
Artificial Intelligence 174 (2010) 910–950
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Automatically generating personalized user interfaces with Supple

Krzysztof Z. Gajos a,b,∗,1, Daniel S. Weld a, Jacob O. Wobbrock c,2

a Department of Computer Science and Engineering, Box 352350, University of Washington, Seattle, WA 98195, USA
b Harvard School of Engineering and Applied Sciences, 33 Oxford St., Rm 251, Cambridge, MA 02138, USA
c The Information School, Box 352840, University of Washington, Seattle, WA 98195, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 April 2009
Received in revised form 16 May 2010
Accepted 17 May 2010
Available online 21 May 2010

Keywords:
Automatic user interface generation
Optimization
Adaptation
Personalized user interfaces
Ability-based user interfaces
Supple

Today’s computer–human interfaces are typically designed with the assumption that they
are going to be used by an able-bodied person, who is using a typical set of input and
output devices, who has typical perceptual and cognitive abilities, and who is sitting in a
stable, warm environment. Any deviation from these assumptions may drastically hamper
the person’s effectiveness—not because of any inherent barrier to interaction, but because
of a mismatch between the person’s effective abilities and the assumptions underlying the
interface design.
We argue that automatic personalized interface generation is a feasible and scalable
solution to this challenge. We present our Supple system, which can automatically generate
interfaces adapted to a person’s devices, tasks, preferences, and abilities. In this paper
we formally define interface generation as an optimization problem and demonstrate
that, despite a large solution space (of up to 1017 possible interfaces), the problem is
computationally feasible. In fact, for a particular class of cost functions, Supple produces
exact solutions in under a second for most cases, and in a little over a minute in
the worst case encountered, thus enabling run-time generation of user interfaces. We
further show how several different design criteria can be expressed in the cost function,
enabling different kinds of personalization. We also demonstrate how this approach
enables extensive user- and system-initiated run-time adaptations to the interfaces after
they have been generated.
Supple is not intended to replace human user interface designers—instead, it offers
alternative user interfaces for those people whose devices, tasks, preferences, and abilities
are not sufficiently addressed by the hand-crafted designs. Indeed, the results of our
study show that, compared to manufacturers’ defaults, interfaces automatically generated
by Supple significantly improve speed, accuracy and satisfaction of people with motor
impairments.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Today’s computer–human interfaces are typically designed in the context of several assumptions: 1) that they are going
to be used by an able-bodied individual, 2) who is using a typical set of input and output devices, 3) who has typical
perceptual, cognitive, and motor abilities, and 4) who is sitting in a stable, warm environment. Any deviation from these
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assumptions (for example, hand tremor due to aging, using a mobile device with a multi-touch screen, low vision, or riding
on a jostling bus) may drastically hamper the person’s effectiveness—not because of any inherent barrier to interaction, but
because of a mismatch between their effective abilities and the assumptions underlying the interface design.

This diversity of needs is generally ignored at the present time. Occasionally, it is addressed in one of several ways:
manual redesign of the interface, limited customization support, or by supplying an external assistive technology. The first
approach is clearly not scalable: new devices constantly enter the market, and people’s abilities and preferences both differ
greatly and often cannot be anticipated in advance [5]. Second, today’s customization approaches typically only support
changes to the organization of tool bars and menus, and cosmetic changes to other parts of the interface. Furthermore,
even when given the opportunity, people do not customize [50,63,65], and even more rarely re-customize as their work
habits change [52]. Finally, assistive technologies, while they often enable computer access for people who would otherwise
not have it, also have limitations: assistive technologies can stigmatize their users; they are impractical for people with
temporary impairments caused by injuries; they do not adapt to people whose abilities change over time; and finally, they
are often abandoned, even by people who need them, because of factors like cost, complexity, configuration, and the need
for ongoing maintenance [11,13,42,68].

In contrast to these approaches, we argue that interfaces should instead be personalized to better suit the particular
contexts of individual users. Many personalized interfaces are needed because of the myriad of distinct individuals, each
with his or her own abilities, tasks, preferences, devices and needs. Therefore, traditional manual interface design and
engineering will not scale to such a broad range of potential contexts and people. A different approach is needed. In this
paper, we demonstrate that automatic generation of personalized user interfaces is a feasible and scalable solution to this
challenge. We make the following specific contributions:

• We formally define interface generation as a discrete constrained optimization problem and solve it with a branch-and-
bound algorithm using constraint propagation (Sections 3 and 4). This general approach allows our Supple system to
automatically generate “optimal” user interfaces given a declarative description of an interface, device characteristics,
available widgets, and a user- and device-specific cost function.

• We develop two types of cost functions for guiding the optimization process. The first is factored in a manner that enables
preference-based personalization as well as fast computation, allowing Supple to generate user interfaces in under
1 second in most cases (Section 5.1). The second explicitly models a person’s ability to control the pointer, allowing
Supple to generate user interfaces adapted to unusual interaction techniques or abilities, such as an input jittery eye
tracker or a user’s limited range of motion due to a motor impairment (Section 5.2). Both types of cost functions
incorporate usage traces, allowing Supple to generate interfaces that reflect a person’s long-term usage patterns.

• We illustrate the extensibility of the approach by incorporating into the cost function a measure of presentation con-
sistency among different variants of a user interface. This allows Supple to generate different user interfaces for an
application such that these interfaces resemble one another, even if they are generated for different devices (Sec-
tion 5.3).

• We demonstrate two approaches for dynamic personalization of Supple-generated user interfaces: an automatic system-
driven adaptation to the current task, and a user-driven customization (Section 6).

• We systematically evaluate the systems issues in Supple and demonstrate that even for solution spaces on the order of
1017 possibilities, our algorithm can find the optimal rendering in less than a second in most cases. We also demonstrate
that by exploring the solution space in parallel in two different orders, our algorithm’s worst-case empirical performance
can improve by up to two orders of magnitude (Section 7).

• We demonstrate a practical application of Supple: automatic generation of personalized user interfaces for people with
motor impairments. The results of our user study show that user interfaces automatically generated by Supple can
improve speed and accuracy for all users—and for people with motor impairments, they can also significantly improve
satisfaction—compared to default user interfaces shipped with today’s software (Section 8).

Automatic model-based user interface generation is frequently met with skepticism. Prior systems in this area—which,
with few exceptions, attempted to incrementally improve existing interface design processes—were perceived to require
higher up-front cost (learning a new language, manually building models) and to result in aesthetically less-pleasing artifacts
than traditional, manual design approaches [56]. Instead, we believe that the real strength of automatic user interface
generation lies not in incrementally improving existing design processes, but in enabling solutions to problems that cannot
be adequately addressed by traditional methods. Our Supple system offers alternative user interfaces for those people whose
individual devices, tasks, preferences, and abilities are not sufficiently addressed by the hand-crafted designs. In the case of
people with motor impairments, the results of our study demonstrate that the benefits of personalized interfaces generated
by Supple far outweigh the drawbacks of unfamiliar aesthetics. And, as Fig. 33 illustrates, users with different sets of motor
abilities benefit from very different user interface designs, suggesting that manual design methods would not scale.

We have previously presented fragments and refinements of this framework over the course of several years [21,19,22,
23,27,28]. This paper provides the first complete and consistent presentation of the technical underpinnings of the Supple

system. The evaluation of the algorithm’s performance and the parallel algorithm introduced in Section 7.4 have not been
presented before.
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2. Previous research

Our Supple system automatically generates concrete user interfaces from declarative models that specify what types of
information need to be exchanged between the application and the user. There have been a number of prior systems—such
as COUSIN [34], Mickey [61], ITS [87], Jade [92], HUMANOID [80], UIDE [79], GENIUS [40], TRIDENT [83,6], MASTER-
MIND [81], the “universal interaction” approach [36], XWeb [62], UIML [1], Personal Universal Controller [57] (and the
related Huddle [59] and Uniform [58] projects), UI on the Fly [71], TERESA [67], Ubiquitous Interactor [60]—dating as far
back as the 1980’s, which used the model-based approach for user interface creation. The stated motivation for those prior
efforts tended to address primarily two issues: simplification of the process of user interface creation and maintenance,
and providing an infrastructure to allow applications to run on different platforms with different capabilities. In the case
of earlier systems, the diversity of platforms was limited to different desktop systems, while more recent research (e.g., the
“universal interaction” approach of [36], the Ubiquitous Interactor, TERESA) addressed the challenges of using dramatically
different devices, such as phones, computers, touch screens, with very different sizes, input and output devices, and even
modalities (such as graphical and voice). The authors of several of the earlier systems (for example, COUSIN, ITS, and GE-
NIUS) also argued that their systems would help improve the consistency among different applications created for the same
platform. A few (e.g., ITS and XWeb) also pointed out the potential of these systems for supporting different versions of
the user interfaces adapted to the special needs of people with impairments, but none of these projects resulted in any
concrete solutions for such users. In summary, prior research was primarily motivated by the desire to improve the existing
user interface-development practice. The Huddle system was a notable exception, in that it provided automatically gen-
erated user interfaces for dynamically assembled collections of connected audio-visual appliances, such as personal home
theater setups. In those systems, the available functionality depends on the selection of appliances and the connections
among them, and can change over time as the components are replaced. Thus, by automatically generating interfaces for
these often unique and evolving systems, Huddle provided novel capability that would not have been available using ex-
isting interface-design methods. Although a similar approach was earlier proposed by the iCrafter project [69], Huddle was
the first to provide a complete implementation that included an interface-generation capability.

The level of automation provided by the previous systems varied from providing just the appropriate programmatic ab-
stractions (e.g., UIML), to design tools (e.g., COUSIN), to mixed-initiative systems providing partially automated assistance
to the programmer or the designer (e.g., TRIDENT, TERESA). Very few systems considered fully-autonomous, run-time gen-
eration of user interfaces, and of those only the Personal Universal Controller [57] (and the related Huddle and Uniform

projects) resulted in a complete system while others (e.g., the “universal interaction” approach [36] or XWeb) assumed the
existence of an external interface generator.

Of those systems which provided some mechanism to automatically generate user interfaces, the majority used a simple
rule-based approach, where each type of data was matched with precisely one type of interactor that would be used to
represent it in the user interface (e.g., Mickey, ITS, GENIUS, the Ubiquitous Interactor). TRIDENT was probably the first system
to take more complex context information into account when generating user interfaces. For example, it explicitly considered
whether the range of possible values represented by a selector would be allowed to change at run time, whether a particular
number selection would be done over a continuous or discrete range, the interaction between interface complexity and the
available screen space, as well as the expected user expertise. As a result, TRIDENT required a much more complex rule base
than its predecessors—eventually the authors collected a set of 3700 rules [82] represented as a decision tree. The Personal
Universal Controller system also takes into account rich context but by limiting the domain of interfaces to appliance
controllers it did not require as large a knowledge base as TRIDENT.

In terms of their approach to abstractly representing user interfaces, most systems relied on a type-based declarative
model of the information to be exchanged through the interface, as well as on some information about how different
elements were grouped together. Often these two kinds of information were combined together into a single hierarchical
model, which in recent systems is often referred to as the Abstract User Interface (AUI) [67]. In many cases, the interface
model was specified explicitly (e.g, Personal Universal Controller, TERESA, UIML), while in some systems it was inferred
from the application code (e.g., in Mickey, HUMANOID) or from a database schema (GENIUS). A number of the systems also
included a higher-level task or dialogue model. For example, GENIUS represented interaction dynamics through the Dialogue
Nets, TRIDENT relied on Activity Chaining Graphs, MASTERMIND modeled tasks in terms of goals and pre-conditions, while
TERESA used hierarchical ConcurTaskTrees [66].

Constraints have been used as a way to define flexible layouts which provided some level of device independence [7,8]. In
those systems, semantically meaningful spatial relationships among user interface elements could be encoded as constraints,
and—if a feasible solution existed—the constraint solver would generate an arrangement that satisfied all the constraints.

Constrained optimization subsumes the constraint satisfaction approaches in that it produces the best result that satisfies
the constraints. Optimization-based techniques are being increasingly used for dynamically creating aspects of information
presentation and interactive systems. For example, LineDrive system [3] uses optimization to generate driving maps that
emphasize the most relevant information for any particular route. The Kandinsky system [17] creates information visual-
izations that mimic the styles of several visual artists. The RIA project uses an optimization-based approach to select what
information to present to the user [93], and how to best match different pieces of information to different modalities [94].
Optimization is also a natural technique for automatically positioning labels in complex diagrams and visualizations [85].
Motivated by the growing use of optimization in automating parts of the interactive systems, the GADGET toolkit [18] pro-
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vides a general framework for incorporating optimization into interactive systems, and it has been used to reproduce the
LineDrive functionality and to automatically generate user interface layouts.

Before Supple, optimization was used for graphical user interface generation by the GADGET toolkit and with the Layout
Appropriateness user interface quality metric [76]. In both cases, optimization was used to automatically generate the user
interface layout. In contrast, Supple uses a single constrained optimization procedure to generate the layout but also to select
the appropriate interactors for different user interface elements, and to divide the interface into navigational components,
such as windows, tab panes, pop-up windows, etc. When generating user interfaces adapted to a person’s motor abilities,
Supple also uses the same optimization procedure to find the optimal size for all the clickable elements in the interface,
thus solving a much harder problem than those attempted in prior work.

3. Representing interfaces, devices and users

Like other automatic user interface generation systems, Supple relies on an interface specification (I). Additionally, Supple

also uses an explicit device model (D) to describe the capabilities and limitations of the platform for which the interface is
to be generated. Finally, in order to reflect individual differences among usage patterns, Supple additionally includes a usage
model, represented in terms of user traces (T ). We describe each of these components below.

3.1. Functional interface specification (I)

Supple adopts a functional representation of user interfaces—that is, one that says what functionality the interface should
expose to the user instead of how to present those features. Like a number of previous systems (e.g., [1,57,62]), Supple rep-
resents basic functionality in terms of types of data that need to be exchanged between the application and the user.
Semantic groupings of basic elements are expressed through container types, which also serve as reusable abstractions. This
is in contrast to several other systems that use task-oriented specification languages (e.g., [67,81]), which try to capture the
logical activities performed with the user interface by representing not only user interface objects, but also the dependen-
cies among them. By specifying user interfaces at a higher level of abstraction, task-oriented languages allow for greater
flexibility in generating concrete user interfaces from any abstract specification. For example, a hotel reservation interface
can be instantiated as a step-by-step wizard for novice users or as a single view for hotel registration staff and travel agents.
We chose not to adopt this task-oriented approach for two reasons. First, because task-oriented descriptions are typically
first compiled into a data-oriented functional description [67], our use of a functional specification does not preclude a
future use with a task-oriented system. Second, task-oriented languages are particularly useful for capturing task-oriented
processes such as store checkout or making a hotel reservation. Most direct manipulation systems, however, support a broad
range of possible tasks and make simultaneously available numerous reversible actions. Such interfaces would not benefit
significantly from a task-oriented representation.

To illustrate our approach, the upper part of Fig. 1 shows the formal specification of the interface for a simple application
for controlling lighting, ventilation, and audiovisual equipment in a classroom. Formally, an interface is defined to be I ≡
〈S f , CI 〉, where S f is a tree of interface elements, and C I is a set of interface constraints specified either by the designer at
design time, or by the user at run time through Supple’s customization mechanism (Section 6.2).

The interface elements included in the functional specification correspond to units of information that need to be con-
veyed via the interface between the user and the controlled appliance or application. The interface constraints can, in
principle, constrain any aspect of interface presentation. In practice, we rely on the following three classes of constraints:

• equality constraints, which allow multiple instances of the same type (for example, all three lights in the Classroom
interface in Fig. 1) to be rendered identically;

• constraints limiting the set of presentation options for an element, which allow the user, for example, to use the
customization mechanism to constrain light intensity to be rendered with a slider or to forbid the use of tab panes at
the top level of the Classroom interface;

• interdependence constraints (for example, a stylistic requirement that a checkbox cannot be rendered as the sole ele-
ment inside a tab pane).

The elements in the functional specification are defined in terms of their type. There are several classes of types:
Primitive types include the common basic data types such as integers, floats, strings and booleans. As an example, the

power switches for the lights are represented as booleans in the specification of Fig. 1. Primitive types also include several
more specialized constructs that often benefit from special handling by user interfaces, such as dates, times, images and
clickable maps. These last two types are illustrated in a concrete interface for an interactive map application shown in
Fig. 2, where a person can point at different offices on a building map, causing the occupant’s image to be displayed in the
panel on the right-hand side. Some primitive types can be further described with a small number of attributes. For example,
information about the expected length of input can be added to instances of string type.

Container types, formally represented as {τ1, τ2, . . . , τn}, are used to create groups (or records) of simpler elements, τi .
For example, all of the interior nodes (e.g., Classroom, Light Bank, Light, etc.) in the specification tree in Fig. 1 are instances
of the container type. The container types serve two functions. First, they provide Supple with information as to what
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Fig. 1. Supple uses an algorithm that makes discrete assignments of widgets to the elements of the functional interface specification. This figure illustrates
a functional specification and a sample concrete user interface for an application controlling a small set of devices in a classroom. The solid arrows show
the assignments of primitive widgets to the elements of the interface specification corresponding to the actual functionality in the underlying application.
The dashed arrows show the assignments of container widgets to the intermediate nodes in the specification; for example the Light Bank is rendered as a
tab pane while the projector was assigned a vertical layout.

Fig. 2. An interface utilizing images and clickable maps.
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Fig. 3. An email client that uses Supple to render its user interface. (a) The main view. (b) The configuration pane.

pieces of functionality belong together semantically. Secondly, they provide reusable abstractions: as with all Supple types,
a container type can be specified once and later instantiated in multiple parts of the interface.

Constrained types: 〈τ , Cτ 〉 denotes a constrained type, where τ is any primitive or container type and Cτ is a set of
constraints over the values of this type. In the classroom example, the light level is defined as an integer type whose values
are constrained to lie between 0 and 10. In the email client shown in Fig. 3a, the list of email folders shown on the left is
represented as a string whose values are constrained to be the names of the folders in the currently selected email account.
Constraints can also be specified for container types. For example, consider the list of available email accounts in the email
example of Fig. 3b. Each account is modeled as an instance of the container type. Yet the user wants not only to see the
settings of a single account, but also wants to select different accounts to view. Thus, the interface element representing
the current account is modeled as a container object whose domain of values is restricted to registered email accounts for
that user. When Supple renders this container, it allows the user to select which account to view, and also displays that
account’s settings. When enough screen space is available, Supple will render both the selection mechanism and the details
of the content side-by-side, as in Fig. 3b. When space is scarce, Supple will show just the list of available accounts; in order
to view their contents, the user must double-click on an element in the list, or click the explicit “Details” button.

The constraints can be of any type, but typically they are expressed as an enumeration of allowed values or as a range.
Further, the constraints on the legal values of an element are allowed to change dynamically at run time—for example, the
list of folders from which to select will change when folders are created or deleted. Additional relevant attributes can be
specified in a definition of a constrained type, such as whether the constraint can change at run time or not, or what the
expected size of the domain of possible choices is.

The elements of the constrained type are often rendered with discrete selection widgets such as lists, radio buttons, or
combo boxes. But they can also be rendered as sliders for continuous number ranges where precise selection is not required,
or even as validated edit boxes.

A number of previous interface description languages, such as those used in the Personal Universal Controller [57]
or TERESA [67] projects, explicitly distinguish between types that can be manipulated with selection versus text editing
operations. However, in some situations, both interactions may be appropriate. For example, selecting a number from a
small range can be represented as a list (selection) or as a validated input (edit). With the constrained types, Supple avoids
making this commitment.
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Fig. 4. A simple client for Amazon Web Services. (a) Search results with a pane showing properties of a selected object. Only those properties which are
common to all items are shown there, but the “More Details” button brings up a specialized view for each item. (b) Detailed view for a book. (c) Detailed
view for a digital camera.

Subtyping: While the above approach makes modeling easy, it assumes that for constrained container types, all the
possible values allowed by the constraint are of the same type. In practice, this is not always the case. For example, consider
the interface to Amazon Web Services in Fig. 4. Items returned by search may come from any of several categories, each of
which can have different attributes. Books, for example, have titles and authors, while many other items do not. To alleviate
this problem, Supple allows the elements of a container of type τ to be a subtype3 τ ′ of τ . The Amazon Web Services
example in Fig. 4 illustrates one way subtypes can be rendered in a concrete graphical user interface: if space permits,
Supple renders all the attributes of the common ancestor type τ statically, next to the choice element (Fig. 4a). Any time a
specialized object is selected by the user, another button is highlighted, alerting the user that more detailed information is
available, which can be displayed in a separate window as shown in Figs. 4b and 4c.

Vectors: Elements of type vector(〈τ , Cτ 〉) denote an ordered sequence of zero or more values of type τ and are used to
support multiple selection. Like in the constrained types, the constraints Cτ define the set of values of type τ that can be
selected. For example, the list of emails in the email client (Fig. 3a) is represented as a vector of Message elements, whose
values are constrained to the messages in the currently selected folder; this allows the user to select and move or delete
several messages at once.

Actions are denoted with a functional type signature, τ1 �→ τ2, where τ1 stands for the type of the object containing
parameters of the action and τ2 describes the return type, that is, the interface component that is to be displayed after
the typical execution of the action. Unlike the other types which are used to represent an application’s state, the action

3 A subtype of a container type is created by adding zero or more new elements; the subtype cannot rename, remove, or change the type of elements
defined in its parent type.
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Fig. 5. This simple FTP Client UI illustrates the Action type in Supple’s functional specification.

Fig. 6. Presentation of a list widget and a checkbox widget for different values of (left) the minimum target size st , and (right) the minimum visual cue size
sc parameters.

type is used to invoke an application’s methods. For example, the Login button in the FTP Client Login interface (Fig. 5a) is
represented as an action. Its parameter is a container holding the User, Password, and Host elements, while its output is the
container type describing the FTP Client interface (Fig. 5b), which appears after the successful execution of a login action.

The parameters and the return type of an action type can be null if the action has no parameters or causes no new
interface elements to be created. For example, the New action in the Email client (Fig. 3a) has null parameter type, and the
Search action in the Amazon Web Services client (Fig. 4a) has null return type because it only alters the contents of the
existing Search Results part of the existing interface.

3.2. Device capabilities and constraints (D)

We model a display-based device as a tuple:

D ≡ 〈W, CD〉
where W is the set of available user interface widgets on that device and C D denotes a set of device-specific constraints.

Widgets are objects that can turn elements from the functional specification into components of a rendered interface.
There are two disjoint classes of widgets: W = W p ∪ Wc . Those in W p can render primitive types, and those in Wc are
containers providing aggregation capabilities (i.e. layout panels, tab panes, etc.).

Like the interface constraints, the device-specific constraints in C D are simply functions that map a full or partial set of
element-widget assignments to either true or false. For example, a constraint is used to check whether the interface
exceeds the available screen size.

Common widget toolkits are often a poor fit for unusual interactions (e.g., trying to control a mouse cursor with a laser
pointer) or abilities (e.g., for people with impaired dexterity or low vision). To accommodate such unusual interactions and
abilities, we extended one standard widget toolkit in two ways: by adding new widgets and by parametrizing each widget
with two continuous parameters, the minimum target size, st , and the minimum visual cue size, sc . The minimum target size
parameter—used only on devices that support 2D pointer control—constrains the minimum size of any widget component
that can be controlled with a pointer. Examples include a button, a list element, or a slider, as illustrated in the left pane of
Fig. 6. The minimum visual cue size constrains the size of important visual cues, such as fonts and icons (the right pane of
Fig. 6).



918 K.Z. Gajos et al. / Artificial Intelligence 174 (2010) 910–950
Fig. 7. We have extended a standard widget toolkit with three additional widgets, to use as alternatives to (left) a checkbox, (center) a set of radio buttons,
and (right) a spinner.

The new widgets (see Fig. 7), which provide alternatives to a checkbox, a set of radio buttons, and a spinner, expand
Supple’s options when generating user interfaces for touch-based interactions and for situations where users’ dexterity is
impaired due to context of use or due to a health condition.

3.3. Modeling users with traces (T )

Most people use only a small subset of functions available in any application, and different users use different subsets
[29,44]. To adapt to a person’s tasks and long-term usage patterns, the user interface should be rendered such that important
functionality is easy to manipulate and to navigate to. Instead of relying on explicit annotations by the designer or the user,
Supple relies on usage traces, which can correspond either to actual or anticipated usage. Usage traces provide not just
interaction frequency for primitive widgets, but also frequencies of transitions among different interface elements. In the
context of the optimization framework, traces offer the possibility of computing expected cost with respect to anticipated
use.

A usage trace, T , is a set of trails where, following [86], the term trail refers to “coherent” sequences of elements
manipulated by the user (i.e., the abstract elements from the interface description and not the widgets used for rendering).
We assume that a trail ends when the interface is closed or otherwise reset. We define a trail T as a sequence of events, ui ,
each of which is a tuple 〈ei, voldi , vnewi 〉. Here ei is the interface element manipulated, and voldi and vnewi refer to the old
and new values this element assumed (if appropriate). It is further assumed that u0 = 〈root,−,−〉, where root stands for
the root element in the functional specification tree.

Because the format of a trace is independent of a particular rendering, the information gathered on one device can be
used to create a custom rendering when the user chooses to access the application from a different device. Note that in
some cases, use of different devices may be correlated with different contexts of use (for example, a person may mix and
organize music on a desktop computer, but primarily use the playback functionality while traveling with a mobile device),
which is why the sharing of usage traces across platforms is optional.

Of course, an interface needs to be rendered even before the user has a chance to use it and generate any traces. A simple
smoothing technique will enable the system to work correctly with empty or sparse user traces. Also, the designer of the
interface may provide one or more “typical” user traces. In fact, if several different traces are provided, the user may be
offered a choice as to what kind of usage pattern they are most likely to engage in and thus have the interface rendered in
a way that best reflects their needs.

Finally, while it may be conceptually helpful to think of modeling users in terms of actual traces, those traces can grow
arbitrarily large. Therefore, in Section 5 we will show that Supple only needs to maintain concise summary statistics to
adapt to a particular pattern of usage.

4. Interface generation as optimization

The goal is to render each interface element with a concrete widget, as illustrated earlier in Fig. 1. Thus a legal rendering
of a functional specification S f is defined to be a mapping R : S f �→ W which satisfies the interface and device constraints
in CI and CD . Of course, there may be many legal renderings. Therefore, in order to find the best one, Supple relies on a cost
function $ : R �→ R�0, which provides a quantitative metric of the user interface quality. The cost function can correspond to
any measure of quality of a user interface, such as consistency with the user’s stated preferences (Section 5.1) or expected
speed of use (Section 5.2). It can also incorporate additional concerns, such as similarity to previously seen renderings of a
user interface, even if those renderings were generated for other devices (Section 5.3).

We thus formally define the interface rendering problem as a tuple 〈I, D, T ,$〉, where I ≡ 〈S f , CI 〉 abstractly describes
the interface in terms of the functional specification and the interface constraints, D ≡ 〈W , C D〉 is a device model specifying
available widgets and device constraints, T is the usage trace, and $ is the cost function. R is a solution to a rendering
problem if R is a legal rendering with minimum cost—we thus cast interface generation as constrained optimization, where
the goal is to find a concrete user interface that minimizes the expected value of the cost function with respect to the usage
trace, subject to the interface and device constraints. As stated, this is a hard discrete/continuous hybrid problem because W
contains different classes of widgets, each of which is parametrized with several real parameters, such as minimum target
size st , minimum visual cue size sc , and additional widget-specific parameters, for example, the length of a list widget for
showing search results in the Amazon search interface (Fig. 4), can vary reasonably from a handful up to 40 entries.



K.Z. Gajos et al. / Artificial Intelligence 174 (2010) 910–950 919
Table 1
An algorithm combining branch-and-bound discrete optimization and
constraint satisfaction mechanisms. The variables correspond to the ele-
ments in the functional specification S f , their possible values are drawn
from the set of available widgets W , and the constraints include both
interface and device constraints (i.e., CI and CD ). The solution is stored
in bestRendition.

bestCost ← ∞
bestRendition ← null

function optimumSearch(variables, constraints)
1. if propagateConstraints(variables, constraints) = fail

return
2. if estimatedSolutionCost(variables) � bestCost

return
3. if completeAssignment(variables) do
4. bestCost ← cost
5. bestRendition ← variables
6. return
7. var ← selectUnassignedVariable(variables)
8. for each value in orderValues(getValues(var))
9. setValue(var, value)
10. optimumSearch(variables, constraints)
11. restoreDomain(var)
12. undoPropagateConstraints(variables)
13. return

Regardless of the particular cost function used, the cost of the best user interface is not likely to be a monotonic or even
a continuous function of the minimum target size st or the minimum visual cue size sc . This is because of the screen size
constraint: as larger and larger widget sizes are used in response to changes to st or sc , the available amount of screen
space will eventually be exceeded, making it necessary to use more compact widgets (e.g., a combo box instead of a list)
or different navigation strategies (e.g., tab panes instead of a side-by-side layout). For this reason, one cannot apply any
of the efficient convex optimization techniques. Instead, it is necessary to search the space exhaustively. Fortunately, the
specter of continuous optimization is only an illusion because in practice only integer sizes are used. Furthermore, one may
approximate matters by discretizing the space even more coarsely—for example, at 5 pixel intervals—yielding 21 discrete
settings (in the range between 0 and 100) for the size parameter. This allows us to cast the problem as constrained discrete
optimization.

Conceptually, Supple enumerates all possible interfaces for a particular application and chooses the one which minimizes
the user’s expected cost of interaction. To find a globally optimal solution, we use an algorithm that combines branch-and-
bound search [47,55] with constraint satisfaction techniques. This algorithm is illustrated at a high level in Table 1, where
the variables correspond to the elements in the functional specification S f , their possible values are drawn from the set of
available widgets W , and the constraints include both interface and device constraints (i.e., C I and CD ). Efficiency of this
algorithm is affected by several design choices:

• the admissible heuristic (the estimatedSolutionCost function on line 2), which helps prune provably sub-optimal solu-
tions,

• the constraint propagation strategy (the propagateConstraints function on line 1), which helps eliminate provably illegal
solutions,

• the variable and value ordering heuristics (the selectUnassignedVariable function on line 7, and the orderValues function
on line 8).

We discuss these choices in turn.

4.1. The admissible heuristic

At each step of the search process, an admissible heuristic provides a lower bound on the cost of the best solution given
the partial choices made so far. The closer the heuristic approximates the cost of the actual best solution reachable from
a given point in the search process, the more effective it is at pruning sub-optimal solutions and, hence, the faster the
algorithm. The form of the admissible heuristic depends on the form of the cost function. In the next section, we derive
two cost functions and corresponding admissible heuristics.

4.2. Constraint propagation

We have further optimized the algorithm by implementing full constraint propagation for size constraints at each step
of the search. The constraint propagation ensures that after each variable assignment, the potential widgets considered for
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unassigned variables are consistent with all size constraints. This allows the algorithm to more quickly detect paths that
will not yield a legal solution. Furthermore, it allows the admissible heuristics to make more accurate estimates of the final
cost of the complete interface allowing for more efficient branch-and-bound pruning.

In general, full constraint propagation requires time that is quadratic in the number of variables [73]. Note, however, that
widget size constraints form a tree structure that mirrors the hierarchy of the functional specification. Exploiting this, Supple

performs full propagation of size constraints in linear time. The other types of constraints can form a potentially arbitrary
network and Supple uses a one-step forward checking procedure (i.e., propagation of constraints only to the immediate
neighbors) for those constraints. The evaluation of the system’s performance (Section 7.4) shows that these optimizations
are indeed very effective.

4.3. Variable ordering

The search is directed by the variable ordering scheme encoded in the selectUnassignedVariable subroutine. Because
all variables are eventually considered, the order in which they are processed does not affect completeness. But, as re-
searchers in constraint satisfaction have demonstrated, the order can have a significant impact on solution time. We
have experimented with three variable ordering heuristics: bottom-up first chooses the leaf variables in the interface
specification tree (Fig. 1), which leads to construction of the interface starting with the most basic elements, which
then get arranged into more and more complex structures. Top-down chooses the top-most unassigned variable; this
causes the algorithm to first decide on the general layout and only then populate it with basic widgets. The final
heuristic, minimum remaining values (MRV), has proven highly effective in many constraint satisfaction problems [73];
the idea is always to focus on the most constrained variable, that is, the one with the fewest possible values remain-
ing.

4.4. Value ordering

Ordering of values for each variable is done in a greedy manner, with those with minimum marginal cost being tried first.
While other approaches are common in solving constraint satisfaction problems, we are concerned with finding the best
possible interface. In practice, when the problem is under-constrained, this leads to efficient selection of the best solution
while in over-constrained cases, the constraint propagation procedure efficiently eliminates low-cost but large widgets from
among the possible values.

5. Formulating the cost function

The style and quality of user interfaces generated by Supple is determined by the cost function, which provides a quan-
titative metric of user interface quality. In this section, we develop two different cost functions. The first is factored in a
manner that enables fast computation of an admissible heuristic. This cost function is also parametrized in such a way that
different choices of parameters can result in different styles of user interfaces generated. Subsequent work [28] demon-
strates a preference elicitation approach that allows this cost function formulation to capture a user’s subjective preferences
regarding how his or her user interfaces should be generated. The second cost function (Section 5.2) reflects the expected
time a person would need to perform a typical set of tasks with a particular user interface. This cost function can capture
a person’s objective motor abilities [27] and allows user interfaces to be directly optimized for speed of use. The last part of
this section describes an extension that enables a notion of presentation consistency to be included as one of the terms in
the cost function.

5.1. Factorization for efficient computation and personalization

To develop a cost function that supports fast performance of the optimization algorithm as well as personalization, we
start with three design requirements:

1. As discussed in Section 3.3, to enable generating user interfaces adapted to a person’s usage patterns, the cost function
should take into account information from usage traces, so as to provide an estimate of the expected cost with respect to
the actual or anticipated usage. This is an effective mechanism for allowing some parts of an interface to be considered
more “important” than others without forcing the designer to embed such information in the functional specification
itself.

2. To enable the efficient computation of the admissible heuristic on which the optimization algorithm relies (Table 1,
line 2), we require that the cost function be factorable as a sum of costs over all elements in the functional specification.
That way, the cost of already assigned variables can be computed exactly, and for the remaining variables, the cost of
the best feasible widget (i.e., one with smallest cost and which has not been pruned by constraint propagation) is used.

3. To support personalization, the cost function should be parametrized in such a way that the appropriate choice of
parameters can result in different styles of user interfaces being favored over others.
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Fig. 8. Three types of transitions between elements of a user interface illustrated with respect to the A/V interior node: entering (ent), when a descendant
of A/V node is manipulated following an element that is not its descendant; sibling switching (sw), when user manipulates two different descendants of the
A/V node; and leaving (lv), when a user manipulates a descendant of A/V and then navigates to an element outside of the A/V sub-tree.

We start by defining $ to be of the form:

$
(

R(S f ), T
) ≡

∑
T ∈T

|T |−1∑
i=1

(
N(R, ei−1, ei) + M

(
R(ei)

))
(1)

where N is an estimate of the effort of navigating between widgets corresponding to the subsequent interface elements,
ek ∈ S f , referenced in a trail, T , and M is a manipulation cost function that measures how good each widget is for
manipulating state variables of a given type. Hence, the cost of a rendering is the sum of the costs of each user operation
recorded in the trace.

Eq. (1) satisfies the first of the three requirements, but requires re-analyzing the entire user trace each time a new cost
estimate is necessary, and it fails to satisfy the remaining two requirements.

To address those limitations, we first define N : {sw, lv,ent} × Wc �→  to be a function, specific to container widgets,
that reflects the cost associated with navigating through a rendered interface. In particular, there are three ways (denoted
sw, lv, and ent) in which users can transition through container widgets (Fig. 8). If we consider a container widget w repre-
senting an interface element e, the three transitions are: entering (ent), when a descendant of e is manipulated following an
element that is not its descendant; sibling switching (sw), when user manipulates two elements that belong to two different
descendants of e; and leaving (lv), when a user manipulates a descendant of e and then navigates to an element outside
of the e sub-tree. For different types of container widgets, these three transitions are predicted to increase user effort in
different ways. For example, suppose that e is rendered with a tab pane widget. Then N (sw, e), which denotes the cost
of switching between its children, would be high, because this maneuver always requires clicking on a tab pane. Leaving
a tab widget requires no extra interactions with the tab. Entering a tab pane usually requires extra effort, unless the tab
that the user is about to access has been previously selected. In the case of a pop-up window, both entering and leaving
require extra effort (click required to pop up the window on entry, another click required to dismiss it) but no extra effort
is required for switching between children if they are rendered side-by-side.

Recall that our interface specification is a hierarchy of interface elements. Assuming a rendition where no shortcuts are
inserted between sibling branches in the tree describing the interface, one can unambiguously determine the path between
any two elements in the interface. We denote the path between elements ei and e j to be p(ei, e j) ≡ 〈ei, ek1 , ek2 , . . . , ekn , e j〉.
We thus choose the navigation cost function, N , from Eq. (1) to be of the form:
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N(R, ei−1, ei) =
|p(ei−1,ei)|−2∑

k=1

⎧⎨
⎩

N (sw, R(ek)) if child(ek, ek−1) ∧ child(ek, ek+1)

N (lv, R(ek)) if child(ek, ek−1) ∧ child(ek+1, ek)

N (ent, R(ek)) if child(ek−1, ek)

(2)

where child(ek, ek−1) is true if ek−1 is a child of ek . This formula iterates over the intermediate elements in the path,
distinguishing among the three kinds of transitions described in the previous section. If both ek−1 and ek+1 are children of
ek , then it is considered to be a sibling switch between the children of ek . If ek−1 is a grandchild of ek+1, then the path is
moving up the interface description hierarchy, and so it leaves ek . Finally, if the path is moving down the hierarchy, then it
is entering ek .

The cost of navigation thus defined, it is easy to see that the total navigation-related part of the cost function is depen-
dent on how many times individual interface elements are found to be on the path during the interactions recorded in the
user trace. We thus define appropriate count functions: #sw(T , e), #ent(T , e) and #lv(T , e). Smoothing towards the uniform
distribution (by adding a constant to each count) ensures that Supple avoids the pathological situations where some of the
weights are 0.

Therefore, we may state the component cost of an interface element, R(e), as:

$
(

R(e), T
) = #sw(T , e) × N

(
sw, R(e)

) + #ent(T , e) × N
(
ent, R(e)

) + #lv(T , e) × N
(
lv, R(e)

)
+ #(T , e) × M

(
R(e)

)
(3)

The total cost of the rendering can be thus reformulated in terms of the component elements as

$
(

R(S f ), T
) =

∑
e∈S f

$
(

R(e), T
)

(4)

This cost can now be computed incrementally, element-by-element, as the rendering is constructed. Hence, this formu-
lation of the cost function now satisfies the first two requirements listed at the beginning of this section: it incorporates
usage traces to emphasize some parts of the user interface over others, and it allows for incremental computation.

To address the third requirement, we introduce factor functions f : W × T �→ . These functions, which take an assign-
ment of a widget to a specification element and a usage trace as inputs, reflect the presence, absence or intensity of some
property of the assigned widget. Because they take the usage trace as an input, they also reflect the expected importance of
the underlying element. For example, the following factor

fslider_for_number
(

R(e), T
) = #(T , e) ×

{
1 if type of e = number ∧ R(e) = slider

0 otherwise
(5)

will return the usage count for the element if it is of number type and is represented by a slider widget. In all other cases,
it will return 0. The following equation illustrates a more complex example:

f list_undersize
(

R(e), T
) = #(T , e) ×

{
number of choices

list size if R(e) = list ∧ number of choices > list size

0 otherwise
(6)

This factor favors larger list widgets in cases where a large number of discrete choices needs to be displayed to the user.
The design of this factor was motivated by the fact that the quantity number of choices

list size is typically correlated with scrolling
performance [35].

The factors can also be used to compute components of the navigation cost N , for example:

ftab_switch
(

R(e), T
) = #sw(T , e) ×

{
1 if R(e) = tab pane

0 otherwise
(7)

This factor will return the number of switch transitions for a container element rendered as a tab pane.
By assigning a weight uk to each factor fk , and by creating factors for all the foreseeable concerns that might affect

perception of interface quality, we can rewrite Eq. (3) as follows:

$
(

R(e), T
) =

K∑
k=1

uk fk
(

R(e), T
)

(8)

Now the particular style of user interfaces favored by the resulting cost function can be specified by an appropriate choice
of weights. This satisfies the last of the three requirements posed for the cost function, namely that it be parametrized to
allow for easy personalization of the user interface generation process. Combining Eqs. (4) and (8), the final formulation of
the cost function used by Supple is as follows:

$
(

R(S f ), T
) =

∑
e∈S f

K∑
k=1

uk fk
(

R(e), T
)

(9)
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Fig. 9. Two renderings of the classroom interface both generated under the same size constraint but using different parametrizations of the cost function.
Even though both cost functions would cause the same interface to be generated on a larger screen, under this size constraint one emphasizes the ease of
navigation (a), while the other favors convenient widgets (b). This demonstrates some of the global concerns that can be captured by our cost function.

This cost function formulation directly captures local layout and widget choices. In combination with screen size con-
straints, this function also effectively captures certain global trade-offs. For example, Fig. 9 shows two renderings of a user
interface, both generated under the same size constraint but using different parametrizations of the cost function. Even
though both cost functions would cause the same interface to be generated on a larger screen, under this size constraint
one emphasizes the ease of navigation (a), while the other favors convenient widgets (b).

Other global concerns cannot be represented using this cost function, but they can be captured with additional interface
constraints supplied at the design time (Section 3). For example, the three light controllers in the classroom interface in
Fig. 9 are constrained to be rendered identically. Such global constraints can be used without sacrificing efficiency as long
as these concerns can be propagated efficiently to prune infeasible solutions. An example of a constraint that cannot be
incorporated efficiently is a constraint that the dimensions of the complete interface have proportions between 1 : 1 and
2 : 3. Such constraint would involve all the variables in the functional specification of the interface and it would rarely be
tested before all or almost all variables were assigned. Consequently, given a very large screen, Supple sometimes produces
unusually proportioned designs (tall and narrow or short and wide).

The results of our user study suggest, however, that this cost function was expressive enough to capture almost all the
design preferences of our participants (Section 8.4.4).

The current implementation of Supple for desktop user interfaces relies on nearly 50 factors. The manual choice of
the appropriate weights can be a difficult and error-prone process. For that reason, we have also developed Arnauld sys-
tem [22], which automatically learns the right values of these weights based on a small number of preference statements
expressed by the user over concrete examples of user interfaces. The results of our subsequent studies [28] indicate that this
set of factors is expressive enough to capture most of the subjective aesthetic and usability concerns of desktop computer
users. As an example, Fig. 10 shows two versions of a print dialog interface, one generated with a cost function parametrized
to generate typical desktop interfaces, and the other generated for a touch screen operation.

5.2. Optimizing for expected speed of use

The previous section described a cost function formulation that is effective for capturing subjective interface design
concerns. However, there exist a number of objective user interface quality metrics, of which perhaps the most common is
the expected time a person would take to perform all input operations required to complete a typical set of tasks with a
user interface. This metric was used, for example, as a basis for the Layout Appropriateness measure of interface quality [76].

In this section, we extend our optimization framework to generate user interfaces that are optimized for a user’s perfor-
mance, given a predictive model of how fast a person can perform basic user interface operations such as pointing, dragging,
list selections and performing multiple clicks.

We start by defining the cost function explicitly as the Expected Manipulation Time EMT:

$
(

R(S f ), T
) = EMT

(
R(S f ), T

) = EMTnav
(

R(S f ), T
) +

∑
e∈S f

EMTmanip
(

R(e), T
)

(10)

Here, EMTnav is the expected time to navigate the interface (that is, to move from one primitive widget to another,
potentially invoking new windows or switching tabs on the way), and EMTmanip is the expected time to manipulate a
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Fig. 10. Two renderings for a print dialog interface automatically generated with different parameterizations of the cost function capturing a user’s subjective
preferences: (a) a version generated with a cost function designed to produce typical desktop user interfaces, (b) a version generated for touch screen
operation.

widget (0 for layout widgets). This equation is equivalent to the initial cost function formulation from Eq. (1) as long as
EMTnav and EMTmanip capture all the transition and widget access counts from the trace T . This equation also captures the
extent to which expected movement time can be factored: the time to manipulate individual widgets can be computed
independently of other parts of the user interface, but the time to navigate the interface cannot be computed until all
widgets and layout elements have been chosen. This has implications for the efficiency of the branch-and-bound algorithm,
because a substantial portion of the estimatedSolutionCost from line 2 in Table 1 cannot be computed until all the variables
have been assigned, thus limiting the effectiveness of the admissible heuristic guiding the search.

In the rest of this section, we confront this problem. We begin, however, with a brief description of the process for
computing EMTmanip for primitive widgets.

5.2.1. Computing EMTmanip
Many widgets can be operated in more than one way depending on the specific data being controlled and on the user’s

motor capabilities. For example, a list widget, if it is large enough to show every item, can be operated just by a single
click. However, if some of the list elements are occluded, then the user may need to scroll before selecting one of the not-
presently-visible elements. Scrolling may be accomplished by dragging the elevator, clicking multiple times on the up/down
buttons, depressing an up/down button for a short period of time, or by clicking multiple times in the scrolling region above
or below the elevator. Which of these options is fastest depends on how far the user needs to scroll and on how efficiently
(if at all) she can perform a drag operation or multiple clicks.

To accommodate the uncertainty about what value the user will select while interacting with a widget, we assign a
uniform probability to the possible values that might be selected and then compute the expected manipulation time. To
address the choice of ways the widget may be operated (e.g., dragging the elevator versus multiple clicks on a button),
Supple computes the EMTmanip for each possible method and chooses the minimal value. One cannot decide a priori which
interaction type is the fastest for a particular widget type because the outcome depends on the circumstances of a particular
user (e.g., some eye tracking software does not provide support for dragging).

When computing movement times towards rectangular targets, Supple uses the length of the smaller of the two sides as
the target size, as suggested by MacKenzie and Buxton [51]. Although more accurate models for two-dimensional pointing
have been developed for typical mouse users [2,30], those models are unlikely to be equally appropriate for unusual devices,
interaction techniques, and users with motor impairments, and we found the approximate approach to be adequate for our
purposes.

Finally, note that in order to estimate the movement time between widgets, one must take into account the size of the
target to be clicked at the end of the movement. That means that the first click on any widget counts toward the navigation
time (EMTnav) and not the time to manipulate the widget. Thus the EMTmanip for a checkbox, for example, is 0 and the size
of the checkbox affects the estimated time to navigate the interface. This increases the urgency of bounding EMTnav before
all nodes in the S f have been assigned a concrete widget; the next subsection explains how this is done.

5.2.2. Computing a lower bound for EMTnav

The key to Supple’s branch-and-bound search is being able to efficiently bound the cost, including EMTnav , for widgets
which have not yet been chosen. Without such a bound, the search took many hours to generate even simple interfaces.

To compute a lower bound on EMTnav that is applicable even when some widgets and layouts have yet to be chosen, we
proceed as follows. First, for each unassigned leaf node, e, we compute a rectangular area that is guaranteed to be covered
by all of the widgets which are compatible with e; that is, we compute the minimum width of all compatible widgets and
separately find the minimum height, as illustrated in Fig. 11.
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Fig. 11. Computing minimum of widget sizes for primitive widgets.

Fig. 12. Computing minimum of widget sizes for container widgets. The result is not only the minimum dimensions of the bounding box, but also the
minimum distance between any of the enclosed elements and the bounding box.

Fig. 13. Computing minimum distance between two elements in a layout.

One may now propagate these bounds upwards to compute the minimum sizes for all layout widgets corresponding to
interior nodes in the functional specification. For example, the width of an interior node with a horizontal layout is greater
than or equal to the sum of the lower bounds of its children’s widths. If an interior node has not yet been assigned a
specific layout, then we again independently compute the minimum of the possible dimensions.

Note, however, that in this case, for each element contained within a layout element (like the Button A in Fig. 12), our
estimate also provides the minimum distance from the edges of the layout element to the contained element. As a result,
Supple computes the most compact possible layout for an interface and thus the shortest possible distance between any pair
of elements, as illustrated in Fig. 13.

To provide a lower bound on the time to move between elements es and et , we use the shortest possible distance
between the pair and the largest possible target size among the set of widgets which are compatible with the target, et ,
because movement times grow with the distance and decrease with the size of the target. Supple updates these estimates
every time an assignment is made (or undone via backtracking) to any node in the functional specification during the
branch-and-bound search process.

More complex layout elements such as tab panes, pop-up panes, or pop-up windows make this process only slightly
more complicated; most notably, they require that multiple trajectories are considered if a node on a path between two
widgets can be represented by a tab or a pop-up. However, the principle of this approach remains unchanged.

Our results (Section 7.5) show that this lower bound on EMTnav resulted in dramatic improvements to the algorithm
performance.

In this section, we have assumed the availability of a model that can predict how long a person would take on average
to perform basic user interface operations such as clicking on a distant target, dragging, selecting from a list, or performing
multiple clicks on the same object. Fitts’ law [15]—a two parameter regression model—and related models (e.g., a related
model developed for scrolling performance [35]) are typically used for the purpose. We have previously demonstrated that
these approaches poorly capture individual differences among people with unusual abilities or who use atypical devices [27].
We have therefore developed Ability Modeler [27,28], which automatically selects the features of and then trains a cus-
tom regression model for each user. Fig. 33 in Section 8 shows several examples of user interfaces generated based on a
personalized ability model produced by Ability Modeler.
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5.3. Capturing consistency across interfaces for different devices

Supple enables people to access their applications on a variety of devices. This is a welcome opportunity but also
a challenge: users may need to learn several versions of a user interface. To alleviate this problem, newly created user
interfaces for any particular application—even if they are created for a novel device—should be consistent with previ-
ously created ones that the user is already familiar with. Consistency can be achieved at several different levels, such
as functionality, vocabulary, appearance, branding, and more [72]. By creating all versions of a user interface from the
same model, Supple naturally supports consistency at the level of functionality and vocabulary. In this section, we present
an extension to Supple’s cost function that allows it to account for dissimilarities in visual appearance and organiza-
tion between pairs of interfaces. The objective is, if an interface was once rendered on a particular device (for example,
a desktop computer) and it now needs to be rendered for a different platform (for example, a PDA), the new inter-
face should strike a balance between being optimally adapted to the new platform and resembling the previous inter-
face.

For that reason, we extended Supple’s cost function to include a measure of dissimilarity between the current rendering
R and a previous reference rendering Rref :

$
(

R(S f ), T , Rref (S f )
) = $

(
R(S f ), T

) + αs�
(

R(S f ), Rref (S f )
)

(11)

Here, T as before stands for a user trace, $(R(S f ), T ) is the original cost function, and �(R(S f ), Rref (S f )) is a dissimi-
larity metric between the current rendering R and the reference rendering Rref . The user-tunable parameter αs controls the
trade-off between a design that would be optimal for the current platform and one that would be maximally similar to the
previously seen interface.

As with the cost function introduced in Section 5.1, we define the dissimilarity function as a linear combination of K
factors fk : W × W �→ {0,1}, which for any pair of widgets returns 0 or 1 depending on whether or not the two widgets are
similar according to a particular criterion. Each factor corresponds to a different criterion. Because dissimilarity factors are
defined in terms of differences between individual widgets, overall dissimilarity factors similarly to the cost function from
Section 5.1:

�
(

R(S f ), Rref (S f )
) =

∑
e∈S f

K∑
k=1

uk fk
(

R(e), Rref (e)
)

(12)

Thus the dissimilarity function can be computed incrementally, supporting efficient computation of an effective admissi-
ble heuristic.

5.3.1. Relevant widget dissimilarity features
To find the relevant widget features for comparing visual presentations of interface renderings across different platforms,

we generated interfaces for several different applications for several different platforms and examined cross-device pairs
that appeared most and least similar to one another. These observations resulted in a preliminary set of widget features.
Those relevant to primitive widgets (as opposed to the layout and organization elements) are listed below:

Language {toggle, text, position, icon, color, size, angle}—the primary method(s) a widget uses to convey its value; for
example, a slider uses the position, a list uses text and position, a checkbox uses toggle.

Domain visibility {full, partial, current value}—some widgets, like sliders, show the entire domain of possible values, while
lists and combo boxes are likely to show only a subset of all possible values and spinners only show the current value.

Continuous/discrete—indicates whether or not a widget is capable of changing its value along a continuous range (e.g., a
slider can, while a list or a text field are considered discrete).

Variable domain {yes, no}—the domain of possible values can be easily changed at run time for some widgets (e.g., lists),
while the set of options is fixed for others (e.g., sets of radio buttons).

Orientation of data presentation {vertical, horizontal, circular}—if the domain of possible values is at least partially visible,
there are different ways of arranging these values.

Widget geometry {tall, wide, even}—corresponds to the general appearance of the widget; in some cases it may be different
from the orientation of data presentation such as in a short list widget, where elements are arranged vertically but the
whole widget may have horizontal (or wide) appearance.

Primary manipulation method {point, drag, text entry}—the primary way of interacting with the widget.

The features of container widgets (that is, those used to organize other elements) have to do with two salient properties:

Layout geometry {horizontal, grid, vertical}—reflects the basic layout geometry of the enclosed elements.
Impact on visibility {yes, no}—indicates whether or not this widget can affect the visibility of some elements in the user

interface; for example, tab panes and pop-up windows can change the visibility of interface elements.
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Fig. 14. An illustration of Supple’s interface presentation consistency mechanism: (a) a reference touch panel rendering of a classroom controller interface,
(b) the rendering Supple considered optimal on a keyboard and pointer device in the absence of similarity information, (c) the rendering Supple produced
with the touch panel rendering as a reference.

Fig. 14 shows an example of a user interface that the user first used on a touch panel, along with two versions of that
interface for a desktop computer: one that was generated using only the base cost function and one that included the
dissimilarity component.

6. Dynamic personalization of automatically generated UIs

Previous sections demonstrated how to automatically generate user interfaces adapted to a particular device, a person’s
typical usage pattern, and, possibly, his or her unique motor abilities. However, people’s tasks and needs change frequently,
and user interfaces adapted to a person’s average context may not be ideal in all situations, even though they do capture
many of the person’s idiosyncrasies. In this section we present two approaches for run-time personalization of Supple-
generated user interfaces: system-driven automatic adaptation and user-driven customization.

6.1. System-driven automatic adaptation

The inclusion of usage traces in the cost functions allows Supple to generate user interfaces that reflect a person’s long-
term tasks and usage. However, a person may use the same software for a variety of different types of tasks. Informed by
the results of several user studies we conducted [24,25], we implemented the Split Interface approach [24] in Supple for
adapting to the user’s task at hand. In Split Interfaces, functionality that is predicted to be immediately useful to the user is
copied to a clearly designated adaptive area of the user interface while the main interface remains unchanged. Unlike some
other adaptive approaches, Split Interfaces reliably improve both user performance and satisfaction [24].

In contrast to previous implementations of this general approach, which could only adapt contents of menu items [77,14]
or toolbar buttons [24], Supple can adapt arbitrary functionality: frequently used but hard to access functionality is copied
to the functional specification of the adaptive area and Supple automatically renders it in a manner that is appropriate given
the amount of space available in the adaptive part of the interface. For example, if the user frequently changes the print
orientation setting, which requires 4 to 6 mouse clicks to access in a typical print dialog box, Supple will automatically copy
that functionality to the adaptive part of the main print dialog box (Fig. 15).

6.2. User-driven customization

We have already discussed two system-driven approaches to adapting user interfaces in Supple: automatic adaptation to
a person’s long-term usage patterns by incorporating usage traces in the cost function, and the Split Interface approach for
automatic adaptation to the current task. In this section, we introduce a complementary user-driven customization mecha-
nism.

Just as with traditional user interfaces, some users may want to customize the organization or presentation of user
interfaces generated by Supple. Customization mechanisms offer users control over the user interface and may contribute
to significant improvement in satisfaction and performance when used to create custom simplified versions of the interface
that are streamlined for the user’s individual tasks and habits [52,53].

Supple includes a comprehensive customization facility that allows a designer or an end user to make explicit changes
to an interface, rearranging elements, duplicating functionality, removing elements, and constraining the choice of widgets
used to render any part of the functional specification. Operation is simple on a windows and mouse platform: one simply
right-clicks the interface element (primitive widget or container), and options for customization are revealed. Duplication
and rearrangement are specified with drag-and-drop. This is a much broader range of customizations than those possible
with manually-created user interfaces, where presentation customizations are usually restricted to colors and other cosmetic
changes, and where organizational changes are typically limited to menus and toolbars.
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Fig. 15. In the original print dialog box, it takes four mouse clicks to select landscape printing: (a) details button, (b) features tab, landscape value and
then a click to dismiss the pop-up window, (c) shows the interface after automatical adaptation by Supple, given frequent user manipulation of document
orientation; the adapted interface is identical to the one in (a) except for the Common Activities section that is used to render alternative means of
accessing frequently used but hard to access functionality from the original interface.

Fig. 16. Supple’s customization architecture. The user’s customization actions are recorded in a customization plan. The next time the interface is rendered
(possibly in a differently sized window or on a different device) the plan is used to transform the functional specification into a customized specification
which is then rendered using decision-theoretic optimization as before.

As illustrated in Fig. 16, customizations are recorded as a customization plan and they are represented as modifications
to the original functional specification rather than as changes to a particular concrete user interface. Specifically, changes
to the presence or location of user interface functions are recorded as modifications to the structure of the functional
specification while modification to the presentation of the interface (user’s choice of a widget or layout for a particular
element) are recorded as interface constraints. The interface generation process is thus extended to include an additional
pre-processing step, where the customization plan is applied to the functional specification. Only then, the customized
functional specification is rendered as a concrete user interface.

This approach allows customizations performed on one device to be reproduced on other devices, except in cases where
equivalent widgets or layouts are not available on the novel device.

Customization plans are editable by users, who may choose to undo any of the earlier customizations, and they can do so
even out of order (unlike the typical stack-based implementations of undo functionality). If any of the later customizations
depend on the earlier customization the user is attempting to undo, Supple will notify the user of the dependency thereby
allowing her to either abandon the undo operation or undo all dependent customizations as well.

The separation of customization plans from the actual interface representation, together with the ability to edit those
plans, offers the potential for users to share and collaborate on their user interface modifications.
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Fig. 17. An illustration of the customization mechanism: (left) an interface for a font formatting dialog generated automatically by Supple; (right) the same
interface customized by the user: the Text Effects section was moved from a separate tab to the section with main font properties, and the presentation of
Underlying Style element was changed from radio buttons to a combo box.

Fig. 17 shows an example of a user interface where both presentation and organization of the interface have been
customized. Another more in-depth example is discussed in Section 7.3.

7. Evaluation

In this section we examine Supple’s technical capabilities and limitations.

7.1. Versatility

We demonstrate Supple’s versatility by exhibiting the range of different types of interfaces it has generated. Earlier in
this paper, we presented an interactive map-based interface (Fig. 2), a fully functional email client (Fig. 3), an interface
to Amazon Web Services (Fig. 4), an FTP Client (Fig. 5), an interface for controlling lighting, ventilation and audio-visual
equipment in a classroom (Fig. 14), and two different print dialog windows (Figs. 10 and 15). In this section, Fig. 17
provides an example of Supple’s customization capabilities on a dialog box for font formatting. Fig. 18 illustrates a range
of supported devices: the interface for controlling classroom equipment was rendered for such diverse platforms as a touch
panel, an HTML browser, a PDA, a desktop computer and a WAP cell phone. Fig. 19 shows a user interface for controlling
a stereo rendered on a PDA and on a desktop computer. Fig. 23 shows a Supple reimplementation of Microsoft’s Ribbon
interface for Word 2007. Finally, Fig. 33 in the next section, shows a font formatting dialog generated for users with different
motor abilities.

These examples demonstrate a range of different types of interfaces: device control (classroom and stereo), dialog boxes
(font formatting), media-based (map), and data-oriented applications (email and the Amazon client).

Additionally, compared to previous rule-based approaches, optimization robustly and flexibly handles tradeoffs and in-
teractions between choices in different parts of the interface. For example, a rule-based system will likely fail to exploit
an increase in screen size (or decrease in interface complexity) by using more convenient but larger widgets. In contrast,
Supple’s search algorithm always selects an interface that is optimal (with respect to the cost function) for a given interface
and device specification. Fig. 20 illustrates how Supple robustly degrades the quality of the generated user interfaces as it is
presented with devices with progressively narrower screens.
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Fig. 18. An interface for the classroom controller application rendered automatically by Supple for a PDA, a desktop computer, a touch screen, and HTML
browser, and a WAP phone.

7.2. Adapting to long-term usage patterns

Both formulations of the cost function described in this paper incorporate usage statistics from a usage model. These
statistics impact how Supple generates user interfaces. For example, Fig. 21 shows two versions of the classroom interface
rendered under the same size constraint. The two interfaces were generated in response to two different usage models.
The rendition in Fig. 21a was based on a usage trace that represented uniform usage of all the features, while the one in
Fig. 21b was generated in response to a usage pattern where the three light controls were always manipulated in sequence.
The second interface, even though it uses less convenient widgets, makes it easier to navigate between individual light
controls than the first one.

7.3. User-driven customization

Microsoft Ribbon (Fig. 22) is an interface innovation introduced in Microsoft Office 2007 as a replacement for menus and
toolbars. One of its important properties is that the presentation of the contents of the Ribbon can be adapted based on the
width of the document window. The adaptation is performed in several ways, including removing text labels from buttons,
re-laying out some of the elements and replacing sections of the Ribbon with pop-up windows. Fig. 23a shows a fragment
of the Ribbon re-implemented in Supple, while Fig. 23b shows that same fragment adapted to fit in a narrower window.

The size adaptation of the Microsoft Ribbon is not automatic—versions for different window widths were designed by
hand. An unfortunate consequence of this approach is that no manual customization of the Ribbon is possible: unlike the
toolbars used in earlier versions of MS Office, the Ribbon has no mechanism to enable moving, copying, adding, or deleting
buttons, panels or other interface elements.

Supple’s automatic interface generation algorithm, which takes size as one of the input constraints, automatically pro-
vides the size adaptations (Fig. 23b). More importantly, however, Supple’s customization mechanisms allow people to add
new panels to the Supple version of the Ribbon as well as to move, copy, and delete functionality. The customized Ribbon
can be naturally adapted to different size constraints by Supple (Fig. 23c). In this case, automatically generated and adapted
interactions can improve users’ sense of control compared to the manually created solution.

7.4. System performance

We now systematically evaluate the performance of Supple’s optimization algorithm on a variety of user interfaces and
for a range of screen size constraints.

The computational problem that Supple solves to generate user interfaces is that of constrained combinatorial optimiza-
tion. This is a computationally hard problem—exponential in the number of specification elements, in the worst case—but
in practice, most instances of such problems are tractable, with just a small number of instances being substantially harder
to solve. Intuitively, given a large amount of screen space, a large fraction of possible renderings will satisfy the size con-
straints, and the greedy approach of always trying the best widgets first will likely result in quick computation of the
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Fig. 19. A user interface for controlling a stereo rendered automatically by Supple for a PDA (top) and a desktop computer (bottom).

Fig. 20. Supple optimally uses the available space and robustly degrades the quality of the rendered interface if presented with a device with a smaller
screen size. This figure shows three renderings of a classroom controller on three devices with progressively narrower screens.

optimal interface. Conversely, given a very small amount of screen space, there will be very few or no legal renderings and
the constraint propagation process will easily narrow down the solution space to a very small fraction of the original. The
hardest problems are therefore somewhere in the middle, in the area where the problem transitions from being under-
constrained to being over-constrained. When the existence and the location of these hardest problems are independent of
the particular algorithm used, it is frequently referred to as the phase transition phenomenon [70,33,32]. For some problem
spaces, the existence and the location of such phase transitions can be predicted analytically [89]. The space of user in-
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Fig. 21. The classroom interface rendered for a small screen size: (a) with an empty user trace; (b) with a trace reflecting frequent transitions between
individual light controls.

Fig. 22. A fragment of the official Microsoft Ribbon (a) presented in a wide window; (b) the same Ribbon fragment adapted to a narrower window: some
functionality is now contained in pop-up windows.

terface generation problems, however, is highly discontinuous and therefore hard to investigate analytically. We, therefore,
proceed with an empirical investigation.

7.4.1. Variable ordering heuristics and the parallel algorithm
We empirically investigate both the average and the worst-case performance of Supple’s algorithm, using the factored

version of the cost function described in Section 5. We start by investigating the properties of the three variable ordering
heuristics considered in Section 4: bottom-up, top-down, and minimum remaining values (MRV). To examine a representa-
tive cross-section of the problem space for each interface considered, we pick two extreme screen size constraints: one so
large that a greedy approach to generating a user interface will succeed, the second just small enough that no interface can
be generated for it. We interpolate at 100 intervals between these two extremes for a total of 101 screen sizes, and for each
size we run the optimization algorithm, collecting the following measures:

• The number of nodes expanded by the search algorithm before it finds the first solution and before it finds the best
solution.

• The time taken before the algorithm finds the first solution and before it finds the best solution.
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Fig. 23. A fragment of our Supple re-implementation of the Microsoft Ribbon (a) rendered for a wide window; (b) Supple automatically provides the size
adaptations (enlarging commonly-used functionality based on the user trace), which are manually designed in the original version of the MS Ribbon;
(c) unlike the manually designed Ribbon, the Supple version allows users to add, delete, copy and move functionality; in this example, New Container
section was added, its contents copied via drag-and-drop operations from other parts of the interface and the Quick Style button was removed from the
Drawing panel; the customized Supple version of the Ribbon can still adapt to different size constraints.

Because execution time is proportional to the number of nodes expanded (see Fig. 26) and is hardware-dependent, we
omit this measure when comparing different algorithm variants, but we report it in the next subsection when we consider
the scalability of the approach.

Fig. 24 shows the performance of the three variable ordering heuristics across the range of screen size constraints for
three interfaces of different levels of complexity: the classroom controller (as the one in Fig. 20), a print dialog box (Fig. 15),
and a stereo controller interface (Fig. 19).

This figure illustrates the existence of narrow bands in the problem space where the algorithms perform up to several
orders of magnitude worse than in other parts of the problem space. It also illustrates another important phenomenon: the
MRV and bottom-up heuristics tend to exhibit their worst performance in slightly different parts of the problem space. This
is an important observation because it suggests that actual algorithm-independent phase transition phenomenon may not
be taking place, and that combining these two approaches can result in an algorithm that performs orders of magnitude
better in the worst case than either of the two approaches alone.

Motivated by the above results, we implemented two variants of a parallel algorithm. The first, which will be referred
to as Parallel-2, concurrently runs (in parallel threads) two searches driven by the two variable ordering heuristics whose
regions of worst performance do not overlap: the bottom-up and the MRV heuristics. The second, Parallel-3, runs three
concurrent searches, one for each of the three heuristics.

In both parallel algorithms, we expected to see the benefit of the individual algorithms experiencing worst performance
in different regions of the problem space. In addition, the parallel searches explore the solution space in different orders,
coming across solutions at different times, but they share the bestCost variable (see Table 1) used for branch and bound
pruning. Therefore, we expected that sharing of the cost of the best solution found so far by one of the searches will
improve the pruning power of the others.

Fig. 25 shows the performance of the two parallel algorithms on the three example interfaces introduced in Fig. 24. In
each case, the best-performing variant from Fig. 24 is also shown for comparison. Note that unlike the previous figure, this
one uses a logarithmic scale on the y-axes to highlight large differences in performance.

The average-case performance in all instances remained the same as that of the single search, but, as expected, the
worst-case performance improved dramatically: by an order of magnitude in the case of the classroom interface and by
nearly two orders of magnitude for the print dialog and the stereo interface.

7.4.2. Scalability
Next, we investigate how our approach scales with the complexity of the interfaces it generates.
We evaluated the two parallel algorithms with 11 different user interfaces, a number of which are used as examples

throughout this article. In Table 2, we first report for each interface the number of elements in the functional specification
(excluding those for which rendering is constrained through the same rendering constraint), and the number of possible
interface renderings that the algorithm will consider. As in the previous section, for each interface, we measured the per-
formance at 101 different points throughout the problem space. We measured both the number of nodes explored and the
total time taken to produce the best solution. We report both the average case values (the median across all trials) and the
worst-case numbers.
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Fig. 24. Algorithm performance (quantified by the number of nodes considered by the search algorithm) for three different user interfaces studied system-
atically over 101 size constraints for three different variable ordering heuristics: minimum remaining values (MRV), bottom-up and top-down.

Table 2
The performance of the Supple’s rendering algorithms with respect to the complexity of the user interface. Both the average case (median) and worst-case
(maximum) are reported using time as well as the number of nodes expanded by the search algorithm.

Interface Number of
unconstrained
elements in the
specification

Number of
possible
concrete
interfaces

Number of nodes explored Time taken (seconds)

Median Maximum Median Maximum

Parallel-2 Parallel-3 Parallel-2 Parallel-3 Parallel-2 Parallel-3 Parallel-2 Parallel-3

Map 8 2.16E+02 17 13 23 29 0.07 0.10 0.14 0.35
Test interface A 4 3.51E+02 15 15 106 69 0.13 0.19 0.78 1.53
Test interface B 8 2.84E+04 40 31 458 269 0.05 0.08 0.84 0.62
Email 25 7.74E+05 49 46 464 387 0.03 0.05 0.34 0.35
Classroom 11 7.80E+07 84 105 2131 2125 0.04 0.12 0.52 1.02
Test interface C 16 1.87E+08 210 50 7210 6571 0.14 0.10 2.67 3.81
Ribbon 32 5.44E+08 1252 1237 21,757 21,759 0.32 0.42 3.10 4.51
Synthetic 15 1.27E+11 72 40 1129 836 0.05 0.06 0.44 0.68
Print dialog 27 3.54E+13 2024 2095 120,710 99,035 0.59 0.91 30.31 27.87
Font formatting 27 2.76E+15 1025 1224 106,979 126,135 0.36 0.65 23.17 35.09
Stereo 28 2.79E+17 42 139 323,049 230,900 0.03 0.14 66.15 89.04
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Fig. 25. The performance (quantified by the number of nodes considered by the search algorithm) of the two parallel algorithms compared to the best-
performing single-threaded variant from Fig. 24. The Parallel-2 algorithm combines algorithms driven by the bottom-up and the MRV heuristics. Results are
presented for three different user interfaces studied systematically over 101 size constraints. To enable direct comparison, we use a log scale on the y-axes.
The worst-case performance of the parallel algorithms is up to two orders of magnitude better than of any of the single algorithms.

Note that the number of possible interfaces considered spans 15 orders of magnitude, from 216 for the map interface to
2.8 × 1017 for the stereo interface. Yet, across this entire range, the median time to find the best interface remains under
1 second.

The median performance of the two algorithms did not vary significantly when measured by the number of nodes
explored by the search algorithm. But running on a dual-core processor, the Parallel-2 algorithm was a little faster on
average than Parallel-3. In the worst case, the Parallel-3 algorithm typically explored fewer nodes, but required more time.
Again, this result reflects the particular hardware architecture used in the experiments.

While the average performance does not correlate with interface complexity, the worst-case performance does. In fact,
exponential regression reveals an exponential relationship between the number of possible interfaces and the worst-case
execution time or the number of nodes explored by the search algorithm. For the Parallel-2 algorithm, the relationship
between the number of possible interfaces, n, and the number of nodes expanded is 22.52 × n0.246 (R2 = 0.97), and for
Parallel-3 it is 18.83 × n0.247 (R2 = 0.94). Fig. 26 illustrates these relationships. Of course, because the exponents smaller
than 1, the performance scales sub-linearly, specifically as a root of n. Furthermore, the nearly identical exponents suggest
that there is not substantial difference in performance between the two parallel algorithms. This is consistent with our
earlier observation that the worst-case performance for the top-down variable ordering tended to overlap with one of the
other two (Fig. 24).
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Fig. 26. The worst-case performance of the two parallel algorithms with respect to the complexity of the user interface. The x-axes show the number of
possible user interfaces. In the left graph, the y-axis shows the maximum number of nodes explored by the search algorithms before the best solution was
found. In the right graph, the y-axis shows the actual time taken. The tests were conducted on a dual core machine. This is why the Parallel-3 algorithm
took more time than Parallel-2 even though it explored fewer nodes on average.

Fig. 27. The worst-case performance of the Parallel-2 algorithm with only forward checking (a limited version of constraint propagation) with respect to the
complexity of the user interface. The x-axis shows the number of possible user interfaces and the y-axis shows the maximum number of nodes explored
by the search algorithm. For comparison, the performance of the algorithm with full propagation of the size constraints enabled is shown in solid black
line (bottom of the graph).

7.4.3. Importance of constraint propagation
Unsurprisingly, constraint propagation has a significant impact on the algorithm’s performance. Fig. 27 shows the perfor-

mance of the Parallel-2 algorithm with only forward checking instead of full constraint propagation for the size constraints.
For comparison, the dark line toward the bottom of the graph shows the performance of the algorithm with full constraint
propagation enabled. For this interface (classroom), the performance was an order of magnitude worse both in the aver-
age case (936 versus 84 nodes) and in the worst case (21,088 versus 2131 nodes). The performance of the algorithm with
constraint propagation entirely turned off was too slow to measure.

7.5. Performance when optimizing for expected speed of use

The cost function introduced in Section 5.2 allows Supple to generate user interfaces that are predicted to be the fastest
for a particular person to use. The structure of that cost function does not support as efficient computation of an admissible
heuristic for guiding the search as does the first cost function that was used for earlier analyses.

With this cost function, Supple needed between 3.6 seconds and 20.6 minutes to compute user interfaces. These results
take advantage of the lower-bound estimation method for EMTnav , which reduced the runtime for one of the less complex
interfaces from over 5 hours to 3.6 seconds, and without which more complex interfaces would have required days to be
rendered.



K.Z. Gajos et al. / Artificial Intelligence 174 (2010) 910–950 937
Table 3
Lines of code used to construct and manage the user interfaces for several of the applications presented throughout this paper.

Classroom Map Email Amazon Font formatting Stereo Ribbon

Lines of user interface code 77 70 515 59 125 125 140

We note that execution times on the order of 10–20 minutes (in the worst case) will still allow practical deployment of
the system, if caching is used, for users whose conditions do not change frequently.

7.6. Model complexity

Comparisons of code quantity among different approaches are often controversial. Yet, we feel it is useful to report the
amount of code4 devoted to the description and management of the user interface for several of the examples reported
in this paper. These numbers are reported in Table 3. While we do not have the data showing how much code would be
required to build analogous interfaces by hand, the numbers in Table 3 provide some evidence that our approach does not
impose excessive burden on the programmer.

8. User evaluation

In this section we present a user evaluation of a concrete application of Supple: automatically generating user interfaces
adapted to the individual abilities of users with motor impairments. As we have argued earlier in the paper, there is a
mismatch between the effective abilities of people with motor impairments and what the creators of typical interfaces
assume about the user’s strength, dexterity, range of motion, and input devices. This mismatch can prevent or impede
interaction with computers. In contrast, even users with severe impairments can effectively operate user interfaces designed
with their unique abilities in mind (e.g., [31,38]). Because of a great variety in individual abilities [5,39,41,46], many such
user interfaces are needed. Unlike manual redesign, automatic generation of such individual ability-based interfaces is a
scalable solution.

8.1. Overview of the approach

We evaluate two approaches for automatically generating user interfaces adapted to a person’s individual motor abilities.
The first approach uses the Arnauld system [22] to model users’ subjective preferences about what user interfaces are best
for them, and it relies on the factored cost function described in Section 5.1 to generate the user interfaces. The second
approach uses Ability Modeler [27,28] to build a model of a person’s actual motor abilities; this approach uses the cost
function that allows Supple to directly optimize for the expected speed of use (Section 5.2).

We divided the study into two parts, performed on two separate days. During the first part, each participant interacted
with Arnauld and then with the Ability Modeler. During the second part, we evaluated participants’ performance and
satisfaction when using 9 different user interfaces: 3 were baselines copied from existing software, 3 were automatically
generated for each participant based on his or her preferences, and 3 were generated based on the participant’s measured
abilities.

8.2. Participants

Altogether, 11 participants with motor impairments (age: 19–56, mean = 35; 5 female) and 6 able-bodied participants
(age: 21–29, mean = 24; 3 female) recruited from the Puget Sound area took part in the study. The abilities of participants
with motor impairments spanned a broad range (Table 4), and they used a variety of approaches to control their pointing
devices (Fig. 28). All but one reported using a computer multiple hours a day and all reported relying on the computer for
some critical aspect of their lives.

8.3. Apparatus

We used an Apple MacBook Pro (2.33 GHz, 3 GB RAM) laptop for all parts of the study. Most participants came to our
lab for the study and used an external Dell UltraSharp 24” display running at 1920 × 1200 resolution, but 3 of the 11
motor-impaired participants chose to conduct the experiment at an alternative location of their choosing; in these cases, we
used the laptop’s built-in 15” display running at the 1440 × 900 resolution.

Each participant had the option of adjusting the parameters of their chosen input device (e.g., tracking speed, button
functions). Additionally, we offered the participants with motor impairments the option to use any input device of their

4 Numbers were calculated using the Metrics plugin for Eclipse available at metrics.sourceforge.net and reflect all method lines in classes
devoted to the interface description for each of the examples.
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Table 4
Detailed information about participants with motor impairments (due to the rarity of some of the conditions, in order to
preserve participant anonymity, I report participant genders and ages only in aggregate).

Participant Health condition Device used Controlled with

MI01 Spinal degeneration Mouse hand
MI02 Cerebral Palsy (CP) Trackball chin
MI03 Friedrich’s ataxia Mouse hand
MI04 Muscular dystrophy Mouse two hands
MI05 Parkinson’s Mouse hand
MI06 Spinal cord injury Trackball backs of the fingers
MI07 Spinal cord injury Trackball bottom of the wrist
MI08 Undiagnosed; similar to CP Mouse fingers
MI09 Spinal cord injury Trackball bottom of the fist
MI10 Dysgraphia Mouse hand
MI11 Spinal cord injury Mouse hand

Fig. 28. Different strategies employed by our participants to control their pointing devices (MI02 uses his chin).

Fig. 29. An example of a query used during the active elicitation part of the preference elicitation.

choosing, but all of them chose to use either a Dell optical mouse or a Kensington Expert Mouse trackball (Table 4). All able-
bodied participants used a mouse. The same equipment with the same settings was used in both parts of the experiment
by each participant.

8.4. Part 1: Eliciting personal models

8.4.1. Preference elicitation tasks
We used Arnauld [22] to elicit participants’ preferences regarding presentation of graphical user interfaces. Arnauld

supports two main types of interactions: system-driven active elicitation and user-driven example critiquing.
During active elicitation participants are presented with queries showing pairs of user interface fragments and asked

which, if either, they prefer. The two interface fragments are functionally equivalent, but differ in presentation. The frag-
ments are often as small as a single element, but can be a small subset of an application or an entire application (Fig. 29).
The queries were generated automatically based on earlier responses from the participant, so each participant saw a differ-
ent set of queries. The interface fragments used in this study came from two applications: a classroom controller (Fig. 20)
and a stereo controller (Fig. 19). These applications were unrelated to those used in the next phase of this experiment.

During the subsequent example critiquing phase, the participants were shown the interfaces that Supple would generate
for them for the classroom and stereo applications. The participants were then offered a chance to suggest improvements to
those interfaces. In response, the experimenter would use Supple’s customization capabilities to change the appearance of
those interfaces accordingly. These customization actions were used as additional input by Arnauld. If a participant could
not offer any suggestions, the experimenter would propose modifications. The original and modified interfaces would then
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Fig. 30. The setup for the performance elicitation study: (a) for pointing tasks; (b) for dragging tasks—here the green dot was constrained to move in only
one dimension, simulating the constrained one-dimensional behavior of such draggable widget elements like scroll bar elevators of sliders; (c) for multiple
clicks on the same target; (d) for list selection. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

be shown to the participant. Participants’ acceptance or rejection of the modification would be used as further input to
Arnauld.

8.4.2. Ability elicitation tasks
We used the Ability Modeler [27,28] to build a model of each participant’s motor abilities. The Ability Modeler builds a

predictive model of a person’s motor performance based on the person’s observed performance on four types of basic tasks:
pointing, dragging, list selection, and performing multiple clicks on a single target (Fig. 30), each repeated multiple times
for different target sizes, distances to the target, and the angles of motion (where appropriate). The particular settings used
in this study were:

• Pointing. We varied target size (10–90 pixels at 6 discrete levels), distance (25–675 pixels, 7 levels), and movement
angle (16 distinct uniformly spaced angles).

• Dragging. We varied target size (10–40 pixels, 3 levels), distance (100 or 300 pixels) and direction (up, down, left,
right).

• List selection. We varied the height of the scroll window (5, 10, or 15 items), the distance (measured in the number of
items between successive list items to be selected; 10–120, 7 levels), and the minimum size of any clickable element,
such as list cells, scroll buttons, scroll bar elevator, or scroll bar width (15, 30, or 60 pixels).

• Multiple clicking. We used 5 targets, of diameters varying from 10 to 60 pixels.

8.4.3. Procedure
At the beginning of the session, participants had a chance to adjust input device settings (e.g., tracking speed) and

the physical setup (e.g., chair height, monitor position). We then proceeded with preference elicitation followed by ability
elicitation, encouraging the participants to rest whenever necessary.

Preference elicitation took 20–30 minutes per participant. Ability elicitation took about 25 minutes for able-bodied par-
ticipants and between 30 and 90 minutes for motor-impaired participants.

8.4.4. Note on the validity of preference models
Between 30 and 50 active elicitation queries and 5 to 15 example critiquing answers were collected from each partic-

ipant. Between 51 and 89 preference constraints (mean = 64.7) were recorded for each participant. On average, the cost
functions generated by Arnauld were consistent with 92.5% of the constraints generated from any one participant’s re-
sponses. This measure corresponds to a combination of two factors: consistency of participants’ responses and the ability
of Supple’s cost function to capture the nuances of participant’s preferences. While this result cannot be used to make
conclusions about either the participants or the system alone, it does offer support that the resulting interfaces will reflect
users’ stated preferences accurately.

8.5. Part 2: Main experiment

8.5.1. Tasks
We used three different applications for this part of the study: a font formatting dialog box from Microsoft Word 2003,

a print dialog box from Microsoft Word 2003, and a synthetic application. The first two applications were chosen because
they are frequently used components from popular productivity software. We created the additional synthetic application
to include a variety of data types typically found in dialog boxes, some of which were not represented in the two other
applications (for example, approximate number selections, which can be represented in an interface with a slider or with
discrete selection widgets).
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Fig. 31. The baseline variant for the font formatting and print dialog boxes. They were designed to resemble the implementations in MS Office 2003. Two
color selection widgets in the font formatting interface were removed, and the preview pane was not functional.

For each application, participants used three distinct interface variants: baseline, preference-based, and ability-based. The
baseline interfaces for the font formatting and print dialog boxes were the manufacturer’s defaults, re-implemented in
Supple to allow for instrumentation, but made to look like the original (see Fig. 31). For the synthetic application, we strove
for a ‘typical’ design for a dialog box: it is compact, and relatively uncluttered.

Both the preference- and the ability-based interface variants were automatically generated for each participant individu-
ally using the individual preference and ability models that were elicited during the first meeting with the participant.

For the automatically generated user interfaces, we set a space constraint of 750 × 800 pixels for print and synthetic
applications and 850 × 830 pixels for the font formatting application (see Figs. 33 and 34 for examples). These space
constraints are larger than the amount of space used by the baseline versions of those applications, but are reasonable for
short-lived dialog boxes and our particular hardware configurations. We used the same space constraints for all participants
to make results comparable.

Participants performed 6 sets of tasks with each of the interfaces. The first set counted as practice and was not used
in the final analysis. Each set included between 9 and 11 operations, such as setting a widget’s value or clicking a button;
however, if a particular interface included tab panes, interactions with tab panes were recorded as additional operations.
For example, if the user had to access Font Style after setting Text Effects in the baseline font formatting interface (Fig. 31
top-left), they would have to perform two separate operations: first click on the Font tab and then select the Style.

During each set of tasks, participants were guided visually through the interface by an animated rectangle (Fig. 32). An
orange border indicated which element was to be manipulated, while the text on the white banner above described the
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Fig. 32. Participants were visually guided to the next element in the interface to be manipulated. The orange border animated smoothly to the next element
as soon as the previous task was completed.

action to be performed. As soon as the participant set the value of a widget or clicked on a tab, the rectangle animated
smoothly to the next interface element to indicate the next task to be performed. The animation took 235 ms. We chose to
use this approach because we were interested in studying the physical efficiency of the candidate interfaces separate from
any other issues that may affect their usability. The animated guide eliminated most of the visual search time required to
find the next element, although participants still had to find the right value to select within some widgets.

All tasks were performed entirely with a pointing device without the use of keyboard shortcuts.

8.5.2. Procedure
We presented participants with each of the 9 interfaces in turn: 3 applications (font formatting, print dialog, and

synthetic) × 3 interface variants (baseline, preference-based, and ability-based). Interface variants belonging to the same
application were presented in contiguous groups. With each interface variant, participants performed 6 distinct task sets,
the first being considered practice (participants were told to pause and ask clarifying questions during the practice task sets,
but to proceed at a consistent pace during the test sets). Participants were encouraged to take a break between task sets.

The tasks performed with each of the 3 interface variants of an application were identical and were presented in the
same order. We counterbalanced the order of the interface variants both within each participant and across participants.
The order of the applications was counterbalanced across participants.

After participants completed testing with each interface variant, we administered a short questionnaire asking them
to rate the variant’s usability and aesthetics. After each block of three variants (i.e., after each application), we additionally
asked participants to rank the three interfaces on efficiency of use and overall preference. Finally, at the end of the study, we
administered one more questionnaire recording information about participants’ overall computer experience, the computer
input devices they typically use, and their impairment (if any).

8.5.3. Generated interfaces
Fig. 33 shows three examples of user interfaces generated by Supple based on participants’ measured motor capabilities.

These “ability-based user interfaces” tended to have widgets with enlarged clickable targets requiring minimal effort to set
(e.g., lists and radio buttons instead of combo boxes or spinners). In contrast, user interfaces automatically generated by
Supple based on participants’ stated preferences (see Fig. 34) tended to be very diverse, as each participant had different
assumptions about what interfaces would be easier to use for him or her.

8.5.4. Design and analysis
The experiment was a mixed between- and within-subjects factorial design with the following factors and levels:

• Impairment {able-bodied (AB), motor-impaired (MI)}.
• Interface variant {baseline, ability-based, preference-based}.
• Application {font formatting, print dialog, synthetic}.
• Trial set {1 . . . 5}.
• Participant {1 . . . 17}.

Each participants completed 3 × 3 × 5 = 45 trial sets for a total of 765 trial sets (270 for able-bodied and 495 for
motor-impaired).

The dependent measures were:

• Widget manipulation time captures the time, summed over all operations in a trial set (including errors), spent by
the participants manipulating individual widgets. It was measured from the moment of first interaction with a widget
(first clicks or mouse wheel scroll in case of lists) to the moment the widget was set to the correct value. For many
individual operations involving widgets like buttons, tabs, and lists (if the target element was visible without scrolling),
0 manipulation time resulted, because the initial click was all that was necessary to operate the widget.
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Fig. 33. User interfaces automatically generated by Supple for the font formatting dialog based on three users’ individual motor abilities. The interface
generated for AB02 was typical for most able-bodied participants: small targets and tabs allow individual lists to be longer, often eliminating any need for
scrolling. MI02 could perform rapid but inaccurate movements; therefore all the interactors in this interface have relatively large targets (at least 30 pixels
in each dimension), at the expense of having to perform more scrolling with list widgets. In contrast, MI04 could move mouse slowly but accurately and
could use the scroll wheel quickly and accurately; this interface therefore reduces the number of movements necessary by placing all the elements in a
single pane, at the expense of using smaller targets and lists that require more scrolling.

• Interface navigation time represents the time, summed over all operations in a trial set (including errors), participants
spent moving the mouse pointer from one widget to the next; it was measured from the moment of the effective start
of the pointer movement to the start of the widget manipulation.

• Total time per trial set was calculated as a sum of widget manipulation and interface navigation times.
• Error rate per trial set was calculated as the fraction of operations in a set where at least one error was recorded; we

regarded “errors” as any clicks that were not part of setting the target widget to the correct value.

For each application and interface variant combination, we additionally collected 4 subjective measures on a Likert scale
(1–7) relating to the interfaces’ usability and attractiveness. We also asked the participants to rank-order the 3 interface
variants for each application by perceived efficiency and overall preference.

For analysis, we took the logarithm of all timing data to adjust for non-normal distributions, which are often found in
such data [4]. We analyzed the timing data using a mixed-effects model analysis of variance with repeated measures: Im-
pairment, Interface variant, Application and Trial set were modeled as fixed effects while Participant was modeled correctly as
a random effect because the levels of this factor were drawn randomly from a larger population. Although such analyses re-
tain larger denominator degrees of freedom, detecting statistical significance is no easier, because wider confidence intervals
are used [49,75]. In these results, we omit reporting the effects of Application and Trial set because they were not designed
to be isomorphic and naturally were expected to result in different performance. As often is the case, the error rate data
was highly skewed towards 0 and did not permit analysis of variance. Accordingly, we analyzed error rates as count data,
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Fig. 34. User interfaces for the synthetic application. The baseline interface is shown in comparison to interfaces generated automatically by Supple based on
two participants’ preferences. Able-bodied participants like AB03 preferred lists to combo boxes, but preferred them to be short; all able-bodied participants
also preferred default target sizes to larger ones. As was typical for many participants with motor-impairments, MI09 preferred lists to combo boxes and
frequently preferred the lists to reveal a large number of items; MI09 also preferred buttons to either check boxes or radio buttons, and liked larger target
sizes.

Fig. 35. Participant completion times. Both motor-impaired and able-bodied participants were fastest with the ability-based interfaces. The baseline inter-
faces were slowest to use. Error bars show standard error.

using regression with an exponential distribution [84]. Subjective Likert scale responses were analyzed with ordinal logistic
regression [90], and subjective ranking data with the Friedman non-parametric test.

For all measures, additional pairwise comparisons between interface variants were done using a Wilcoxon Signed Rank
test with Holm’s sequential Bonferroni procedure [37].

8.6. Results

8.6.1. Adjustment of data
We excluded 2/765 trial sets for two different motor-impaired participants, one due to an error in logging, and one

because the participant got distracted for an extended period of time by an unrelated event.

8.6.2. Completion times
Both Impairment (F1,15 = 28.14, p < .0001) and Interface variant (F2,674 = 228.30, p < .0001) had a significant effect

on the total task completion time. Motor-impaired users needed on average 32.2 s to complete a trial set while able-
bodied participants needed only 18.2 s. The ability-based interfaces were fastest to use (21.3 s), followed by preference-
based (26.0 s) and baselines (28.2 s). A significant interaction between Impairment and Interface variant (F2,674 = 6.44,
p < .01) indicates that the two groups saw different gains over the baselines from the two personalized interface variants.
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Fig. 36. Participant error rates. Both motor-impaired and able-bodied participants made fewest errors with the ability-based interfaces. The baseline inter-
faces resulted in most errors. Error bars show standard error. Significant pairwise differences are indicated with a star (∗).

As illustrated in Fig. 35 (left), participants with motor-impairments saw significant gains: a 10% improvement for preference-
based and a 28% improvement for ability-based interfaces (F2,438 = 112.17, p < .0001). Able-bodied participants saw a
relatively smaller, though still significant, benefit of the personalized interfaces: a 4% improvement for preference-based and
18% for ability-based interfaces (F2,220 = 49.36, p < .0001).

The differences in performance can be explained by a significant5 main effect of Interface variant on total manipulation
time, that is, the time spent actually manipulating the widgets (χ2(2, N = 763) = 359, p < .0001). With baseline interfaces,
participants spent on average 8.29 s per trial set manipulating the individual widgets. With preference-based interfaces, this
number was 5.76 s, while for ability-based interfaces, it was only 0.84 s, constituting a nearly 90% reduction compared to
baseline interfaces.

For all results reported so far, the pairwise differences between individual interface variants were statistically significant
as well.

We additionally observed a significant main effect of Interface variant on the total navigation time (F2,674 = 7.76, p <

.001), explained by the significant difference between baseline and ability-based interfaces (z = −3180, p < .01). Baseline
interfaces required the least amount of navigation time on average (19.9 s) while preference- and ability-based interfaces
required a little longer to navigate (20.2 s and 20.5 s, respectively). While statistically significant, these differences were
very small—on the order of 3%—and were offset by the much larger differences in total manipulation time. There was a
significant interaction between Impairment and Interface variant with respect to the total navigation time (F2,674 = 9.20,
p < .0001): for able-bodied participants, navigation time was longer for both of the personalized interfaces (F2,220 = 17.18,
p < .0001; all pairwise differences were significant as well), while for motor-impaired participants the effect was opposite,
though smaller in magnitude and not significant.

8.6.3. Error rates
There was a significant main effect of Interface variant on error rate (χ2

(5,N=153) = 55.46, p < .0001): while the average
error rate for baseline interfaces was 3.96%, it dropped to 2.57% for preference-based interfaces and to 0.93% for ability-based
interfaces. This means that participants were both significantly faster and more accurate with the ability-based interfaces.
There was no significant interaction between Impairment and Interface variant and the effects were similar and significant for
both groups individually (χ2

(2,N=54) = 23.66, p < .0001 for able-bodied and χ2
(2,N=99) = 11.00, p < .01 for motor-impaired;

see Fig. 36).
All pairwise differences between individual interface variants for the results reported here are statistically significant,

with the exception of the difference between the baseline and preference-based condition for participants with motor
impairments.

8.6.4. Subjective results
On a Not Easy (1)–Easy (7) scale for ease of use, motor-impaired participants rated ability-based interfaces easiest (6.00),

preference-based next (5.64), and baseline most difficult (4.18). Similarly for able-bodied participants: 5.29 for ability-based,

5 The manipulation time data had bi-modal distribution because for many task sets the total manipulation time was 0. We therefore used a non-
parametric Wilcoxon Rank Sum test [88] to analyze these data.
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Fig. 37. Subjective results. Both groups of participants found ability-based interfaces easiest to use. Motor-impaired participants also felt that they were
most efficient and least tiring. Able-bodied participants found ability-based interfaces least attractive but, interestingly, motor-impaired participants saw
little difference in attractiveness among the three interface variants. Error bars correspond to standard deviations. Note that on all graphs higher is better
except for Not Tiring–Tiring. Significant pairwise differences are indicated with a star (∗).

5.00 preference-based and 4.38 for baseline. For both groups, these effects were significant (χ2
(2,N=99)

= 40.40, p < .0001

for motor-impaired, and χ2
(2,N=63) = 6.95, p < .05 for able-bodied). Additionally, pairwise comparisons showed that partic-

ipants with motor impairments found both of the automatically generated user interfaces significantly easier to use than
the baseline. These subjective results summarized in Fig. 37, which also shows all of the statistically significant pairwise
comparisons.

On a Not Efficient (1)–Efficient (7) scale, motor-impaired participants also found ability-based interfaces to be most effi-
cient (5.58), followed by preference-based (5.18) and baseline interfaces (4.09). This effect was significant (χ2

(2,N=99) = 23.31,
p < .0001), but no corresponding significant effect was observed for able-bodied participants. As before, significant pairwise
differences only exist between the baseline condition and each of the automatically-generated ones for participants with
motor impairments.

Similarly, on a Not Tiring (1)–Tiring (7) scale for how physically tiring the interfaces were, motor-impaired participants
found baseline interfaces to be much more tiring (4.09) than either preference-based (3.12) or ability-based (2.61) variants
(χ2

(2,N=99) = 25.69, p < .0001), while able-bodied participants did not see the three interface variants as significantly differ-
ent on this scale. All three pairwise differences for this measure were significant for participants with motor impairments.

On a Not Attractive (1)–Attractive (7) scale for visual presentation, able-bodied participants found ability-based inter-
faces much less attractive (3.24) than either preference-based (4.90) or baseline variants (5.14). This effect was significant
(χ2

(2,N=63) = 25.52, p < .0001), and so were the pairwise differences between the ability-based and each of the other two
conditions. Importantly, motor-impaired participants saw no significant difference in the attractiveness of the different in-
terface variants.
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Table 5
Average subjective ranking by efficiency and overall preference (1 = best, 3 = worst).

Motor-impaired Able-bodied

Ability-based Baseline Preference-based Ability-based Baseline Preference-based

Efficiency 1.48 2.61 1.91 1.71 2.29 2.00
Overall rank 1.64 2.48 1.88 1.95 2.00 2.05

When asked to rank-order the three interface variants of each application by efficiency of use and overall preference (Ta-
ble 5), both groups of participants ranked ability-based interfaces as most efficient, followed by preference-based, and then
baseline interfaces. This result was only significant for participants with motor impairments (χ2

(2,N=33) = 21.15, p < .001).
With respect to overall preference, participants with motor impairments significantly preferred the two personalized

types of interfaces than the baselines (χ2
(2,N=33)

= 12.61, p < .01). Able-bodied participants had no detectable preference
for any of the interface variants.

9. Discussion

Despite more than two decades of research on model-based automatic user interface generation, there remains a lot of
skepticism about the very idea of automatic interface generation. In this section, we explicitly address some of the common
concerns and indicate the novel aspects of our work that make it likely to have practical impact.

Automatically generated user interfaces are not as good as those created by human designers. What is the value of
systems like SUPPLE?

Automatically generated user interfaces are typically perceived as being less aesthetically pleasing than those created
by human designers [56]. Indeed, we do believe that hand-crafted user interfaces, which reflect designers’ creativity and
understanding of applications’ semantics, will—for typical users in typical situations—result in more desirable interfaces than
those created by automated tools. Supple, therefore, is not intended to replace or compete with human designers. Instead,
Supple offers alternative user interfaces for those users whose devices, tasks, preferences, and abilities are not sufficiently
addressed by the mainstream hand-crafted designs. Because there exist a myriad of distinct individuals, each with his or
her own devices, tasks, preferences, and abilities, the problem of providing each person with the most appropriate interface
is simply one of scale: there are not enough human experts to provide each user with an interface reflecting that person’s
context. The results of our user study demonstrate that people with motor impairments both perform better with and
strongly prefer interfaces generated by Supple compared to the manually designed default interfaces.

Our approach stands in contrast to the majority of prior work on model-based user interface design, where the auto-
mated design tools were used primarily as a means to incrementally improve existing design processes.

The creation of model-based user interfaces requires a large amount of upfront effort. This model creation is incom-
patible with the current design practice.

Indeed, nearly all model-based user interface toolkits require that users begin the UI design process by creating abstract
models of the tasks or data (or both). Even if a system provides a graphical environment for designing such models (as
does TERESA [67], for example), this is still inconsistent with the current design practice, which stresses the importance
of exploring the space of concrete (even if low fidelity) designs from the very beginning of the design process [10,48,74,
78]. This high up-front cost has been identified as an important barrier to adoption of automatic user interface generation
technology [56], and it turns user interface design into an abstract programming-like task, which is not our intention.

Instead, we believe that interfaces for typical users in typical situations should continue to be created by expert de-
signers using current design methods. The abstract interface model should be automatically inferred as the designer creates
and explores the concrete designs for the typical user. Indeed, this approach has been attempted in a recent system called
Gummy [54]. Gummy observes the designer as he or she creates the default version of a user interface and it then auto-
matically suggests designs for alternative platforms. We intend to develop such a design too, which—through only a small
amount of additional interaction with the designer—will capture his or her rationale and design preferences, so that they
can be reflected in the automatically generated alternatives.

Alternatively, the specification can be obtained by automatically reverse engineering a concrete user interface. The fea-
sibility of this approach has been previously demonstrated for traditional (non-AJAX) web sites [9,64] and more recently
for desktop user interfaces [12,45]. While some manual intervention will be required to refine such automatically extracted
specifications, this approach may significantly reduce the barrier to automatically generating alternative user interfaces for
existing applications.

Are systems like SUPPLE practical?
The most important limitation to the practical deployment of systems like Supple is the current software engineering

practice, which makes the user interface code inseparable from the application logic. HTML-based web applications are still
an exception. It is therefore our intention to deploy our technology first in the web context, most likely as a JavaScript library
that can be included with existing pages and applications to enable a rich set of client-side adaptations and customizations.
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Is SUPPLE’s approach limited to dialog box-like interfaces?
Our approach of casting user interface design as a discrete combinatorial problem is particularly well suited for dialog

box-like user interfaces because there is a well-established vocabulary of interactions used for designing such interfaces. The
approach is not limited to such interfaces, however. We hypothesize that it may also be possible to identify an analogous
discrete set of basic operations for most canvas-based interfaces, such as word processors or image manipulation programs.
We are encouraged by the results of a recent project that identified a vocabulary of 27 operations forming the foundation
for most interactions performed on multi-touch surfaces [91].

What about documentation and tech support?
If systems like Supple were to be widely adopted, what would happen to our ability to share expertise via documenta-

tion or other technical support mechanisms? For documentation, the answer is easy: it is trivial to automatically generate
instructions showing the sequence of UI operations and to illustrate these instructions with automatically created screen
shots. For remote technical support, where screen sharing is currently used, a “model sharing” approach could be used
instead: the user’s and the technician’s versions of the software could be linked not at the level of the pixels, but at the
level of the underlying model: the technician and the user can see different surface presentation of the application, but both
would be operating identical functionality. If the technician, for example, set a combo box to a particular value, the same
operation could be visualized on a user’s screen regardless of how this functionality is rendered.

10. Conclusion

We have presented Supple, a system that automatically generates graphical user interfaces given a functional user inter-
face specification, a model of the capabilities and limitations of the device, a cost function, and an optional usage model
reflecting how the interface will be used. Supple naturally generates user interfaces adapted to different devices as well as
varied motor abilities. It also provides mechanisms for automatic system-driven adaptation to both long-term and short-term
usage patterns. As a complement to automatic generation and adaptation, Supple also supports an extensive user-driven
customization mechanism that lets users modify the overall structure and individual pieces of any Supple-generated user in-
terface. We illustrated our approach with a concrete application of Supple: automatically generating user interfaces adapted
to the individual abilities of users with motor impairments.

Supple’s optimization algorithm can generate user interfaces in less than a second in most cases, provided the cost
function is expressed in a particular parametrized form. We have also introduced an alternative cost function formulation
that can reflect user’s motor capabilities, but which results in slower system performance (on the order of tens of minutes).
An important consequence of casting user interface generation as an optimization problem is that the style of the user
interfaces generated by Supple can be entirely determined by the appropriate parameterization of the cost functions. This
offers the potential for personalizing the interface generation process. Consequently, we have subsequently developed two
additional systems: Arnauld for eliciting users’ subjective preferences [22] and Ability Modeler for modeling objective
motor abilities [27].

The results of the summative user study, which involved 11 participants with motor impairments and 6 able-bodied par-
ticipants, showed that the participants were significantly faster and made far fewer errors using the automatically generated
personalized interfaces than with the default user interfaces. Additionally, participants with motor impairments strongly
preferred automatically generated user interfaces to the default ones. By helping improve their efficiency, Supple helped
narrow the gap between motor-impaired and able-bodied users by 62%, with individual gains ranging from 32% to 103%.
These results demonstrate that the technical contributions presented in this paper have a potential to make a significant
impact in practice.

In our work, we considered two metrics for optimizing user interfaces, namely, a model of users’ preferences, and a
model of their motor abilities. Future work should explore other individual metrics, such as those related to cognition and
attention. But another interesting direction would be to consider metrics that reflect how different interface designs encour-
age or facilitate particular user behaviors. For example, an on-line merchant may wish for an interface that maximizes the
number of product pages that a visitor explores, while a collaborative knowledge sharing site will benefit from maximizing
the number and quality of knowledge contributions. Kohavi et al. [43] offer some helpful initial insights.

Another promising direction will be to pursue the semantic adaptation of user interfaces. In contrast to our work so
far, where we adapted the structure and presentation of the interfaces, future work could explore ways to automatically
adapt the functionality itself; that is, ways to automatically simplify user interfaces. This is an important problem because
solving it would enable complex applications to be transformed for easier use on mobile devices and by users with cognitive
impairments. It also would allow automatic generation of interfaces for novice users, and allow frequent users to quickly
create task-specific simplified views of a complex interface. Such simplified interface views have been shown to significantly
improve users’ satisfaction, but are time-consuming to create and maintain by hand [52]. This is a hard problem to solve
automatically, because it requires an understanding of the function and purpose of interface elements. The existing solutions
rely on extensive semantic annotations by the designer or by the user [16]. An alternative approach would be to leverage
large user communities by automatically mining usage and customization traces.

Supple is not intended to replace human designers. Instead, it can provide alternative user interfaces for those users
whose individual circumstances are not sufficiently addressed by the hand-crafted designs. Because there exist a myriad of
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distinct individuals, each with his or her own devices, tasks, preferences, and abilities, the problem of providing each person
with the most appropriate interface is simply one of scale: there are not enough human experts to provide each user with
an interface reflecting that person’s context. Our work demonstrates that automated tools are a feasible way of addressing
this scalability challenge: the Supple system can generate user interfaces in a matter of seconds, and all the personalization
mechanisms we subsequently developed rely entirely on user input, not requiring any expert assistance.
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