
 392

Liability for Autonomous Agent Design
Carey Heckman
Stanford Law School
Crown Quadrangle

Stanford, CA 94305-8610
(650) 725-7788

ceh@stanford.edu

Jacob O. Wobbrock
Stanford Symbolic Systems Program

PO Box 5264
Stanford, CA 94309

(650) 497-2744

jakeow@leland.stanford.edu

ABSTRACT
Though exciting scientifically, autonomous agent design
can result in legal liability. This paper surveys those legal
concerns, focusing on issues arising from the unique
qualities of agents not found in conventional software.
Informed designers can more effectively reduce their
liability exposure and influence emerging agent liability law
and policies.

1 INTRODUCTION
Autonomous software agents differ qualitatively from
conventional software in many ways. Designers must be
aware of the legal issues that agents raise, as this awareness
will aid in thoughtful design and encourage the ability to
anticipate the sources of liability. Informed designers can
reduce their liability exposure and more effectively
influence emerging agent liability laws and policies.

Consider the following scenarios:

Scenario 1. As a consultant for network servers, you
employ a number of mobile agents to help you with your
work. Once you have been contracted to work on a system,
the agents travel across the network, locate the server, and
gather information about the system. Eventually they return
with a profile of the system information, assembling a
report that will enable you to prepare for your work.
However, on one occasion an agent causes damage to a
remote system. The client sues you for damages to its
system, but you contend that it was out of your hands and
the fault of the agent developers.

Scenario 2. A high-profile technology company releases a
financial application suite. Private citizens and professional
financiers alike adopt the software. As a sort of “master of
ceremonies” for the suite, Stockbroker Stanley is released
as an agent that interacts with the user across all of the
applications. Stanley serves as a user-interface agent; users
channel their input through Stanley. His graphical
representation is elaborate: he bears an honest facade,
appears appropriately in a fine suit, exhibits a wide variety

of gestures, voice outputs, and appropriately timed pseudo-
conversations with the user, and is convincing as an
intelligent financier. Stanley is used to observe the stock
market and create trend analyses, offering predictions and
advice on which stocks to buy and sell. He can even be
asked to buy the stocks himself via an on-line service.

Over time, however, it becomes apparent that Stanley’s
financial advice is abysmal, and thousands of people who
took it too seriously end up losing a great deal of money.
Stanley’s “clients” bring a class action lawsuit.

Scenario 3.1 A simple desktop agent performs UNIX
background operations for you, removing old files, backing
up important documents, and so forth. The agent has an
interface that allows you to pass it shell command strings
such as rm *.sav. On one such occasion, a hacker
intercepts one of these messages and changes it to rm *.*.
Fortunately the agent protects against executing this
command and refuses the operation. The hacker realizes
this and introduces a new shell program called save such
that save *.dat has the same effect of rm *.*. This time
the agent accepts the command and executes it, and your
file system is devastated. The hacker is held accountable for
the intrusion, but you also consider holding the corporation
that created the agent liable, since it did not protect against
such actions.

This paper discusses the legal concerns that agents raise.
Some of these issues pertain equally to conventional
software, but as we shall see, agents raise them with more
urgency and in a new light. In this paper we will show that
certain characteristics of agents make them even more
susceptible to liability issues than conventional software.
These issues are unique to agents, and designers should be
wary of them.

2 GENERAL PRINCIPLES OF AGENT

LIABILITY
Creating a software agent creates potential legal
responsibility for any harm inflicted by the agent. This
responsibility may require paying money to repair the
damage. In severe situations, the agent’s creator may be
convicted as a criminal.

1 This scenario is adapted from [2].

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the
copies are not made or distributed for profit or commercial advantage,
the copyright notice, the title of the publication and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or fee.
Autonomous Agents ’98 Minneapolis, MN, USA
Copyright 1998 0-89791-983-1/98/ 5 ….$5.00

 393

Rules differ among societies for deciding when someone
has committed a crime that must be punished or fined.
International uniformity is the exception, although the
growth of regional trading regions and multilateral trade
relationships have harmonized some differences. The rules
may vary among provinces or states of one nation. In the
United States, for example, national law says comparatively
little about the liability of a software agent designer. The
individual states play a far greater role, and the differences
between states can be significant.

On the whole, however, states within the United States have
based their rules on similar general principles. These
general principles underpin our discussion in this paper.
While this cannot deliver an answer for any specific set of
facts, the general principles indicate where the designer of
an agent should pay particular attention.

2.1 Liability for Intentional Acts
Writing a software agent intentionally for use in harming
someone or stealing their property would make the agent’s
creator as subject to criminal prosecution as the person who
used the agent in the crime. Federal and state criminal
conspiracy statutes may also apply.

Creating a software agent that is substantially certain to
cause others pain, suffering, or loss of privacy can bring
about liability in a private civil lawsuit. The agent’s creator
may be held responsible for all the damages caused by the
agent, even beyond those the creator could have
anticipated. It is not even necessary that the agent’s creator
intended to cause any damage, only that damages from the
agent were probable.

Suppose the hacker in scenario three created an agent that
deleted files. The legal consequences would be as if the
hacker had taken a hatchet to someone's storage devices.

Or suppose the consultant in scenario one designed an agent
to retrieve (without consent) information from the
personally-owned home computers of the company’s
employees when they dial into the corporate computer
network. An affected employee could claim that the
consultant committed an intentional and highly offensive
intrusion into an area of her life that she could reasonably
expect would not be intruded upon. If a court agreed, the
consultant would have to pay damages resulting from the
intrusion. Additionally, punitive damages might also be
awarded if the circumstances justify further discouraging
the consultant from behaving this way again.

Finally, suppose Stockbroker Stanley is an unauthorized
audio or visual portrayal of a celebrity. Many states have a
specific personality appropriation statute or otherwise allow
lawsuits to recover damages caused by this kind of privacy
invasion.

2.2 Liability for Negligent Acts
Careless creation of a software agent can also make the
agent’s creator liable for damages. The agent’s creator may
have had only the best possible intentions but nevertheless
designed the agent without fulfilling a duty to take
sufficient precautions to ensure that the agent would not
damage anyone or anything.

According to the Second Restatement of Torts (an
influential treatise that strives to summarize the liability
laws of the U.S. states), negligence is “conduct which falls
below the standard established by law for the protection of
others against unreasonable risk of harm.” To create legal
liability for negligent agent design, the injured party must
prove that:

• the agent’s designer failed to use reasonable care;

• the failure to use reasonable care caused harm;

• the agent’s designer has legal responsibility for that

harm; and

• the agent’s designer has no recognized defenses for

liability.

2.2.1 Failure to Use Reasonable Care
In general, a software agent designer has a duty to act as a
prudent and reasonable person would under the same or
similar circumstances. The designer’s best intentions or
lack of awareness of doing anything wrong are of no
consequence. Instead, the designer’s behavior must
conform to what others would do in the same situation.
Community custom may be one indication. But especially
in a fast changing technology, a designer cannot rely on a
community custom that is no longer reasonable. A degree of
care sufficient when agent design was more primitive is
likely to be inadequate with today’s more sophisticated
design principles, and today’s standards will become
inadequate as agent design advances in the future. Another
frequently used formulation for “reasonable care” balances
the probability of the injury occurring and the degree of
injury that would occur against the burden of preventing the
injury from occurring.

If it can be shown that agent design is a profession, the law
imposes a more demanding standard of care: the care that
similar professionals exercise in the same or similar
communities. Whether this tougher standard applies
remains undecided. The wider recognition of agent design
as involving special knowledge and skills, the general
understanding that an academic degree in agent design is
needed to work in the field, and the growing significance of
quality programming to personal and property safety, all
point towards a “reasonable agent designer” standard rather
than the broader “reasonable person.”

 394

The software agent designer owes this duty to use
reasonable care only to those the designer could have
reasonably foreseen as being endangered by the designer’s
failure to exercise that care. Consider a prototype agent that
a designer stored on a computer in an access-restricted
office. However, one night someone breaks into the
designer’s office and, despite the “DO NOT TOUCH” sign,
executes the agent. The agent malfunctions and causes
considerable damage. A court would probably determine
that the designer owed no duty of care because she could
not have reasonably foreseen someone breaking into her
office and ignoring her sign.

2.2.2 Causation of the Harm
The failure to use reasonable care must have caused the
harm. In other words, but for the designer’s failure to use
reasonable care, the injury would not have occurred. Thus,
in the example above, if the thief had introduced the error
that caused the agent to malfunction, the designer’s actions
would have had nothing to do with the resulting harm. The
designer would not have acted negligently with respect to
that harm.

2.2.3 Harm Within Scope of Legal Responsibility
Third, the harm has to fall within the zone of responsibility
society has decided to impose on its members. Society’s
rules usually limit responsibility to reasonably foreseeable
injuries caused by reasonably foreseeable events.

An agent designer’s lack of care that causes an injury would
not be negligence if she could not have reasonably foreseen
the nature of the injury (rather than its extent). For example,
it might be concluded that an agent designer could not have
anticipated that the error in the agent that causes a sleeping
laptop to make a loud sound would cause an avalanche in
the Swiss Alps.

An intervening act also complicates the responsibility
analysis. An agent designer remains responsible if the
intervening act is a normal response to the situation created
by the designer’s negligence. So if the laptop’s unexpected
beep caused someone carrying the laptop to drop it, a court
could determine that the designer should have reasonably
foreseen this would occur.

2.2.4 Absence of Defenses to Negligence
Even if the designer’s behavior has met the other
requirements for negligence liability, the injured party’s
conduct may negate or decrease the designer’s liability.

For example, a test version of an agent includes negligently
designed code but is accompanied by a booklet warning the
user not to install the agent on a KTel computer. The victim
ignores the booklet, installs the agent on a KTel computer,
and suffers an erased hard drive as a result. In a very few
states, the user’s behavior would be called contributory

negligence, and eliminate his ability to recover anything at
all from the agent designer. In the rest of the states, the
liability would be calculated by comparing the designer’s
fault with the user’s. In a pure comparative fault state, if the
designer were 10% at fault and the user 90%, the user
would still recover 10% of his damages. In a partial

comparative negligence state, the user only recovers if the
user’s own fault is less than some cutoff level. If the
applicable state law sets a 50% threshold, the user who is
90% at fault would recover nothing.

Another potential defense for a designer is assumption of

risk. Assume that the user read the booklet accompanying
the agent, including the large, bold type warning that use on
a KTel computer could result in an erased hard drive. The
user nevertheless operates the agent on a KTel computer
and suffers an erased hard drive. Because the user
recognized and understood the danger but voluntarily chose
to take the risk anyway, most states would relieve the
designer from negligence liability.

2.3 Strict Products Liability
Creating a software agent may result in liability without any
designer fault. Strict products liability recognizes that with
modern technology and mass production, injuries will occur
without intentional misdeed and despite reasonable care.
Individual consumers would find it difficult to prove
negligence. Producers, on the other hand, can absorb or
insure against a loss more easily and are better able to take
measures to reduce the occurrence of injuries.

Section 402A of the Second Restatement of Torts provides
for strict products liability for physical harm caused by the
sale of a “product in a defective condition unreasonably
dangerous to the user or consumer.” The seller must be one
who is in the business of selling the product. A product may
be in “defective condition” because of defective
manufacturing, defective warnings to the purchaser
concerning the product’s dangers, or because of defective
design.

An agent has a manufacturing defect if it leaves the
manufacturing facility in a condition other than that the
manufacturer intended. Thus if a disk duplicator generates a
flawed copy of a software agent that as a result is more
dangerous than the ordinary consumer would expect, and
the flawed copy causes a physical harm, strict products
liability would apply.

An agent has a warning defect if the product lacks adequate
warnings of danger and the product is unexpectedly
dangerous or if the product is unavoidably unsafe and the
danger is not reasonably apparent. The required warnings
depend on the normal expectations of consumers, the
product’s complexity, the potential magnitude of the
danger, the likelihood of injury, and the feasibility and
effect of including a warning.

 395

An agent has a design defect if the agent’s design presents
an undue risk of harm in normal use. In most U.S. states, a
design defect exists if the risk of harm could have been
eliminated without a serious adverse affect on the agent’s
utility. In some U.S. states, however, a design defect exists
if the agent did not perform as safely as an ordinary
consumer would expect. In a few U.S. states, a design
defect exists if either a feasible design alternative existed or
if ordinary consumer safety expectations were not met. No
matter which test applies, an injured consumer could have a
difficult time making the necessary proof.

Strict products liability is restricted. It only applies to
tangible products. It does not apply to services. Thus a
custom designed agent or an agent used to deliver a service
may not fail within strict products liability protection. On
the other hand, an agent licensed in mass market
distribution would probably qualify as a product. Strict
products liability also does not apply to instructions,
information in books, or other intangibles. Courts have been
reluctant to let liability of this kind chill freedom of

expression. Although a 1991 decision2 suggested a
willingness to treat computer software differently from
recipes and guidebooks [1], so far no court has followed the
suggestion. Finally, most states do not allow recovery under
strict products liability for purely economic losses. This
limits the applicability of the doctrine to situations in which
a software agent inflicted a personal injury or property
damage.

These general principles of liability are raised by agents as
well as other products and services. We now explore the
specific features of agents that raise liability concerns.

3 LIABILITY UNIQUE TO

SOFTWARE AGENTS
It is important to explore the differences between agents
and conventional software. This difference has been
succinctly stated as agents having a “sense of themselves as
independent entities” [9], but we should like to explore this
more deeply. For in these differences we find new issues
formerly clandestine in non-agent-based applications.

“Autonomous agents are computational systems that

inhabit some complex dynamic environment, sense and act

autonomously in this environment, and by doing so realize

a set of goals or tasks for which they are designed” [8].

Pattie Maes' definition reveals a great deal about what
distinguishes an agent from conventional software. In
examining it, we will describe what makes agents special,
and why these distinctions are potentially prone to liability.

2 Winter v. G.P. Putnam's Sons, 938 F.2d 1033, 1035 (9th Cir.
1993)

3.1 Autonomy
The first word of Maes’ definition tells the most: agents are
autonomous. This means that they somewhat control their
own actions and do not depend on constant human feedback
[2]. Contrast this with conventional software that operates
synchronously with its user, accepts input when the user
supplies it, and produces output that is causally related to
the input. “Computers currently respond only to what
interface designers call direct manipulation. Nothing
happens unless a person gives commands from a keyboard,
mouse, or touch screen” [9]. Direct manipulation has also
been referred to as explicit responsiveness [5]. Agents, on
the other hand, perform asynchronously, meaning they can
assume a task and continue to operate without constant
feedback from a user [2]. This translates into greater
freedom for agents, as a human need not constantly
supervise them. It also raises issues with respect to
reliability, since a user will not be present to arrogate
control should something go wrong. Autonomy raises more
concerns when coupled with mobility, because then “not
only can you not see what the agents are doing, they may be
off doing it on the other side of the planet” [2].
Asynchronous behavior is not present in the direct
manipulation paradigm of conventional software.

Autonomy poses unique concerns for designers with respect
to causality. In using conventional software, the user is seen
as operating a tool to achieve his goals. If something goes
awry, the damages can often be easily traced to a user error.
If a car is driven straight into a wall, assuming no
extenuating circumstances, it can only be the driver’s fault.
The autonomous nature of agents, however, complicates
assigning responsibility to the user. If an agent takes actions
that result in damages, it is unclear who is liable. The user
is not directly in control over the agent’s actions and cannot
be expected to have insight into all of the actions of their
agent. A tempting defense for a user whose agent caused
damage might be “but my agent did it.”

Legal defenses of this kind have not succeeded [16].3 The
rationale is, as Steven Miller points out curtly, that “there is
no such thing as a ‘computer mistake.’ Microchips are too
dumb to do anything except follow instructions” [10].

In light of the unfeasibility of such a defense, users whose
agents have caused damage will likely blame designers. The
potency of this defense will only be heightened if the agent
in question is autonomous because this absolves the user of
direct responsibility for the agent’s actions. In the need to
assign blame, the court may be pressed to consider
inadequacies in design. Moreover, as noted in the
discussion of strict liability, designers can be of good
intention and adequately test their products, yet still be

3 See, e.g., Walters v. First Tennessee Bank, 855 F.2d 267 (6th
Cir. 1988).

 396

found strictly liable if an agent has taken actions that caused
damages [4].

The causation for any agent malfunction lies with a human,
and the autonomous nature of agents may implicate
designers more often than users.

3.2 Mobility
Maes’ definition says that agents “inhabit some complex
dynamic environment.” This is of great concern from a
liability standpoint. The ability for software to travel to a
remote host and execute some sequence of actions brings
forward two considerable problems: security and privacy.
The former determines who has access to a system and
when this access is granted. The latter concerns what
someone can see and do once they get there.

3.2.1 Security
Mobile behavior, while exhilarating from a computational
viewpoint, holds perhaps the greatest potential for security
problems. “Security is a significant concern with mobile
agent-based computing, as a server receiving a mobile agent
for execution may require strong assurances about the
agent’s intentions” [2]. How can a machine that receives a
remote agent be assured it is not a virus in disguise? Are
designers responsible for everywhere their agent goes, and
everything it does when it gets there? These are tough
questions for which there is no precedent. The main danger
with mobile agents is that often they perform actions the
user cannot observe, and agents that are out on the network
may have no means by which they can be recalled.

Some agent designers have resolved security problems by
building safeguards into their systems. Telescript (of
General Magic Corp.) places life span limits on agents in
hopes of curbing a mutation that might turn an agent into a
disastrous virus on the Internet [3]. But safeguards can
reduce the flexibility of an agent, in Telescript’s case by
destroying it after a predetermined amount of time.
Ensuring security is further complicated because mobile
agents often must have all of the access rights of their user
in order to accomplish their goals [2]. This leads to a
process called delegation: passing the user’s identity to the
agent. This is usually accomplished by giving the agent the
user’s identification certificate. However, these certificates
are valid for finite periods, and a remote agent whose
certificate suddenly expires can cause unexpected problems
[2].

Hackers take advantage of insecure systems by breaking in
from a remote locale. We would not want to consider users
of mobile agents in the same category as hackers, even if an
agent caused damage. However, despite the “good
intentions” of everyday users, statutes in many states cover
any form of unauthorized access, malicious or benign [16].
Users may be held accountable if their agents gain access to
systems that they should not; and if damage is caused, it is

possible that both the user and the designer may be
implicated. In any case, agent accessibility protocols should
try to incorporate some form of user-acknowledgment. This
way the user can have more control over his agent’s
accesses. Unfortunately, requesting permission from the
user every time his agent attempts to access a remote host is
impractical for agents that zip across multiple servers.

Controlling agent access to remote hosts also means
controlling access to system resources. Mobile agents can
transport across networks and execute on remote machines.
The system resources (memory and processes) of the
remote host can be consumed by mobile agents when they
run. In large networked servers, where these resources are
in abundance, the negligible amount used by a mobile agent
seems inconsequential. However, as more and more
individuals connect to the network, smaller machines may
play host to mobile agents. If a small machine is forced to
lodge a high number of mobile “patrons” the availability of
its system resources may become an issue. Determining
who has the right to execute on remote machines will
become a problem for designers and policy makers alike.

Consuming a machine’s time and resources without explicit
permission could be considered theft of property. One
might argue that, if a person is networked, they have
implicitly consented to outsiders using their resources.
However, no one would argue that the networked user has
also given implicit consent to network viruses landing on
his machine. The line separating which mobile “sojourners”
are permitted to use remote resources and which are not is
unclear. The courts have dealt with unauthorized use of a

computer’s resources before. In United States v. Sampson,4
the court ruled that “the utilization of a computer’s time and
capacities is inseparable from possession of the value of the
physical computer itself” [16]. Theft of computer time is
therefore treated as a “theft of property” under federal
criminal law.

Designers must implement a technological infrastructure
that allows mobile agents to access remote sites without
unreasonably compromising security. People must be
comfortable when an agent from afar pays a visit.

3.2.2 Privacy
If a mobile agent suddenly lands on your machine, how are
you to know it can be trusted? Perhaps it is relaying
information back to someplace without your consent.
Agent-based espionage may become a new form of hacking.
Additionally, if agents confer together and share
information about their users, how can users be assured
their agent does not reveal sensitive information [7]?
Mobile agents raise these concerns.

4 6 Comp. L. Serv. Rep. (Callaghan) 879 (N.D. Cal. 1978).

 397

We cannot expect agents to share the same kind of common
sense and ethical judgment that we as humans try to exhibit.
Steven Miller points out that the Internet is a place where
good intentions must prevail. “The Internet works best
when people obey the established ‘netiquette’” [10].
Whether agents can be built with this concept of netiquette
in all situations is a challenge for designers. Unfortunately
trusting peoples’ good intentions is not enough. Computers
magnify privacy concerns because of the ease with which
data can be accumulated, transferred, and copied. Some
have found privacy such a scarce commodity on the
network that they inveigh against keeping any data meant to
be truly private on the network at all [11].

The law recognizes invasion of privacy as unauthorized
access to or disclosure of information [16]. Users must
know what information about them is seen by the agent, and
what information a mobile agent might take with it across
the network. Despite attempts to make agent-user
communication less intrusive, it may be necessary to
require agents to inform the user of their actions insofar as
they pertain to information about the user. As Peter
Neumann points out, “laws that make privacy violations
illegal cannot prevent violations; they can only possibly
deter violations” [11]. It will be a job for designers to make
agents honor privacy.

3.3 Indeterminacy
Maes’ definition also states that agents “sense and act
autonomously in [their] environment.” This section focuses
on the environments in which agents operate and the role
adaptivity plays in creating unpredictable actions. Two
factors — indeterminate environments and indeterminate
users — raise the legal issue of foreseeability.

3.3.1 Indeterminate Environments
Conventional software operates in a fairly restricted
domain, accepting only a limited set of predictable inputs.
Word processors, for example, accept text, graphs, charts,
and tables, while the more advanced of these accept images,
videos, and sounds. They accept mouse clicks on their
toolbars and selections from their pull-down menus. Their
behavior in response to these inputs is predictable.

Software agents, however, may operate in indeterminate

environments. By this we mean to say that the environments
in which agents operate can be dynamic and unpredictable,
and the possible data that an agent might encounter is
varied. The Internet, where the possible data encountered is
immense and varied, is an example of an indeterminate
environment. An agent used to navigate this environment,
like Henry Lieberman’s Letizia, must be flexible enough to
interact with all the information confinable to a web page
[6]. Ted Selker, in his development of the COACH Lisp
tutor, faced the challenge of creating an agent that could
offer help in a dynamic language of over twenty-five
thousand commands [14]. Both agents were created to

operate in complex environments that changed, where the
possible data and input encountered is not altogether
foreseeable. An agent that confers with other agents can
also be considered operating in an indeterminate
environment since there is no way to forecast the exact
nature of all the agents one may encounter.

In such indeterminate environments, how can we be sure of
the behavior of our agents? Is there any way to protect
against all possibly unforeseen inputs? Unfortunately,
“most intelligent applications are extremely fragile at the
boundaries of their capabilities; we need to provide safety
mechanisms that can detect failures of reasoning or
negotiation” [2]. Certainly in some cases, protections would
limit the flexibility of agents, disallowing their interaction
in certain environments or with certain types of data. A
balance is needed that limits agents’ exposure to uncertain
environments yet allows them to flexibly operate in a
variety of domains.

Agents are not only designed to inhabit indeterminate
environments but also, as Maes’ definition states, to “sense
and act” in them. That is, agents not only receive inputs
from these environments but produce outputs as well.
Contrast this with conventional software that usually creates
(or is) its own environment. Agents inhabit other
environments that are exterior to themselves, such as the
web or a database. The fact that agents sense and act in
environments typifies their agency: unlike conventional
software, they have the ability to affect changes outside
themselves to their surroundings.

This ability to affect indeterminate environments raises the
concern that some actions may cause unforeseen results.
Peter Neumann observes that “in a complex system, it is
essentially impossible to predict all the sources of
catastrophic failure” [11]. In the first introduction scenario,
an agent inadvertently caused damage to the environment in
which it was a guest. It is important to take note that a
mutated or malfunctioning agent is nothing more than a
virus. “We might call viruses ‘agents with attitude’” [2].
We might also, then, call agents viruses with good
intentions. Agents affect their environment, and because
environments are varied and complex, the outcomes of such
effects are not always predictable.

We have shown that indeterminate environments exacerbate
liability concerns because predicting how inputs will affect
agents and how agent actions may affect their surroundings
is difficult. After we discuss indeterminate users in the next
section, we will show how indeterminacy in general is
related to legal foreseeability.

3.3.2 Indeterminate Users
Users are part of an agent’s “complex dynamic
environment.” They behave very differently and may use
their agents for varying purposes. Many agents are designed

 398

to be adaptive so that they will self-customize to their
user’s patterns of behavior. As more information is gathered
by the agent about the user — either through observation or
explicit user feedback — the agent updates its model of the
user and the heuristics by which it performs, makes
judgments, etc. Adaptivity is a highly prized quality in an
effective agent, and it has been cited as the key
characteristic that will embody the future of agents [3].

However, the more adaptive an agent gets, the more
indeterminate its actions and the effects of those actions.
Artificial life agents, for example, are built with the ability
to modify their own code. It can be very difficult to predict
exactly how they may end up behaving, especially after
many generations of “evolution.” An agent’s ability to
adapt may result in extremely variant behavior not
conceived at the agent’s inception.

Adaptive behavior is made possible when the agent creates
a model of the user. This model has been referred to as an

adaptive user model (AUM),5 which is maintained by the
agent, and is constantly changing as the agent learns [14].
The user model enables the agent to make judgments about
the goals of the user, then take steps proactively to achieve
them. Two agents may be initially identical but over time
may behave quite differently because their users’ patterns
and goals are distinct.

Contrast this adaptive learning with conventional software
that has no knowledge of different users. A word processor
treats each user equally, and the application is completely
blind to each user's goals and patterns of behavior.
Adaptive behavior is thus promising and concerning. We
recognize its power, but it comes with the unfortunate tag of
indeterminacy.

3.3.3 Foreseeability
Recall from the discussion in 2.2.3 that designers may be
liable for the foreseeable results of their agent’s use. And
the indeterminacy we have discussed makes determining
what is causally foreseeable more difficult.

The indeterminacy of environments complicates
foreseeability. The fact that agents (especially mobile ones)
operate in indeterminate environments means that the
possible inputs and outputs are virtually infinite, constantly
changing, and unforeseeable. Unforeseen data may enter a
system and cause failure even though error protections were
in place [16]. It may be hard to hold a designer responsible
for failing to account for all of the myriad circumstances
into which an agent may wander.

5 The COACH user model, and user models in general, is
discussed in [15].

The indeterminacy of users causes similar problems for
foreseeability. The liability for adaptive agent failures could
be difficult to assess, especially if the agent is used over a
long time, a shadow of its initial skeleton. The user has little
control over how the agent learns, as the adaptive nature of
an agent is a function of its design. However, this does not
mean the designer is necessarily negligent. It may be
unreasonable to expect her to foresee all possible
adaptations the agent could make. Furthermore, myriad
users mean myriad agents, all of which may form goals very
differently. The fact that adaptive agents learn may be
enough to excuse the designer for negligence since all
adaptations to all possible users are not reasonably
foreseeable. The ultimate behavior of the agent lies beyond
that foreseen at its inception.

It remains to be seen how the indeterminacy associated with
agents will play out in the legal arena. The laws that exist
now cannot be expected to judiciously govern the
idiosyncrasies of the computer age [11]. But as we have
already stated, it is dangerous to adopt a mind set that an
agent could be the culprit. Ultimately people are
responsible, and it is likely that a combination of people
will be involved should an agent-related problem occur. By
being aware of more than just the foreseeable environments,
users, adaptations, and behaviors, designers can better
anticipate problems and protect against them.

3.4 Anthropomorphic Representation
Anthropomorphic representation is another common
attribute associated with some agents and not found in
conventional software. By anthropomorphic representation
we mean to include a wide variety of agent traits: the ability
for agents to interact with people on their own terms
through natural language, graphical interfaces, gestures,
personality, and generally anything which agents exhibit
that is human-like. Stockbroker Stanley from scenario two
exemplifies a high degree of anthropomorphic
representation. Whether agents should be given graphical

on-screen representations is hotly debated.6 People attribute
intelligence and personality to media, especially on-screen
characters [12]. While competence and trust are two
characteristics that must be built into agents [7], graphical
agents can be imputed with greater competence than they
deserve [12]. This danger of attributing undeserved
competence and trust to graphical agents is the source of
criticism against anthropomorphizing agents [13].

A human is guilty of misrepresentation if they falsely
present themselves and their expertise. Moreover, if a
customer relies on the misrepresented information for a
product or service, the deceiver will be held liable.
However, studies have shown that people relate to media as

6 An article defending anthropomorphizing agents is [5]. For the
opposing view, see [13].

 399

they do other people [12]. Therefore, one might argue,
anthropomorphized agents should be subject to
misrepresentation laws. Especially when an agent is
portrayed as a specialist in some field (e.g., Stockbroker
Stanley), people will attribute a high degree of competence
to the agent [12]. Should people come to rely on that
competence for weighty decisions, the agent’s
representation could have serious repercussions. Of course,
since we cannot hold the agent itself liable for
misrepresentation, we would likely point to the designer for
misleading customers.

Interfaces should not be considered less prone to liability
than underlying code simply because of their unquantifiable
nature. Many cases have occurred in which an interface was

responsible for disastrous consequences.7 Interfaces have
been the subject of major court cases as well, notably the
“look and feel” lawsuits in the 80s. It is unlikely that the
advent of computer agents will receive any less attention. In
light of the possible interactions people will have with
increasingly embellished graphical agents, “designers of
human interfaces should spend much more time anticipating
human foibles” [11].

4 CONCLUSION
Humans are ultimately responsible for the actions of their
creations. Heightened sensitivity to the predicaments posed
will better enable designers to build trustworthy agents that
respect their environments and users, as well as avoid costly
litigation. We do not envision a future where agents are on
trial for their mistakes, facing “death by formatting” if
convicted.

Making agents a viable technology involves more than just
technical prowess. Legal liability standards must remain
appropriate in light of the evolving art of agent design.
Informed designers therefore must devote attention not only
to agent design itself, but to shaping the emerging policies
which govern their art.

5 REFERENCES
[1] Burgunder, Lee. Legal Aspects of Managing

Technology.South-Western Publishing, Cincinnati,
Ohio, 1995.

[2] Caglayan, Alper and Harrison, Colin. Agent

Sourcebook. John Wiley & Sons, New York,
1997.

[3] Ditlea, Steve. Silent Partners. PC Computing, May

1994, 160-171.

7 See pp. 206-208 in [11]. This section details numerous
catastrophes traced directly to interface design problems.

[4] Johnson, Deborah. Computer Ethics, 2ed. Prentice
Hall, New Jersey, 1994.

[5] Laurel, B. Interface Agents: Metaphors with

Character. In B. Laurel, ed., The Art of Human-

Computer Interface Design. Addison-Wesley,
Reading, Mass., 1990.

[6] Lieberman, Henry. Letizia: An Agent that Assists

Web Browsing. Proc.IJCAI 95, 1995.

[7] Maes, Pattie. Agents that Reduce Work and

Information Overload. Communications of the

ACM 37, 7 (July 1994), 31-40, 146.

[8] Maes, Pattie. Artificial Life Meets Entertainment:

Lifelike Autonomous Agents. Communications of

the ACM 38, 11 (November 1995), 108-114.

[9] Maes, Pattie. Intelligent Software. Scientific

American, September 1995, 84-86.

[10] Miller, Steven E. Civilizing Cyberspace. ACM

Press, New York, NY, 1996.

[11] Neumann, Peter. Computer-Related Risks.

Addison-Wesley, Reading, Mass., 1995.

[12] Reeves, Byron and Nass, Clifford. The Media

Equation. Cambridge University Press, New York,
1996.

[13] Shneiderman, Ben. Beyond Intelligent Machines:

Just Do It! IEEE Software 10, 1 (January 1993),
100-103.

[14] Selker, Ted. COACH: A Teaching Agent that

Learns. Communications of the ACM 37, 7 (July
1994), 92-99.

[15] Selker, Ted ed. New Paradigms for Using

Computers. Communications of the ACM 39, 8
(August 1996), 60-69.

[16] Vergari, James and Shue, Virginia. Fundamentals

of Computer-High Technology Law. American
Law Institute-American Bar Association,
Philadelphia, PA, 1991.

