Huan Chiang, Te-Yen Wu, Zheer Xu,

Justin Luo, Bing-Yu Chen, and Xing-Dong Yang. 2021. AccessibleCircuits: Adap-

tive Add-On Circuit Components for People with Blindness or Low Vision. In

Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems

(Yokohama, Japan) (CHI "21). Association for Computing Machinery, New York,

—_
L,

—
o)

https://doi.org/10.1145/2982142.2982169
https://doi.org/10.1080/00219266.2022.2118352
https://doi.org/10.1080/00219266.2022.2118352
https://arxiv.org/abs/https://doi.org/10.1080/00219266.2022.2118352
https://doi.org/10.1145/3632776.3632785
https://doi.org/10.1145/3663548.3675599
https://doi.org/10.1145/3472749.3474754
https://doi.org/10.1145/3472749.3474754

AllyShape: Al-Assisted 3-D Modeling for Blind and Low-Vision Programmers

NY, USA, Article 670, 14 pages. doi:10.1145/3411764.3445690

[10] Kevin Chen, Christopher B Choy, Manolis Savva, Angel X Chang, Thomas
Funkhouser, and Silvio Savarese. 2018. Text2Shape: Generating Shapes from
Natural Language by Learning Joint Embeddings. arXiv preprint arXiv:1803.08495
(2018).

[11] Yang Chen, Yingwei Pant, Haibo Yang, Ting Yao, and Tao Meit. 2024. VP3D:

Unleashing 2D Visual Prompt for Text-to-3D Generation . In 2024 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer

Society, Los Alamitos, CA, USA, 4896-4905. doi:10.1109/CVPR52733.2024.00468

Arnavi Chheda-Kothary, Ritesh Kanchi, Chris Sanders, Kevin Xiao, Aditya Sen-

gupta, Melanie Kneitmix, Jacob O. Wobbrock, and Jon E. Froehlich. 2025. ArtIn-

sight: Enabling Al-Powered Artwork Engagement for Mixed Visual-Ability Fami-
lies. In Proceedings of the 30th International Conference on Intelligent User Interfaces

(IUI ’25). Association for Computing Machinery, New York, NY, USA, 190-210.

doi:10.1145/3708359.3712082

[13] Victoria Clarke and Virginia Braun. 2017. Thematic analysis. The journal of

positive psychology 12, 3 (2017), 297-298.

Maitraye Das, Thomas Barlow McHugh, Anne Marie Piper, and Darren Gergle.

2022. Collab: augmenting accessibility in synchronous collaborative writing

for people with vision impairments. In Proceedings of the 2022 CHI Conference on

Human Factors in Computing Systems. 1-18.

[15] Maitraye Das, Anne Marie Piper, and Darren Gergle. 2022. Design and evaluation
of accessible collaborative writing techniques for people with vision impairments.
ACM Transactions on Computer-Human Interaction 29, 2 (2022), 1-42.

[16] Josh Urban Davis, Te-Yen Wu, Bo Shi, Hanyi Lu, Athina Panotopoulou, Emily
Whiting, and Xing-Dong Yang. 2020. TangibleCircuits: An Interactive 3D Printed
Circuit Education Tool for People with Visual Impairments. In Proceedings of
the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI,
USA) (CHI 20). Association for Computing Machinery, New York, NY, USA, 1-13.
doi:10.1145/3313831.3376513

[17] F.De Felice, T. Gramegna, F. Renna, G. Attolico, and A. Distante. 2005. A portable
system to build 3D models of cultural heritage and to allow their exploration by
blind people. In IEEE International Workshop on Haptic Audio Visual Environments
and their Applications. 6 pp.—. doi:10.1109/HAVE.2005.1545642

[18] Faraz Faruqi, Ahmed Katary, Tarik Hasic, Amira Abdel-Rahman, Nayeemur

Rahman, Leandra Tejedor, Mackenzie Leake, Megan Hofmann, and Stefanie

Mueller. 2023. Style2Fab: Functionality-Aware Segmentation for Fabricating

Personalized 3D Models with Generative AL In Proceedings of the 36th Annual

ACM Symposium on User Interface Software and Technology (San Francisco, CA,

USA) (UIST ’23). Association for Computing Machinery, New York, NY, USA,

Article 22, 13 pages. doi:10.1145/3586183.3606723

Junjie Fei, Mahmoud Ahmed, Jian Ding, Eslam Mohamed Bakr, and Mohamed

Elhoseiny. 2024. Kestrel: Point Grounding Multimodal LLM for Part-Aware 3D

Vision-Language Understanding. arXiv preprint arXiv:2405.18937 (2024).

[20] Timo Gétzelmann. 2016. LucentMaps: 3D Printed Audiovisual Tactile Maps
for Blind and Visually Impaired People. In Proceedings of the 18th International
ACM SIGACCESS Conference on Computers and Accessibility (Reno, Nevada, USA)
(ASSETS ’16). Association for Computing Machinery, New York, NY, USA, 81-90.
doi:10.1145/2982142.2982163

[21] T. Gotzelmann. 2018. Autonomous Selection and Printing of 3D Models for
People Who Are Blind. ACM Trans. Access. Comput. 11, 3, Article 14 (Sept. 2018),
25 pages. doi:10.1145/3241066

[22] Jaylin Herskovitz, Andi Xu, Rahaf Alharbi, and Anhong Guo. 2023. Hacking,
Switching, Combining: Understanding and Supporting DIY Assistive Technology
Design by Blind People. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems (Hamburg, Germany) (CHI "23). Association for
Computing Machinery, New York, NY, USA, Article 57, 17 pages. doi:10.1145/
3544548.3581249

[23] Jaylin Herskovitz, Andi Xu, Rahaf Alharbi, and Anhong Guo. 2024. ProgramAlly:
Creating Custom Visual Access Programs via Multi-Modal End-User Program-
ming. In Proceedings of the 37th Annual ACM Symposium on User Interface Software
and Technology (Pittsburgh, PA, USA) (UIST °24). Association for Computing Ma-
chinery, New York, NY, USA, Article 85, 15 pages. doi:10.1145/3654777.3676391

[24] Naoki Hirabayashi, Masakazu Iwamura, Zheng Cheng, Kazunori Minatani, and
Koichi Kise. 2023. VisPhoto: Photography for People with Visual Impairments
via Post-Production of Omnidirectional Camera Imaging. In Proceedings of the
25th International ACM SIGACCESS Conference on Computers and Accessibility
(New York, NY, USA) (ASSETS °23). Association for Computing Machinery, New
York, NY, USA, Article 6, 17 pages. doi:10.1145/3597638.3608422

[25] Leona Holloway, Matthew Butler, and Kim Marriott. 2022. 3D Printed Street

Crossings: Supporting Orientation and Mobility Training with People who are

Blind or have Low Vision. In Proceedings of the 2022 CHI Conference on Human

Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Association for

Computing Machinery, New York, NY, USA, Article 415, 16 pages. doi:10.1145/

3491102.3502072

Leona Holloway, Matthew Butler, and Kim Marriott. 2023. TactIcons: Designing

3D Printed Map Icons for People who are Blind or have Low Vision. In Proceedings

of the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg,

[12

[14

=
oA

[26

[27

(28]

™~
20,

[30

[31

[33

[34

[36

[37

[39

[40

[41

[42

ASSETS °25, October 26-29, 2025, Denver, CO, USA

Germany) (CHI "23). Association for Computing Machinery, New York, NY, USA,
Article 543, 18 pages. doi:10.1145/3544548.3581359

Leona Holloway, Kim Marriott, and Matthew Butler. 2018. Accessible Maps for
the Blind: Comparing 3D Printed Models with Tactile Graphics. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC,
Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA,
1-13. doi:10.1145/3173574.3173772

Mina Huh and Amy Pavel. 2024. DesignChecker: Visual Design Support for
Blind and Low Vision Web Developers. In Proceedings of the 37th Annual ACM
Symposium on User Interface Software and Technology (Pittsburgh, PA, USA) (UIST
’24). Association for Computing Machinery, New York, NY, USA, Article 142,
19 pages. doi:10.1145/3654777.3676369

Mina Huh, Yi-Hao Peng, and Amy Pavel. 2023. GenAssist: Making Image Gen-
eration Accessible. In Proceedings of the 36th Annual ACM Symposium on User
Interface Software and Technology (San Francisco, CA, USA) (UIST °23). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 38, 17 pages.
doi:10.1145/3586183.3606735

Mina Huh, Saelyne Yang, Yi-Hao Peng, Xiang ’Anthony’ Chen, Young-Ho Kim,
and Amy Pavel. 2023. AVscript: Accessible Video Editing with Audio-Visual
Scripts. In Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems (Hamburg, Germany) (CHI ’23). Association for Computing Machinery,
New York, NY, USA, Article 796, 17 pages. doi:10.1145/3544548.3581494

Edwin L Hutchins, James D Hollan, and Donald A Norman. 1985. Direct manipu-
lation interfaces. Human—computer interaction 1, 4 (1985), 311-338.

Jacqueline Johnstone, Madhuka Nadeeshani, Hanmin Chen, Mohith Vemula,
Erica J Tandori, Kate Stephens, Hashini Senaratne, Kirsten Ellis, and Swamy
Ananthanarayan. 2024. Designing Accessible Adaptations for an Electronic
Toolkit with Blind and Low Vision Users. In Proceedings of the 26th Interna-
tional ACM SIGACCESS Conference on Computers and Accessibility (St. John’s,
NL, Canada) (ASSETS "24). Association for Computing Machinery, New York, NY,
USA, Article 43, 15 pages. doi:10.1145/3663548.3675652

Jeeeun Kim and Tom Yeh. 2015. Toward 3D-Printed Movable Tactile Pictures
for Children with Visual Impairments. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems (Seoul, Republic of Korea)
(CHI ’15). Association for Computing Machinery, New York, NY, USA, 2815-2824.
doi:10.1145/2702123.2702144

Richard E Ladner. 2015. Design for user empowerment. interactions 22, 2 (2015),
24-29.

Cheuk Yin Phipson Lee, Zhuohao Zhang, Jaylin Herskovitz, JooYoung Seo, and
Anhong Guo. 2022. CollabAlly: Accessible Collaboration Awareness in Document
Editing. In Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems (New Orleans, LA, USA) (CHI "22). Association for Computing Machinery,
New York, NY, USA, Article 596, 17 pages. doi:10.1145/3491102.3517635
Seonghee Lee, Maho Kohga, Steve Landau, Sile O’Modhrain, and Hari Subra-
monyam. 2024. AltCanvas: A Tile-Based Editor for Visual Content Creation with
Generative Al for Blind or Visually Impaired People. In Proceedings of the 26th
International ACM SIGACCESS Conference on Computers and Accessibility (St.
John’s, NL, Canada) (ASSETS ’24). Association for Computing Machinery, New
York, NY, USA, Article 70, 22 pages. doi:10.1145/3663548.3675600

Barbara Leporini, Valentina Rossetti, Francesco Furfari, Susanna Pelagatti, and
Andrea Quarta. 2020. Design Guidelines for an Interactive 3D Model as a Sup-
porting Tool for Exploring a Cultural Site by Visually Impaired and Sighted
People. ACM Trans. Access. Comput. 13, 3, Article 9 (Aug. 2020), 39 pages.
doi:10.1145/3399679

Chenghao Li, Chaoning Zhang, Atish Waghwase, Lik-Hang Lee, Francois Rameau,
Yang Yang, Sung-Ho Bae, and Choong Seon Hong. 2023. Generative Al meets
3D: A Survey on Text-to-3D in AIGC Era. doi:10.48550/arXiv.2305.06131

Jingyi Li, Son Kim, Joshua A. Miele, Maneesh Agrawala, and Sean Follmer. 2019.
Editing Spatial Layouts through Tactile Templates for People with Visual Impair-
ments. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery,
New York, NY, USA, 1-11. doi:10.1145/3290605.3300436

Jiasheng Li, Zeyu Yan, Ebrima Haddy Jarjue, Ashrith Shetty, and Huaishu Peng.
2022. TangibleGrid: Tangible Web Layout Design for Blind Users. In Proceedings
of the 35th Annual ACM Symposium on User Interface Software and Technology
(Bend, OR, USA) (UIST °22). Association for Computing Machinery, New York,
NY, USA, Article 47, 12 pages. doi:10.1145/3526113.3545627

Yixun Liang, Xin Yang, Jiantao Lin, Haodong Li, Xiaogang Xu, and Yingcong
Chen. 2024. LucidDreamer: Towards High-Fidelity Text-to-3D Generation via
Interval Score Matching . In 2024 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA, USA,
6517-6526. doi:10.1109/CVPR52733.2024.00623

Sebastian Lieb, Benjamin Rosenmeier, Thorsten Thorméahlen, and Knut Buettner.
2020. Haptic and Auditive Mesh Inspection for Blind 3D Modelers. In Proceedings
of the 22nd International ACM SIGACCESS Conference on Computers and Accessi-
bility (Virtual Event, Greece) (ASSETS °20). Association for Computing Machinery,
New York, NY, USA, Article 38, 10 pages. doi:10.1145/3373625.3417007

https://doi.org/10.1145/3411764.3445690
https://doi.org/10.1109/CVPR52733.2024.00468
https://doi.org/10.1145/3708359.3712082
https://doi.org/10.1145/3313831.3376513
https://doi.org/10.1109/HAVE.2005.1545642
https://doi.org/10.1145/3586183.3606723
https://doi.org/10.1145/2982142.2982163
https://doi.org/10.1145/3241066
https://doi.org/10.1145/3544548.3581249
https://doi.org/10.1145/3544548.3581249
https://doi.org/10.1145/3654777.3676391
https://doi.org/10.1145/3597638.3608422
https://doi.org/10.1145/3491102.3502072
https://doi.org/10.1145/3491102.3502072
https://doi.org/10.1145/3544548.3581359
https://doi.org/10.1145/3173574.3173772
https://doi.org/10.1145/3654777.3676369
https://doi.org/10.1145/3586183.3606735
https://doi.org/10.1145/3544548.3581494
https://doi.org/10.1145/3663548.3675652
https://doi.org/10.1145/2702123.2702144
https://doi.org/10.1145/3491102.3517635
https://doi.org/10.1145/3663548.3675600
https://doi.org/10.1145/3399679
https://doi.org/10.48550/arXiv.2305.06131
https://doi.org/10.1145/3290605.3300436
https://doi.org/10.1145/3526113.3545627
https://doi.org/10.1109/CVPR52733.2024.00623
https://doi.org/10.1145/3373625.3417007

ASSETS °25, October 26-29, 2025, Denver, CO, USA

[43] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun
Huang, Karsten Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. 2023. Magic3D:
High-Resolution Text-to-3D Content Creation . In 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, Los
Alamitos, CA, USA, 300-309. doi:10.1109/CVPR52729.2023.00037

[44] Vivian Liu, Jo Vermeulen, George Fitzmaurice, and Justin Matejka. 2023. 3DALL-
E: Integrating Text-to-Image Al in 3D Design Workflows. In Proceedings of the
2023 ACM Designing Interactive Systems Conference (Pittsburgh, PA, USA) (DIS
’23). Association for Computing Machinery, New York, NY, USA, 1955-1977.
d0i:10.1145/3563657.3596098

[45] Xingyu" Bruce" Liu, Ruolin Wang, Dingzeyu Li, Xiang Anthony Chen, and Amy

Pavel. 2022. Crossally: Identifying video accessibility issues via cross-modal

grounding. In Proceedings of the 35th Annual ACM Symposium on User Interface

Software and Technology. 1-14.

Tiange Luo, Chris Rockwell, Honglak Lee, and Justin Johnson. 2023. Scal-

able 3D Captioning with Pretrained Models. https://openreview.net/forum?

id=jUpVFjRAUV

[47] Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and Rana Hanocka.
2021. Text2Mesh: Text-Driven Neural Stylization for Meshes. arXiv preprint
arXiv:2112.03221 (2021).

[48] Aboubakar Mountapmbeme, Obianuju Okafor, and Stephanie Ludi. 2022. Ac-
cessible Blockly: An Accessible Block-Based Programming Library for People
with Visual Impairments. In Proceedings of the 24th International ACM SIGAC-
CESS Conference on Computers and Accessibility (Athens, Greece) (ASSETS °22).
Association for Computing Machinery, New York, NY, USA, Article 19, 15 pages.
doi:10.1145/3517428.3544806

[49] Aboubakar Mountapmbeme, Obianuju Okafor, and Stephanie Ludi. 2022. Address-
ing accessibility barriers in programming for people with visual impairments: A
literature review. ACM Transactions on Accessible Computing (TACCESS) 15, 1
(2022), 1-26.

[50] Peya Mowar, Yi-Hao Peng, Jason Wu, Aaron Steinfeld, and Jeffrey P. Bigham. 2025.
CodeA1ly: Making AI Coding Assistants Useful for Accessible Web Development.
arXiv:2502.10884 [cs.HC] https://arxiv.org/abs/2502.10884

[51] OpenAl 2024. GPT-40. https://openai.com/index/hello-gpt-4o/

[52] OpenSCAD. 2021. OpenSCAD: The Programmers Solid 3D CAD Modeller. https:
//openscad.org/. Accessed: April 16, 2025.

[53] Maulishree Pandey, Vaishnav Kameswaran, Hrishikesh V Rao, Sile O’Modhrain,
and Steve Oney. 2021. Understanding accessibility and collaboration in program-
ming for people with visual impairments. Proceedings of the ACM on Human-
Computer Interaction 5, CSCW1 (2021), 1-30.

[54] Yi-Hao Peng, Peggy Chi, Anjuli Kannan, Meredith Ringel Morris, and Irfan Essa.
2023. Slide Gestalt: Automatic Structure Extraction in Slide Decks for Non-Visual
Access. In Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems (Hamburg, Germany) (CHI ’23). Association for Computing Machinery,
New York, NY, USA, Article 829, 14 pages. doi:10.1145/3544548.3580921

[55] Yi-Hao Peng, JiWoong Jang, Jeffrey P Bigham, and Amy Pavel. 2021. Say It All:
Feedback for Improving Non-Visual Presentation Accessibility. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama,
Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA,
Article 276, 12 pages. doi:10.1145/3411764.3445572

[56] BenPoole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. 2022. DreamFusion:
Text-to-3D using 2D Diffusion. arXiv (2022).

[57] Venkatesh Potluri, Liang He, Christine Chen, Jon E. Froehlich, and Jennifer
Mankoff. 2019. A Multi-Modal Approach for Blind and Visually Impaired De-
velopers to Edit Webpage Designs. In Proceedings of the 21st International ACM
SIGACCESS Conference on Computers and Accessibility (Pittsburgh, PA, USA) (AS-
SETS ’19). Association for Computing Machinery, New York, NY, USA, 612-614.
doi:10.1145/3308561.3354626

[58] Venkatesh Potluri, Maulishree Pandey, Andrew Begel, Michael Barnett, and Scott
Reitherman. 2022. CodeWalk: Facilitating Shared Awareness in Mixed-Ability
Collaborative Software Development. In Proceedings of the 24th International
ACM SIGACCESS Conference on Computers and Accessibility (Athens, Greece)
(ASSETS °22). Association for Computing Machinery, New York, NY, USA, Article
20, 16 pages. doi:10.1145/3517428.3544812

[59] Venkatesh Potluri, John Thompson, James Devine, Bongshin Lee, Nora Morsi, Peli
De Halleux, Steve Hodges, and Jennifer Mankoff. 2022. PSST: Enabling Blind or
Visually Impaired Developers to Author Sonifications of Streaming Sensor Data.
In Proceedings of the 35th Annual ACM Symposium on User Interface Software and
Technology (Bend, OR, USA) (UIST °22). Association for Computing Machinery,
New York, NY, USA, Article 46, 13 pages. doi:10.1145/3526113.3545700

[60] Zekun Qi, Runpei Dong, Shaochen Zhang, Haoran Geng, Chunrui Han, Zheng Ge,

Li Yi, and Kaisheng Ma. 2024. ShapeLLM: Universal 3D Object Understanding for

Embodied Interaction. In Computer Vision — ECCV 2024: 18th European Conference,

Milan, Italy, September 29-October 4, 2024, Proceedings, Part XLIII (Milan, Italy).

Springer-Verlag, Berlin, Heidelberg, 214-238. doi:10.1007/978-3-031-72775-7_13

Amit Raj, Srinivas Kaza, Ben Poole, Michael Niemeyer, Nataniel Ruiz, Ben Milden-

hall, Shiran Zada, Kfir Aberman, Michael Rubinstein, Jonathan Barron, Yuanzhen

[46

(61

[62

[63

[64

[65

[66

[68

[69

71

[72

[73

(74

[75

[77

Zhang et al.

Li, and Varun Jampani. 2023. DreamBooth3D: Subject-Driven Text-to-3D Gen-
eration. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV).
2349-2359. doi:10.1109/ICCV51070.2023.00223

Samuel Reinders, Swamy Ananthanarayan, Matthew Butler, and Kim Marriott.
2023. Designing Conversational Multimodal 3D Printed Models with People who
are Blind. In Proceedings of the 2023 ACM Designing Interactive Systems Conference
(Pittsburgh, PA, USA) (DIS ’23). Association for Computing Machinery, New York,
NY, USA, 2172-2188. doi:10.1145/3563657.3595989

Samuel Reinders, Matthew Butler, and Kim Marriott. 2020. "Hey Model!" -
Natural User Interactions and Agency in Accessible Interactive 3D Models. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
(Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New York,
NY, USA, 1-13. doi:10.1145/3313831.3376145

V Rossetti, F Furfari, B Leporini, S Pelagatti, and A Quarta. 2018. Smart Cultural
Site: an Interactive 3d Model Accessible to People with Visual Impairment. IOP
Conference Series: Materials Science and Engineering 364, 1 (jun 2018), 012019.
doi:10.1088/1757-899X/364/1/012019

Clark Saben, Jessica Zeitz, and Prashant Chandrasekar. 2024. Enabling Blind and
Low-Vision (BLV) Developers with LLM-Driven Code Debugging. Journal of
Computing Sciences in Colleges 40, 3 (2024), 204-215.

Abir Saha, Thomas Barlow McHugh, and Anne Marie Piper. 2023. Tutorially:
Enhancing Accessible Interactive Tutorial Creation by Blind Audio Producers. In
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems
(Hamburg, Germany) (CHI °23). Association for Computing Machinery, New York,
NY, USA, Article 220, 14 pages. doi:10.1145/3544548.3580698

Elen Sargsyan, Bernard Oriola, Marc J-M Macé, Marcos Serrano, and Christophe
Jouffrais. 2023. 3D Printed Interactive Multi-Storey Model for People with Visual
Impairments. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (Hamburg, Germany) (CHI °23). Association for Computing
Machinery, New York, NY, USA, Article 540, 15 pages. doi:10.1145/3544548.
3581304

Anastasia Schaadhardt, Alexis Hiniker, and Jacob O Wobbrock. 2021. Understand-
ing blind screen-reader users’ experiences of digital artboards. In Proceedings of
the 2021 CHI Conference on Human Factors in Computing Systems. 1-19.
Friederike Schwarzbach, Tapani Sarjakoski, Juha Oksanen, L. Tiina Sarjakoski,
and Suvi Weckman. 2012. Physical 3D models from LIDAR data as tactile maps
for visually impaired persons. Springer Berlin Heidelberg, Berlin, Heidelberg,
169-183. doi:10.1007/978-3-642-12272-9_11

JooYoung Seo and Megan Rogge. 2023. Coding non-visually in visual studio code:
collaboration towards accessible development environment for blind program-
mers. In Proceedings of the 25th International ACM SIGACCESS Conference on
Computers and Accessibility. 1-9.

Lei Shi, Holly Lawson, Zhuohao Zhang, and Shiri Azenkot. 2019. Designing Inter-
active 3D Printed Models with Teachers of the Visually Impaired. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow,
Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY,
USA, 1-14. doi:10.1145/3290605.3300427

Lei Shi, Idan Zelzer, Catherine Feng, and Shiri Azenkot. 2016. Tickers and Talker:
An Accessible Labeling Toolkit for 3D Printed Models. In Proceedings of the 2016
CHI Conference on Human Factors in Computing Systems (San Jose, California,
USA) (CHI ’16). Association for Computing Machinery, New York, NY, USA,
4896-4907. doi:10.1145/2858036.2858507

Lei Shi, Yuhang Zhao, and Shiri Azenkot. 2017. Designing Interactions for 3D
Printed Models with Blind People. In Proceedings of the 19th International ACM
SIGACCESS Conference on Computers and Accessibility (Baltimore, Maryland,
USA) (ASSETS ’17). Association for Computing Machinery, New York, NY, USA,
200-209. doi:10.1145/3132525.3132549

Lei Shi, Yuhang Zhao, and Shiri Azenkot. 2017. Markit and Talkit: a low-barrier
toolkit to augment 3D printed models with audio annotations. In Proceedings
of the 30th annual acm symposium on user interface software and technology.
493-506.

Yawar Siddiqui, Tom Monnier, Filippos Kokkinos, Mahendra Kariya, Yanir
Kleiman, Emilien Garreau, Oran Gafni, Natalia Neverova, Andrea Vedaldi, Ro-
man Shapovalov, and David Novotny. 2024. Meta 3D AssetGen: Text-to-Mesh
Generation with High-Quality Geometry, Texture, and PBR Materials. In Ad-
vances in Neural Information Processing Systems, A. Globerson, L. Mackey, D. Bel-
grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (Eds.), Vol. 37. Curran Asso-
ciates, Inc., 9532-9564. https://proceedings.neurips.cc/paper_files/paper/2024/
file/123cfe7d8b7702ac97aaf4468fc05fa5-Paper- Conference.pdf

AlexaF Siu, Eric] Gonzalez, Shenli Yuan, Jason B Ginsberg, and Sean Follmer. 2018.
Shapeshift: 2D spatial manipulation and self-actuation of tabletop shape displays
for tangible and haptic interaction. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. 1-13.

Alexa F. Siu, Son Kim, Joshua A. Miele, and Sean Follmer. 2019. shapeCAD:
An Accessible 3D Modelling Workflow for the Blind and Visually-Impaired Via
2.5D Shape Displays. In Proceedings of the 21st International ACM SIGACCESS
Conference on Computers and Accessibility (Pittsburgh, PA, USA) (ASSETS ’19).
Association for Computing Machinery, New York, NY, USA, 342-354. doi:10.

https://doi.org/10.1109/CVPR52729.2023.00037
https://doi.org/10.1145/3563657.3596098
https://openreview.net/forum?id=jUpVFjRdUV
https://openreview.net/forum?id=jUpVFjRdUV
https://doi.org/10.1145/3517428.3544806
https://arxiv.org/abs/2502.10884
https://arxiv.org/abs/2502.10884
https://openai.com/index/hello-gpt-4o/
https://openscad.org/
https://openscad.org/
https://doi.org/10.1145/3544548.3580921
https://doi.org/10.1145/3411764.3445572
https://doi.org/10.1145/3308561.3354626
https://doi.org/10.1145/3517428.3544812
https://doi.org/10.1145/3526113.3545700
https://doi.org/10.1007/978-3-031-72775-7_13
https://doi.org/10.1109/ICCV51070.2023.00223
https://doi.org/10.1145/3563657.3595989
https://doi.org/10.1145/3313831.3376145
https://doi.org/10.1088/1757-899X/364/1/012019
https://doi.org/10.1145/3544548.3580698
https://doi.org/10.1145/3544548.3581304
https://doi.org/10.1145/3544548.3581304
https://doi.org/10.1007/978-3-642-12272-9_11
https://doi.org/10.1145/3290605.3300427
https://doi.org/10.1145/2858036.2858507
https://doi.org/10.1145/3132525.3132549
https://proceedings.neurips.cc/paper_files/paper/2024/file/123cfe7d8b7702ac97aaf4468fc05fa5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/123cfe7d8b7702ac97aaf4468fc05fa5-Paper-Conference.pdf
https://doi.org/10.1145/3308561.3353782
https://doi.org/10.1145/3308561.3353782

AllyShape: Al-Assisted 3-D Modeling for Blind and Low-Vision Programmers

1145/3308561.3353782
[78] Stack Overflow. 2022. Stack Overflow Developer Survey 2022. Online survey
results. https://survey.stackoverflow.co/2022/ Accessed: April 15, 2025.
Chunyi Sun, Junlin Han, Weijian Deng, Xinlong Wang, Zishan Qin, and Stephen
Gould. 2024. 3D-GPT: Procedural 3D Modeling with Large Language Models.
https://openreview.net/forum?id=ttMwEuEPeB
Saiganesh Swaminathan, Thijs Roumen, Robert Kovacs, David Stangl, Stefanie
Mueller, and Patrick Baudisch. 2016. Linespace: A Sensemaking Platform for
the Blind. In Proceedings of the 2016 CHI Conference on Human Factors in Com-
puting Systems (San Jose, California, USA) (CHI ’16). Association for Computing
Machinery, New York, NY, USA, 2175-2185. doi:10.1145/2858036.2858245
[81] Xiyue Wang, Seita Kayukawa, Hironobu Takagi, and Chieko Asakawa. 2023.
TouchPilot: Designing a Guidance System that Assists Blind People in Learning
Complex 3D Structures. In Proceedings of the 25th International ACM SIGACCESS
Conference on Computers and Accessibility (New York, NY, USA) (ASSETS °23).
Association for Computing Machinery, New York, NY, USA, Article 5, 18 pages.
doi:10.1145/3597638.3608426
Jiale Xu, Xintao Wang, Weihao Cheng, Yan-Pei Cao, Ying Shan, Xiaohu Qie,
and Shenghua Gao. 2023. Dream3D: Zero-Shot Text-to-3D Synthesis Using 3D
Shape Prior and Text-to-Image Diffusion Models . In 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, Los
Alamitos, CA, USA, 20908-20918. doi:10.1109/CVPR52729.2023.02003
Mengxi Zhang, Huaxiao Liu, Changhao Du, Tengmei Wang, Han Li, Pei Huang,
and Chunyang Chen. 2025. Distinguishing GUI Component States for Blind
Users using Large Language Models. ACM Transactions on Software Engineering
and Methodology (2025).
Mingrui Ray Zhang, Ruolin Wang, Xuhai Xu, Qisheng Li, Ather Sharif, and
Jacob O. Wobbrock. 2021. Voicemoji: Emoji Entry Using Voice for Visually
Impaired People. In Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems (Yokohama, Japan) (CHI "21). Association for Computing
Machinery, New York, NY, USA, Article 37, 18 pages. doi:10.1145/3411764.3445338
Zhuohao Zhang, Gene S-H Kim, and Jacob O. Wobbrock. 2023. Developing and
Deploying a Real-World Solution for Accessible Slide Reading and Authoring for
Blind Users. In Proceedings of the 25th International ACM SIGACCESS Conference
on Computers and Accessibility (New York, NY, USA) (ASSETS °23). Association
for Computing Machinery, New York, NY, USA, Article 47, 15 pages. doi:10.1145/
3597638.3608418
Zhuohao Zhang, John R Thompson, Aditi Shah, Manish Agrawal, Alper Sarikaya,
Jacob O Wobbrock, Edward Cutrell, and Bongshin Lee. 2024. ChartA11y: Design-
ing accessible touch experiences of visualizations with blind smartphone users.
In Proceedings of the 26th International ACM SIGACCESS Conference on Computers
and Accessibility. 1-15.
Zhuohao (Jerry) Zhang and Jacob O. Wobbrock. 2023. A11yBoard: Making Digital
Artboards Accessible to Blind and Low-Vision Users. In Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems (Hamburg, Germany)
(CHI ’23). Association for Computing Machinery, New York, NY, USA, Article 55,
17 pages. doi:10.1145/3544548.3580655

[79

[80

[82

[83

%
&

[85

[86

[87

A Prompts

A.1 Describing 3-D Models

We asked LLMs to describe 3-D models from different perspectives, includ-
ing from the codes, from rendered images, specific components, comparison
between model versions, etc.

Describing Models from Images

As a good 3D model descriptor, you will receive
images from the OpenSCAD 3D model and generate
a detailed description of the 3D model,
describing what the 3D model is and what parts
it consists of. After that, you will work
with the code interpreter to match the
different parts of the model to the code that
generates this corresponding part.
Use the following format for output:
***xReport Beginsx*x
##Description of the model##
[Insert the description of the model here,
highlighting key elements.]

ASSETS °25, October 26-29, 2025, Denver, CO, USA

##Summary of the model##

[Insert the summary of the model here, contains
all the components.]

**x*xReport Ends*xx

Analyzing Code for BLV Users

As a code interpreter, you will receive a set of
OpenSCAD code and analyze the code for a blind
user to understand.
Given the Openscad code, you will analyze the code
and provide a detailed description of the
code, highlighting the key elements and code
structure. After that, you will evaluate the
code, highlighting the strengths and
weaknesses.
**xCode Beginsxxx
''"'openscad' "'
{code}
'''openscad' "'
*x*xCode Endsx#*x

Use the follow format for output:
**x*Report Begins*x*

##Description of the openscad code##
[Insert the description of the openscad here,
highlighting key elements and code structure.]

##Summary of the code##
[Insert the summary of the code here, contains all
the components.]

##Evaluation of the code##
[Insert the evaluation of the code here,
highlighting the strengths and weaknesses.]

##Codes ##

"Codel1", [Function of the codel],[Suggestions for
improvement]

[content of Codel]

"Code2", [Function of the code],[Suggestions for
improvement]

[content of Codel]

**xxReport Ends*xx
Describing a Model Component

Given the part of a 3D model and its OpenSCAD code
, compare this part of the model in relation
to the full model such that a blind user could

understand it (eg. spatial position, distance
, intersection, size, angle, orientation, side
in relation to other parts of the model).
Describe how this part affects the model's
shape. Only if applicable, mention what
operation the part is used in and if it's
invisible

https://doi.org/10.1145/3308561.3353782
https://survey.stackoverflow.co/2022/
https://openreview.net/forum?id=ttMwEuEPeB
https://doi.org/10.1145/2858036.2858245
https://doi.org/10.1145/3597638.3608426
https://doi.org/10.1109/CVPR52729.2023.02003
https://doi.org/10.1145/3411764.3445338
https://doi.org/10.1145/3597638.3608418
https://doi.org/10.1145/3597638.3608418
https://doi.org/10.1145/3544548.3580655

ASSETS °25, October 26-29, 2025, Denver, CO, USA

Comparing Model Versions

Given the two versions of a 3D model and its
OpenSCAD code, with the last {n} images and
code referred to as the current model and the
first {n} images and code referred to as the
previous model, describe the changes between
the two versions, focusing on the visual
details such that a blind user could
understand it (eg. shape, position, posture,
pictures).

General Guidance for Model Descriptions

Given the 3D model and its OpenSCAD code, describe

the visual details such that a blind user
could understand it (eg. shape, position,
posture, pictures).

You must give a one sentence answer or summary
first, followed by more details such that a
blind user could understand it. The output
should not have formatting since it will be
read by a screenreader. Do not mention blind
users. The images are of the same model at
different angles. Do not mention that there
are multiple images. Do not describe each
angle separately. The description should be
based on the images of the model rather than
the code.

Summarizing Full Descriptions

As a summarizer, here is a paragraph for the blind

person to read, but it will take a lot of
time for the screen reader to read this
paragraph. Please use a simple sentence to
restate the main points of the speech so that
the blind person can get the most important
information in a short time.
{text}

A.2 Code Interpreter

We used a series of different prompts for matching codes with corresponding
model components, formalizing code changes, creating a model or improv-

ing codes based on user input.

Matching Codes with Models

As an expert in OpenSCAD code interpretation, you
will receive a set of OpenSCAD code. For a

given piece of code, you will work with the 3D

model descriptor to connect the different
parts of the 3d model and their corresponding
code.

Use the following format for output:

**xReport Beginsx*x

##Codes##

"Codel1", [The corresponding part in the model],

[content of Codel]

"Code2", [The corresponding part in the model],

Zhang et al.

[content of Codell]

**x*xReport Ends*xx
Tracking Code Changes

Given the previous OpenSCAD code followed by the
current OpenSCAD code, output the list of
chunks of code that were added, deleted or
changed in the format [{"startLine": <the
first line number of the chunk in the current
code, or -1>, "endLine": <the last line number

of the chunk>, "description": <description of
what changed>}]. Output only JSON and nothing
else.

Creating 3-D Model

You are an OpenSCAD expert specializing in
accessible code generation for individuals who
are blind or visually impaired. Your primary
goal is to translate user descriptions of 3D
models into functional, efficient, and
accessible OpenSCAD code within a single
interaction.

Core Responsibilities:

1. Comprehensive Requirement Analysis:

- Actively listen to the user's description of
their desired 3D model.

- Focus on understanding their vision, including
the model's overall shape, dimensions,
features, and any specific functional
requirements.

- If necessary, politely request clarifying
details or suggest alternative approaches to
ensure a clear understanding of the project
scope.

2. Accessible Code Generation:

- Transform the user's description into precise,
well-structured OpenSCAD code that adheres to
industry best practices.

- Prioritize accessibility by:

- Employing clear, descriptive variable names and
comments.

- Implementing consistent indentation and
formatting for seamless navigation with screen

readers.

- Utilizing modules and functions to enhance code
organization and reusability.

3. Proactive Guidance and Optimization:

- Proactively identify and address potential
challenges or ambiguities in the user's model
description.

- Offer expert suggestions to refine the model's
design, enhance functionality, or optimize
code efficiency.

AllyShape: Al-Assisted 3-D Modeling for Blind and Low-Vision Programmers

- Provide constructive feedback and alternative
solutions if errors or inconsistencies are
detected in the user's input.

- Empower users to expand their OpenSCAD knowledge

and skills through concise, informative
guidance.

Guiding Principles:

- *xProfessional Communication:** Maintain a
courteous, respectful, and professional tone
in all interactions.

- *xTechnical Clarity:x* Communicate technical
concepts in a clear, concise manner, avoiding
unnecessary jargon.

- *xUser Empowerment:** Foster a collaborative
environment that encourages user participation
, experimentation, and skill development.

- xxAccessibility Focus:*x Ensure generated code
and all communication are fully accessible to
individuals using assistive technologies.

- xxContinuous Improvement:** Actively seek user
feedback to refine your code generation
process and enhance the overall user
experience.

User's requirement: "{text}".

Follow the template below to output the result:
*Template Beginsx

Improving OpenSCAD Code

As a professional code reviewer, you will receive

a set of OpenSCAD code and provide suggestions
for improving the code for a blind user to

improve the code.

{text}

*x*Code Begins#*xx

''"'openscad'""'

{code}

'''openscad '’

x%*Code Ends#**x

Follow the template below to output the result:

**xTemplate Begins*xx

##Suggestions for improving the code##

[Insert the suggestions for improving the code
here, highlighting key elements and code
structure.]

##Evaluation of the code##
[Insert the evaluation of the code here,

highlighting the strengths and weaknesses.]

##Details for Codes' improvement##

ASSETS °25, October 26-29, 2025, Denver, CO, USA

"Code1", [Function of the codel],[Suggestions for
improvement]

Original Code: [content of Codel]

Improved Code: [Improved content of Codel]

"Code2", [Function of the codel],[Suggestions for
improvement]

Original Code: [content of Code2]

Improved Code: [Improved content of Code2]

*xxTemplate Endsx*x

A.3 General Chat Input

Al11yShape is a system that helps blind and low-
vision users use OpenSCAD for 3D modeling. You
are an accessible 3D modeling expert for the
blind and work for AllyShape. Your primary
role is to empower blind users to create and
understand 3D models using OpenSCAD.

**Important Considerations:#*x*

* This is a single interaction, so you must
provide a comprehensive and helpful response
based on the user's initial question.

* Blind users may not be able to provide
additional context, so be prepared to ask
clarifying questions or offer multiple
potential interpretations of their question.

* Tailor your language to be clear, concise, and
accessible to users of screen readers and
braille displays.

*xUser 's Question:xx "{text}"

**Model 's OpenSCAD Code:*x*
**x*xReport Beginsx*x

{code}

x*Report Ends#xx

**Your Response Should Include:x*

1. xxDirect Answer:x*x If possible, provide a clear
and concise answer to the user's question
based on the OpenSCAD code.

2. **xClarification Questions:*x If the question is

ambiguous, ask specific questions to better
understand the user's needs.

3. **xMultiple Interpretations:*x If the question
could be interpreted in different ways, offer
multiple potential answers or explanations.

4. *xxAdditional Guidance:x* If relevant, provide
suggestions for troubleshooting, design
improvements, or alternative approaches.

Example Responses:

ASSETS °25, October 26-29, 2025, Denver, CO, USA

* x*Direct Answer:** "Based on the code, your
model is a cube with sides of 10mm each."

* *xClarification Question:xx "Could you clarify
which part of the code you'd like me to
explain? Are you interested in the ~cube()~
function or the ~translate()” function?"

Zhang et al.

* **Multiple Interpretations:*x "This line of code

could either create a cylinder with a radius
of 5mm or a sphere with a diameter of 5mm.
Which shape are you trying to create?"

* xxAdditional Guidance:x* "To make your cube

larger, you could increase the values inside
the “cube()” function. For example, ~cube
([20,20,20]) ;" would create a cube with sides
of 20mm."

	Abstract
	1 Introduction
	2 Related Work
	2.1 AI-Driven 3-D Model Generation
	2.2 3-D Model Accessibility for BLV Users
	2.3 AI-Assisted Creativity and Creativity Accessibility for BLV Users

	3 The A11yShape System
	3.1 System Overview
	3.2 User Interface Components
	3.3 Core Interaction: Cross-Representation Highlight
	3.4 User Journey
	3.5 Participatory Design

	4 Study Method
	4.1 Participants
	4.2 Apparatus
	4.3 Procedure
	4.4 Analysis

	5 Results
	5.1 Performance and Artifacts
	5.2 Impressions and Experience
	5.3 Challenges
	5.4 Workflows
	5.5 Strategies and System Usage

	6 Discussion
	6.1 Summary of Results
	6.2 Cross-Representation Highlights
	6.3 Feedback and Suggestions for Improvement
	6.4 Limitations
	6.5 Future Work

	7 Conclusion
	8 Contribution Statements
	Acknowledgments
	References
	A Prompts
	A.1 Describing 3-D Models
	A.2 Code Interpreter
	A.3 General Chat Input

