X86 vs. ARM64.:

An Investigation of Factors Influencing Serverless
Performance

Xinghan Chen, Ling-Hong Hung, Robert Cordingly, Wes Lloyd
kirito20@uw.edu

School of Engineering and Technology
University of Washington Tacoma

December 11,2023

24th ACM/IFIP International Middleware Conference
MIDDLEWARE 2023

B Background and Motivation
Research Questions
Methodology

Results
Conclusions

Serverless function-as-a-service
(FaaS) platforms offer many

Serverless desirable features:
. Rapid elastic scaling
ComPUtlng Scale to zero

No infrastructure management
Fine grained billing

Fault tolerance

No up front cost to deploy an
application

Function as a service

Switch to ARM64:

e Power efficiency
e Lowcost

X86 VS. ARM64 Stay on X86:

No migration cost

Widely supported
Performance optimization
Rely on platform specific
abilities

Computing architecture

e Background and Motivation
B Research Questions

e Methodology

e Results

e Conclusions

Research Questions

e (RQ-1-CPU Utilization): How do Linux CPU utilization
measurements compare for serverless functions run on
x86 (Intel) vs. ARM64 (Graviton2) processors?

e (RQ-2 - Performance): How does serverless function
runtime compare on x86 (Intel) vs. ARMé64 (Graviton2)
processors?

Research Questions - 2

e (RQ-3-Performance Variance): What is the difference in
performance variance of serverless functions executed on
x86 (Intel) vs. ARM64 (Graviton2) processors?

e (RQ-4- Cost): What is the cost difference in hosting
serverless functions on x86 (Intel) vs. ARMé4 (Graviton2)
processors?

e Background and Motivation
e Research Questions
- Methodology
e Results
e Conclusions

Workloads

AWS Lambda us-west-2 (Oregon),
memory size: 3008MB(3GB) with 2 vCPU cores,
5GB ephemeral disk for I/O related tests

Short Name Function Name Description
linpack python_linpack Solve linear equations:
Ax=b
chacha20 openssl_encrypt_chacha20 Repeatedly perform openssl
encryption of 8MB file
n times
sqlite python_sqlite_dump Execute n random SELECT

video-processing
json_dumps

ffmpeg_sebs_220_gif
python_json_dumps

queries on a 1071000 SQLite
database

Convert PNG to GIF n times
JSON deserialization using

a downloaded JSON-encoded
string dataset

§ graph-pagerank python_sebs_501_pagerank PageRank implementation

';:) with igraph.

& graph-mst python_sebs_502_mst Minimum spanning tree
(MST) implementation with
igraph.

float python_float_operation Perform sin, cos, sqrt ops
chameleon python_chameleon Create HTML table of n rows
and M columns
graph-bfs python_sebs_503_bfs Breadth-first search (BFS)
implementation with igraph.
F | primenumber sysbench_cpu_prime Prime number generator
thread sysbench_thread Create thread, put locks and
El release thread
E filehandle python_fopen Open and close file handles
2 | socket python_socket Open and close socket n times
v
readmemory sysbench_memory N sequential reads of 1GB
E‘ memory block
£ | readwritememory python_malloc_write Allowcate IMByte of memory,
g write 0x42 into it and release
readdisk fio_disk_io_random_read Test random read speed on a
o) 1GB block
= | compression python_sebs_311_compression Create a .gz file for a file

i ion:
Using SAAFina Funct S
movork and 396093
 simplemporing he FMEE AL onse. For
sing SARF ina function 888 STRE L cppended onto e S0 AW 83, and
s cotecied 5 uid be stored into 2 4212035
e s G

Example Output JsoN:

The atrbutes co

o o crerpons e g e

" iotons ofspch e which functions are caled, For

o e amenon dometages e 7918 tons ot cotpe
 each language. . please

*eUR) Xeon(R) Processor g 2. soqugn

8-4862-9736-997dc 10931441,

ction

Fun
Attributes Collected py Each

Core Attibutes

Fiod

Supporting Tools - SAAF

SAAF and our other tools are is available here:
https://github.com/wlloyduw/SAAF

We utilize the Serverless Application Analytics Framework to
collect metrics from serverless functions.

Metrics such as CPU timing accounting, runtime, latency, and
more can collected by the Analyzer function and used to make
routing decisions by the Proxies.

inspectcPU0 Description
bid same ofthe CPU.

10

e Background and Motivation

OUt'.i ne e Research Questions

e Methodology

- Results

e Conclusions

How do Linux CPU utilization
measurements compare for

Resea rCh serverless functions run on x86
Question 1 (Intel) vs. ARM64 (Graviton2)

processors?

We investigate changes in CPU
user mode time, CPU kernel
mode time, and CPU idle time.

B CPUUser M CPUKernel CPU Idle

read linpack | graph [|readwrite| float prime |chacha20| chame-
memory pagerank| memory number leon

100

ARMG64 vs. x86
CPU Utilization
Comparison

Percentage(%)

x
©
[=)]

pouLe
pow.e
pouwle
powe
powi.e

100

Percentage(%)

x
oo
(o)}

powe
powe
" powle
powie
powe

How does serverless function runtime
compare on x86 (Intel) vs. ARM64
(Graviton2) processors?

Resea rc h Using runtime on x86 processors as a
- baseline, we identify functions with
Question 2 .

faster runtime on ARM, similar

runtime on ARM, and slower runtime
on ARM. In addition, we investigate
x86 vs. ARM64 runtime implications
when scaling up the work performed
by function instances

ARMG64 Function
Performance

Difference vs.
X86

ARM vs x86 performance change (%)

Research
Question 3

75

50
25
0
-25
-50
-75
¥ QO D 2@ Q0 9 2. & L0 & Q.o &
O NN) N2 QO 5)
Y@ & & 000 /b 2O &R Q@ @Q & < @'b &
O Q AT RS & 97 &
S P @
@7 S
Name

15

What is the difference in
performance variance of
serverless functions executed
on x86 (Intel) vs. ARM64
(Graviton2) processors?

We calculate and analyze the
coefficient of variation of
function runtime while scaling
the work of function instances
using forty distinct steps to
increase runtime.

Average CV (%)
of function
runtime

Function
runtime: change
in CV(%) over 40
steps

CV (%)

® x86 @ armo4

8
O
6 ®
@
4 ® o
® ® %) o
[J ® P
@ ® o @
2 0 o @ o o
® ® ®
® ® ® & *
[P o ©
0
& &% & D & © P I SN S)
b\% (\b\ 00\{‘ «Q}’b ‘gl’ QQJ 06\ 6\06 &@Q ,6\ X é\o .60 \Q,o 0\} 'bo %o &Q
FLEILFFIFLFSFSE T & T
C @ FSE S P g & @ o7
; R\ VAT & (¢ ey
P €KX ¢ ¥
& S
15 ARM Faster (ARM) ARM Faster (X86)
=——@— chameleon readdisk ==®-— readmemory =@ primenumber
— 10
R
>
O
5
¢ 10 20 30
Step Step
ARM Similar (ARM) ARM Similar (X86)
15 w—@— video-processing json_dumps socket =@ graph-pagerank
graph-mst @ compression —— float =@ graph-bfs
- 10
8
>
O
5
0
Step Step
is ARM Slower (ARM) ARM Slower (X86)
—@— |inpack chacha20 ==®-— thread =@ filehandle sqlite,readwritememory
s 10
2
>
[©]

e RS S

0 10 20 30 40 10 20 30

Step Step

17

18

Research

Question 4

Estimated cost
of 400k function
calls:

x86 vs. ARM

Cost (USD)

What is the cost difference in
hosting serverless functions on
x86 (Intel) vs. ARM64
(Graviton2) processors?

We compare the overall hosting
costs of 18 distinct functions
while scaling function runtime
across forty steps.

. armé64 .

x86

3,045
$3,000

$2,500

$2,000

1,557
1,451

1,528

||

$1,500
,344 1,362

96 /7

/s,(. "7@,,7

1, 263

1,171 1,055]
$1,000 1,007
$500 I 394

165 1 168

869

728

i

59
IJI

Y7 %
//;06 /7a /‘7,.@e /e/’e ‘7’/t 66‘7»,. ‘7@0 s°/; oq_eQra%gl-e% o, 062‘ 9'3»0/7 /).5,776

e, Oro %, P : S,
(&; », ces ’7703 ege St 57, ” '776@
9 *

20

ARM cost :

difference (+/- . Bg
%) relative to 'Illlll
x86

v < & % S0y, ¢ |77 /s S C¢ C/ 7% 7 Lry,
n, A, hr, . Moy 59, () 0 So, 0, 9ry, 9r: on, 7o, 9 A, () () 7
"sc(‘90/;i oy /76,, Yt s”n,n.%o‘a ’qu Ker e/’/?.c %, %rs 26 6"/7.5 "”7@, "%:? 60'17,8 I”’s,,
20 Yo e, *ro, m, C) e 77.:[sy, s eo,) % Mo, ‘I/hée
)

Ne, CGS s e, 7]
"700’ s/l;g ef),(,

21

Background and Motivation

OUt'_ine Research Questions

Methodology
Results

- Conclusions

Conclusion Summary

We executed experiments using 18 functions on AWS to compare X86 vs.
ARM64 FaaS

(RQ-1 - CPU Utilization): While most functions had similar CPU utilization
profiles across both architectures, some functions on ARMé4 had higher CPU
kernel mode utilization. These differences may help detect where x86 vs.
ARMé4 performance differences are likely occur.

(RQ-2 - Performance): ARM64 can provide performance advantages for
serverless workloads. ARMé4 provided faster runtime than x86 for 7 of 18
functions. Four functions were more than 10% faster. Runtime improvements
appeared highly dependent on the nature of the workload.

—Average function runtime increased by 2.86% (18 functions x 40 timesteps).

Conclusion Summary - 2

(RQ-3 - Performance Variance): Functions run on x86 on AWS Lambda,
exhibit more than twice the runtime variance vs. ARMé4 making x86 less
reliable for consistent performance.

(RQ-4 - Cost): ARM64 offers cost savings on AWS Lambda (15 of 18
tested serverless functions). Some of the cost savings are attributed to the
20% cost discount offered by the cloud provider for ARMé4 processors.
— Average execution costs decreased by 18.4% (18 functions x 40 timesteps)

23

24

Thank You!

